VIOLIN Logo
VIOLIN Banner
Search: for Help
About
Introduction
Statistics
VIOLIN News
Your VIOLIN
Register or Login
Submission
Tutorial
Vaccine & Components
Vaxquery
Vaxgen
VBLAST
Protegen
VirmugenDB
DNAVaxDB
CanVaxKB
Vaxjo
Vaxvec
Vevax
Huvax
Cov19VaxKB
Host Responses
VaximmutorDB
VIGET
Vaxafe
Vaxar
Vaxism
Vaccine Literature
VO-SciMiner
Litesearch
Vaxmesh
Vaxlert
Vaccine Design
Vaxign2
Vaxign
Community Efforts
Vaccine Ontology
ICoVax 2012
ICoVax 2013
Advisory Committee
Vaccine Society
Vaxperts
VaxPub
VaxCom
VaxLaw
VaxMedia
VaxMeet
VaxFund
VaxCareer
Data Exchange
V-Utilities
VIOLINML
Help & Documents
Publications
Documents
FAQs
Links
Acknowledgements
Disclaimer
Contact Us
UM Logo

VIOLIN Curated References

Actinobacillus pleuropneumoniae

  1. Byrd et al., 1992: Byrd W, Harmon BG, Kadis S. Protective efficacy of conjugate vaccines against experimental challenge with porcine Actinobacillus pleuropneumoniae. Veterinary immunology and immunopathology. 1992; 34(3-4); 307-324. [PubMed: 1455686].
  2. Chen et al., 2012: Chen X, Xu Z, Li L, Chen H, Zhou R. Identification of conserved surface proteins as novel antigenic vaccine candidates of Actinobacillus pleuropneumoniae. Journal of microbiology (Seoul, Korea). 2012; 50(6); 978-986. [PubMed: 23274984].
  3. Chiang et al., 2009: Chiang CH, Huang WF, Huang LP, Lin SF, Yang WJ. Immunogenicity and protective efficacy of ApxIA and ApxIIA DNA vaccine against Actinobacillus pleuropneumoniae lethal challenge in murine model. Vaccine. 2009; 27(34); 4565-4570. [PubMed: 19520199].
  4. Chiers et al., 1998: Chiers K, van Overbeke I, De Laender P, Ducatelle R, Carel S, Haesebrouck F. Effects of endobronchial challenge with Actinobacillus pleuropneumoniae serotype 9 of pigs vaccinated with inactivated vaccines containing the Apx toxins. The Veterinary quarterly. 1998; 20(2); 65-69. [PubMed: 9563163].
  5. Chung et al., 2012: Chung JW, Küster-Schöck E, Gibbs BF, Jacques M, Coulton JW. Immunoproteomic analyses of outer membrane antigens of Actinobacillus pleuropneumoniae grown under iron-restricted conditions. Veterinary microbiology. 2012; 159(1-2); 187-194. [PubMed: 22541161].
  6. Haesebrouck et al., 2004: Haesebrouck F, Pasmans F, Chiers K, Maes D, Ducatelle R, Decostere A. Efficacy of vaccines against bacterial diseases in swine: what can we expect?. Veterinary microbiology. 2004; 100(3-4); 255-268. [PubMed: 15145504].
  7. Hu et al., 2015: Hu X, Yan H, Liu K, Hu J, Qi C, Yang J, Liu Y, Zhao J, Liu J. Identification and characterization of a novel stress-responsive outer membrane protein Lip40 from Actinobacillus pleuropneumoniae. BMC biotechnology. 2015; 15; 106. [PubMed: 26608465].
  8. Hur and Lee, 2014: Hur J, Lee JH. Optimization of immune strategy for a construct of Salmonella-delivered ApxIA, ApxIIA, ApxIIIA and OmpA antigens of Actinobacillus pleuropneumoniae for prevention of porcine pleuropneumonia using a murine model. Veterinary research communications. 2014; 38(1); 87-91. [PubMed: 24307459].
  9. Hur et al., 2016: Hur J, Eo SK, Park SY, Choi Y, Lee JH. Immunological study of an attenuated Salmonella Typhimurium expressing ApxIA, ApxIIA, ApxIIIA and OmpA of Actinobacillus pleuropneumoniae in a mouse model. The Journal of veterinary medical science. 2016; 77(12); 1693-1696. [PubMed: 26227587].
  10. Ingham et al., 2002: Ingham A, Zhang Y, Prideaux C. Attenuation of Actinobacillus pleuropneumoniae by inactivation of aroQ. Veterinary microbiology. 2002; 84(3); 263-273. [PubMed: 11731178].
  11. Kim et al., 2010: Kim JM, Jung DI, Eom YJ, Park SM, Yoo HS, Jang YS, Yang MS, Kim DH. Surface-displayed expression of a neutralizing epitope of ApxIIA exotoxin in Saccharomyces cerevisiae and oral administration of it for protective immune responses against challenge by Actinobacillus pleuropneumoniae. Bioscience, biotechnology, and biochemistry. 2010; 74(7); 1362-1367. [PubMed: 20622458].
  12. Lee et al., 2006: Lee KY, Kim DH, Kang TJ, Kim J, Chung GH, Yoo HS, Arntzen CJ, Yang MS, Jang YS. Induction of protective immune responses against the challenge of Actinobacillus pleuropneumoniae by the oral administration of transgenic tobacco plant expressing ApxIIA toxin from the bacteria. FEMS immunology and medical microbiology. 2006; 48(3); 381-389. [PubMed: 17054716].
  13. Li et al., 2008: Li L, Zhou R, Li T, Kang M, Wan Y, Xu Z, Chen H. Enhanced biofilm formation and reduced virulence of Actinobacillus pleuropneumoniae luxS mutant. Microbial pathogenesis. 2008; 45(3); 192-200. [PubMed: 18585450].
  14. Liu et al., 2007: Liu J, Chen X, Lin L, Tan C, Chen Y, Guo Y, Jin M, Guo A, Bei W, Chen H. Potential use an Actinobacillus pleuropneumoniae double mutant strain DeltaapxIICDeltaapxIVA as live vaccine that allows serological differentiation between vaccinated and infected animals. Vaccine. 2007; 25(44); 7696-7705. [PubMed: 17767980].
  15. Liu et al., 2011: Liu J, Chen Y, Yuan F, Hu L, Bei W, Chen H. Cloning, expression, and characterization of TonB2 from Actinobacillus pleuropneumoniae and potential use as an antigenic vaccine candidate and diagnostic marker. Canadian journal of veterinary research = Revue canadienne de recherche veterinaire. 2011; 75(3); 183-190. [PubMed: 22210994].
  16. Park et al., 2009: Park C, Ha Y, Kim S, Chae C, Ryu DY. Construction and characterization of an Actinobacillus pleuropneumoniae serotype 2 mutant lacking the Apx toxin secretion protein genes apxIIIB and apxIIID. The Journal of veterinary medical science / the Japanese Society of Veterinary Science. 2009; 71(10); 1317-1323. [PubMed: 19887737].
  17. Prideaux et al., 1998: Prideaux CT, Pierce L, Krywult J, Hodgson AL. Protection of mice against challenge with homologous and heterologous serovars of Actinobacillus pleuropneumoniae after live vaccination. Current microbiology. 1998; 37(5); 324-332. [PubMed: 9767712].
  18. Prideaux et al., 1999: Prideaux CT, Lenghaus C, Krywult J, Hodgson AL. Vaccination and protection of pigs against pleuropneumonia with a vaccine strain of Actinobacillus pleuropneumoniae produced by site-specific mutagenesis of the ApxII operon. Infection and immunity. 1999; 67(4); 1962-1966. [PubMed: 10085043].
  19. Shakarji et al., 2006: Shakarji L, Mikael LG, Srikumar R, Kobisch M, Coulton JW, Jacques M. Fhua and HgbA, outer membrane proteins of Actinobacillus pleuropneumoniae: their role as virulence determinants. Canadian journal of microbiology. 2006; 52(4); 391-396. [PubMed: 16699590].
  20. Shin et al., 2007: Shin SJ, Shin SW, Kang ML, Lee DY, Yang MS, Jang YS, Yoo HS. Enhancement of protective immune responses by oral vaccination with Saccharomyces cerevisiae expressing recombinant Actinobacillus pleuropneumoniae ApxIA or ApxIIA in mice. Journal of veterinary science. 2007; 8(4); 383-392. [PubMed: 17993753].
  21. Shin et al., 2013: Shin MK, Kang ML, Jung MH, Cha SB, Lee WJ, Kim JM, Kim DH, Yoo HS. Induction of protective immune responses against challenge of Actinobacillus pleuropneumoniae by oral administration with Saccharomyces cerevisiae expressing Apx toxins in pigs. Veterinary immunology and immunopathology. 2013; 151(1-2); 132-139. [PubMed: 23206402].
  22. ThePigSite Pig Health: Actinobacillus Pleuropneumonia (App) [http://www.thepigsite.com/pighealth/article/309/actinobacillus-pleuropneumonia-app]
  23. Tonpitak et al., 2002: Tonpitak W, Baltes N, Hennig-Pauka I, Gerlach GF. Construction of an Actinobacillus pleuropneumoniae serotype 2 prototype live negative-marker vaccine. Infection and immunity. 2002; 70(12); 7120-7125. [PubMed: 12438394].
  24. van and Frey, 2003: van den Bosch H, Frey J. Interference of outer membrane protein PalA with protective immunity against Actinobacillus pleuropneumoniae infections in vaccinated pigs. Vaccine. 2003; 21(25-26); 3601-3607. [PubMed: 12922088].
  25. Van et al., 2001: Van Overbeke I, Chiers K, Ducatelle R, Haesebrouck F. Effect of endobronchial challenge with Actinobacillus pleuropneumoniae serotype 9 of pigs vaccinated with a vaccine containing Apx toxins and transferrin-binding proteins. Journal of veterinary medicine. B, Infectious diseases and veterinary public health. 2001; 48(1); 15-20. [PubMed: 11254095].
  26. Xu et al., 2006: Xu F, Chen X, Shi A, Yang B, Wang J, Li Y, Guo X, Blackall PJ, Yang H. Characterization and immunogenicity of an apxIA mutant of Actinobacillus pleuropneumoniae. Veterinary microbiology. 2006; 118(3-4); 230-239. [PubMed: 16930871].
  27. Xu et al., 2007: Xu FZ, Shi AH, Chen XL, Yang B, Wang JL. [Construction and immunogenicity of an attenuated mutant of Actinobacillus pleuropneumoniae by insertional inactivation of apxIC]. Wei sheng wu xue bao = Acta microbiologica Sinica. 2007; 47(5); 923-927. [PubMed: 18062275].
  28. Zhang et al., 2016: Zhang F, Cao S, Zhu Z, Yang Y, Wen X, Chang YF, Huang X, Wu R, Wen Y, Yan Q, Huang Y, Ma X, Zhao Q. Immunoprotective Efficacy of Six <i>In vivo</i>-Induced Antigens against <i>Actinobacillus pleuropneumoniae</i> as Potential Vaccine Candidates in Murine Model. Frontiers in microbiology. 2016; 7; 1623. [PubMed: 27818646].
  29. Zhou et al., 2013: Zhou Y, Li L, Chen Z, Yuan H, Chen H, Zhou R. Adhesion protein ApfA of Actinobacillus pleuropneumoniae is required for pathogenesis and is a potential target for vaccine development. Clinical and vaccine immunology : CVI. 2013; 20(2); 287-294. [PubMed: 23269417].

Adenovirus

  1. Baden et al., 2014: Baden LR, Walsh SR, Seaman MS, Johnson JA, Tucker RP, Kleinjan JA, Gothing JA, Engelson BA, Carey BR, Oza A, Bajimaya S, Peter L, Bleckwehl C, Abbink P, Pau MG, Weijtens M, Kunchai M, Swann EM, Wolff M, Dolin R, Barouch DH. First-in-Human Evaluation of a Hexon Chimeric Adenovirus Vector Expressing HIV-1 Env (IPCAVD 002). The Journal of infectious diseases. 2014; ; . [PubMed: 24719474].
  2. FDA: Adenovirus Vaccine: FDA: Adenovirus Vaccine [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm247508.htm]
  3. Guo et al., 2021: Guo J, Zhang Y, Zhang Y, Zhang C, Zhu C, Xing M, Wang X, Zhou D. A bivalent live-attenuated vaccine candidate elicits protective immunity against human adenovirus types 4 and 7. Emerging microbes & infections. 2021; 10(1); 1947-1959. [PubMed: 34520320].
  4. Harrison, 2010: Harrison SC. Virology. Looking inside adenovirus. Science (New York, N.Y.). 2010; 329(5995); 1026-1027. [PubMed: 20798308].
  5. Kim et al., 2014: Kim E, Okada K, Beeler JA, Crim RL, Piedra PA, Gilbert BE, Gambotto A. Development of an adenovirus-based respiratory syncytial virus vaccine: preclinical evaluation of efficacy, immunogenicity, and enhanced disease in a cotton rat model. Journal of virology. 2014; 88(9); 5100-5108. [PubMed: 24574396].
  6. Liu et al., 2018: Liu T, Zhou Z, Tian X, Liu W, Xu D, Fan Y, Liao J, Gu S, Li X, Zhou R. A recombinant trivalent vaccine candidate against human adenovirus types 3, 7, and 55. Vaccine. 2018; 36(16); 2199-2206. [PubMed: 29548605].
  7. Tompkins et al., 2007: Tompkins SM, Zhao ZS, Lo CY, Misplon JA, Liu T, Ye Z, Hogan RJ, Wu Z, Benton KA, Tumpey TM, Epstein SL. Matrix protein 2 vaccination and protection against influenza viruses, including subtype H5N1. Emerging infectious diseases. 2007; 13(3); 426-435. [PubMed: 17552096].

Aeromonas hydrophila

  1. Hernanz et al., 1998: Hernanz Moral C, Flaño del Castillo E, López Fierro P, Villena Cortés A, Anguita Castillo J, Cascón Soriano A, Sánchez Salazar M, Razquín Peralta B, Naharro Carrasco G. Molecular characterization of the Aeromonas hydrophila aroA gene and potential use of an auxotrophic aroA mutant as a live attenuated vaccine. Infection and immunity. 1998; 66(5); 1813-1821. [PubMed: 9573055].
  2. Liu et al., 2015: Liu L, Gong YX, Zhu B, Liu GL, Wang GX, Ling F. Effect of a new recombinant Aeromonas hydrophila vaccine on the grass carp intestinal microbiota and correlations with immunological responses. Fish & shellfish immunology. 2015; ; . [PubMed: 25862971].
  3. Mu et al., 2011: Mu W, Guan L, Yan Y, Liu Q, Zhang Y. A novel in vivo inducible expression system in Edwardsiella tarda for potential application in bacterial polyvalence vaccine. Fish & shellfish immunology. 2011; 31(6); 1097-1105. [PubMed: 21964456].
  4. Wiki: Aeromonas Hydrophila: Aeromonas Hydrophila [http://microbewiki.kenyon.edu/index.php/Aeromonas_Hydrophila]

Aeromonas salmonicida

  1. Bergh et al., 2013: Bergh PV, Burr SE, Benedicenti O, von Siebenthal B, Frey J, Wahli T. Antigens of the type-three secretion system of Aeromonas salmonicida subsp. salmonicida prevent protective immunity in rainbow trout. Vaccine. 2013; 31(45); 5256-5261. [PubMed: 24012573].
  2. Gudmundsdottir et al., 1997: BJARNHEIDUR K. GUDMUNDSDÓTTIR, BERGLJÓT MAGNADÓTTIR. Protection of Atlantic salmon (Salmo salarL.) against an experimental infection ofAeromonas salmonicidassp.achromogenes. Fish & shellfish immunology. 1997; 7(1); 55-69.
  3. Lund et al., 2003: Lund V, Espelid S, Mikkelsen H. Vaccine efficacy in spotted wolffish Anarhichas minor: relationship to molecular variation in A-layer protein of atypical Aeromonas salmonicida. Diseases of aquatic organisms. 2003; 56(1); 31-42. [PubMed: 14524499].
  4. Sundvold et al., 2010: Sundvold H, Ruyter B, Ostbye TK, Moen T. Identification of a novel allele of peroxisome proliferator-activated receptor gamma (PPARG) and its association with resistance to Aeromonas salmonicida in Atlantic salmon (Salmo salar). Fish & shellfish immunology. 2010; 28(2); 394-400. [PubMed: 20004720].
  5. USGS Fish Disease Leaflets: Furunculosis and Other Diseases Caused by Aeromonas Salmonicida [http://www.lsc.usgs.gov/fhb/leaflets/FHB66.pdf]
  6. Vaughan et al., 1993: Vaughan LM, Smith PR, Foster TJ. An aromatic-dependent mutant of the fish pathogen Aeromonas salmonicida is attenuated in fish and is effective as a live vaccine against the salmonid disease furunculosis. Infection and immunity. 1993; 61(5); 2172-2181. [PubMed: 8478107].
  7. Wiki: Aeromonas salmonicida: Aeromonas salmonicida [http://en.wikipedia.org/wiki/Aeromonas_salmonicida]

African horse sickness virus

  1. Castillo-Olivares et al., 2011: Castillo-Olivares J, Calvo-Pinilla E, Casanova I, Bachanek-Bankowska K, Chiam R, Maan S, Nieto JM, Ortego J, Mertens PP. A modified vaccinia Ankara virus (MVA) vaccine expressing African horse sickness virus (AHSV) VP2 protects against AHSV challenge in an IFNAR -/- mouse model. PloS one. 2011; 6(1); e16503. [PubMed: 21298069].
  2. de et al., 2015: de la Poza F, Marín-López A, Castillo-Olivares J, Calvo-Pinilla E, Ortego J. Identification of CD8 T cell epitopes in VP2 and NS1 proteins of African horse sickness virus in IFNAR(-/-) mice. Virus research. 2015; 210; 149-153. [PubMed: 26272673].
  3. Guthrie et al., 2009: Guthrie AJ, Quan M, Lourens CW, Audonnet JC, Minke JM, Yao J, He L, Nordgren R, Gardner IA, Maclachlan NJ. Protective immunization of horses with a recombinant canarypox virus vectored vaccine co-expressing genes encoding the outer capsid proteins of African horse sickness virus. Vaccine. 2009; 27(33); 4434-4438. [PubMed: 19490959].
  4. Manning et al., 2017: Manning NM, Bachanek-Bankowska K, Mertens PPC, Castillo-Olivares J. Vaccination with recombinant Modified Vaccinia Ankara (MVA) viruses expressing single African horse sickness virus VP2 antigens induced cross-reactive virus neutralising antibodies (VNAb) in horses when administered in combination. Vaccine. 2017; 35(44); 6024-6029. [PubMed: 28438410].
  5. O'Kennedy et al., 2022: O'Kennedy MM, Coetzee P, Koekemoer O, du Plessis L, Lourens CW, Kwezi L, du Preez I, Mamputha S, Mokoena NB, Rutkowska DA, Verschoor JA, Lemmer Y. Protective immunity of plant-produced African horse sickness virus serotype 5 chimaeric virus-like particles (VLPs) and viral protein 2 (VP2) vaccines in IFNAR(-/-) mice. Vaccine. 2022; 40(35); 5160-5169. [PubMed: 35902279].
  6. Rutkowska et al., 2011: Rutkowska DA, Meyer QC, Maree F, Vosloo W, Fick W, Huismans H. The use of soluble African horse sickness viral protein 7 as an antigen delivery and presentation system. Virus research. 2011; 156(1-2); 35-48. [PubMed: 21195731].

African Swine Fever Virus

  1. Argilaguet et al., 2011: Argilaguet JM, Pérez-Martín E, Gallardo C, Salguero FJ, Borrego B, Lacasta A, Accensi F, Díaz I, Nofrarías M, Pujols J, Blanco E, Pérez-Filgueira M, Escribano JM, Rodríguez F. Enhancing DNA immunization by targeting ASFV antigens to SLA-II bearing cells. Vaccine. 2011; 29(33); 5379-5385. [PubMed: 21679736].
  2. Argilaguet et al., 2013: Argilaguet JM, Pérez-Martín E, López S, Goethe M, Escribano JM, Giesow K, Keil GM, Rodríguez F. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus. Antiviral research. 2013; 98(1); 61-65. [PubMed: 23428670].
  3. Borca et al., 2021: Borca MV, Ramirez-Medina E, Silva E, Vuono E, Rai A, Pruitt S, Espinoza N, Velazquez-Salinas L, Gay CG, Gladue DP. ASFV-G-∆I177L as an Effective Oral Nasal Vaccine against the Eurasia Strain of Africa Swine Fever. Viruses. 2021; 13(5); . [PubMed: 33925435].
  4. Burmakina et al., 2016: Burmakina G, Malogolovkin A, Tulman ER, Zsak L, Delhon G, Diel DG, Shobogorov NM, Morgunov YP, Morgunov SY, Kutish GF, Kolbasov D, Rock DL. African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever. The Journal of general virology. 2016; 97(7); 1670-1675. [PubMed: 27114233].
  5. Chen et al., 2020: Chen W, Zhao D, He X, Liu R, Wang Z, Zhang X, Li F, Shan D, Chen H, Zhang J, Wang L, Wen Z, Wang X, Guan Y, Liu J, Bu Z. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Science China. Life sciences. 2020; 63(5); 623-634. [PubMed: 32124180].
  6. Giménez-Lirola et al., 2016: Giménez-Lirola LG, Mur L, Rivera B, Mogler M, Sun Y, Lizano S, Goodell C, Harris DL, Rowland RR, Gallardo C, Sánchez-Vizcaíno JM, Zimmerman J. Detection of African Swine Fever Virus Antibodies in Serum and Oral Fluid Specimens Using a Recombinant Protein 30 (p30) Dual Matrix Indirect ELISA. PloS one. 2016; 11(9); e0161230. [PubMed: 27611939].
  7. Heimerman et al., 2018: Heimerman ME, Murgia MV, Wu P, Lowe AD, Jia W, Rowland RR. Linear epitopes in African swine fever virus p72 recognized by monoclonal antibodies prepared against baculovirus-expressed antigen. Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc. 2018; 30(3); 406-412. [PubMed: 29327672].
  8. Lewis et al., 2000: Lewis T, Zsak L, Burrage TG, Lu Z, Kutish GF, Neilan JG, Rock DL. An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation and viral growth in macrophages and viral virulence in swine. Journal of virology. 2000; 74(3); 1275-1285. [PubMed: 10627538].
  9. Lokhandwala et al., 2016: Lokhandwala S, Waghela SD, Bray J, Martin CL, Sangewar N, Charendoff C, Shetti R, Ashley C, Chen CH, Berghman LR, Mwangi D, Dominowski PJ, Foss DL, Rai S, Vora S, Gabbert L, Burrage TG, Brake D, Neilan J, Mwangi W. Induction of Robust Immune Responses in Swine by Using a Cocktail of Adenovirus-Vectored African Swine Fever Virus Antigens. Clinical and vaccine immunology : CVI. 2016; 23(11); 888-900. [PubMed: 27628166].
  10. McDowell et al., 2022: McDowell CD, Bold D, Trujillo JD, Meekins DA, Keating C, Cool K, Kwon T, Madden DW, Artiaga BL, Balaraman V, Ankhanbaatar U, Zayat B, Retallick J, Dodd K, Chung CJ, Morozov I, Gaudreault NN, Souza-Neto JA, Richt JA. Experimental Infection of Domestic Pigs with African Swine Fever Virus Isolated in 2019 in Mongolia. Viruses. 2022; 14(12); . [PubMed: 36560702].
  11. Sanchez-Vizcaino et al., 2012: Sanchez-Vizcaino JM, Mur L, Martinez-Lopez B. African Swine Fever: An Epidemiological Update. Transboundary and emerging diseases. 2012; ; . [PubMed: 22225967].

Allergy

  1. Ballantyne et al., 2007: Ballantyne SJ, Barlow JL, Jolin HE, Nath P, Williams AS, Chung KF, Sturton G, Wong SH, McKenzie AN. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. The Journal of allergy and clinical immunology. 2007; 120(6); 1324-1331. [PubMed: 17889290].
  2. Bilsborough et al., 2008: Bilsborough J, Chadwick E, Mudri S, Ye X, Henderson WR Jr, Waggie K, Hebb L, Shin J, Rixon M, Gross JA, Dillon SR. TACI-Ig prevents the development of airway hyperresponsiveness in a murine model of asthma. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 2008; 38(12); 1959-1968. [PubMed: 19037968].
  3. Chuang et al., 2006: Chuang YH, Suen JL, Chiang BL. Fas-ligand-expressing adenovirus-transfected dendritic cells decrease allergen-specific T cells and airway inflammation in a murine model of asthma. Journal of molecular medicine (Berlin, Germany). 2006; 84(7); 595-603. [PubMed: 16565865].
  4. Edwan and Agrawal, 2007: Edwan JH, Agrawal DK. Flt3-ligand plasmid prevents the development of pathophysiological features of chronic asthma in a mouse model. Immunologic research. 2007; 37(2); 147-159. [PubMed: 17695249].
  5. Eigenmann et al., 2008: Eigenmann PA, Asigbetse KE, Frossard CP. Avirulant Salmonella typhimurium strains prevent food allergy in mice. Clinical and experimental immunology. 2008; 151(3); 546-553. [PubMed: 18190606].
  6. Focke et al., 2001: Focke M, Mahler V, Ball T, Sperr WR, Majlesi Y, Valent P, Kraft D, Valenta R. Nonanaphylactic synthetic peptides derived from B cell epitopes of the major grass pollen allergen, Phl p 1, for allergy vaccination. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2001; 15(11); 2042-2044. [PubMed: 11511525].
  7. Gómez et al., 2008: Gómez S, Gamazo C, San Roman B, Ferrer M, Sanz ML, Espuelas S, Irache JM. Allergen immunotherapy with nanoparticles containing lipopolysaccharide from Brucella ovis. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2008; 70(3); 711-717. [PubMed: 18582571].
  8. Keane-Myers et al., 1998: Keane-Myers AM, Gause WC, Finkelman FD, Xhou XD, Wills-Karp M. Development of murine allergic asthma is dependent upon B7-2 costimulation. Journal of immunology (Baltimore, Md. : 1950). 1998; 160(2); 1036-1043. [PubMed: 9551945].
  9. Liu et al., 2009: Liu X, Li M, Wu Y, Zhou Y, Zeng L, Huang T. Anti-IL-33 antibody treatment inhibits airway inflammation in a murine model of allergic asthma. Biochemical and biophysical research communications. 2009; 386(1); 181-185. [PubMed: 19508862].
  10. Maecker et al., 2001: Maecker HT, Hansen G, Walter DM, DeKruyff RH, Levy S, Umetsu DT. Vaccination with allergen-IL-18 fusion DNA protects against, and reverses established, airway hyperreactivity in a murine asthma model. Journal of immunology (Baltimore, Md. : 1950). 2001; 166(2); 959-965. [PubMed: 11145673].
  11. Nagashima et al., 2008: Nagashima O, Harada N, Usui Y, Yamazaki T, Yagita H, Okumura K, Takahashi K, Akiba H. B7-H3 contributes to the development of pathogenic Th2 cells in a murine model of asthma. Journal of immunology (Baltimore, Md. : 1950). 2008; 181(6); 4062-4071. [PubMed: 18768862].
  12. Peng et al., 2004: Peng HJ, Tsai LC, Su SN, Chang ZN, Shen HD, Chao PL, Kuo SW, Tsao IY, Hung MW. Comparison of different adjuvants of protein and DNA vaccination for the prophylaxis of IgE antibody formation. Vaccine. 2004; 22(5-6); 755-761. [PubMed: 14741169].
  13. Polte et al., 2006: Polte T, Foell J, Werner C, Hoymann HG, Braun A, Burdach S, Mittler RS, Hansen G. CD137-mediated immunotherapy for allergic asthma. The Journal of clinical investigation. 2006; 116(4); 1025-1036. [PubMed: 16528411].
  14. Simoes et al., 2008: Simoes DC, Vassilakopoulos T, Toumpanakis D, Petrochilou K, Roussos C, Papapetropoulos A. Angiopoietin-1 protects against airway inflammation and hyperreactivity in asthma. American journal of respiratory and critical care medicine. 2008; 177(12); 1314-1321. [PubMed: 18356565].
  15. Wang et al., 2008: Wang SY, Yang M, Xu XP, Qiu GF, Ma J, Wang SJ, Huang XX, Xu HX. Intranasal delivery of T-bet modulates the profile of helper T cell immune responses in experimental asthma. Journal of investigational allergology & clinical immunology : official organ of the International Association of Asthmology (INTERASMA) and Sociedad Latinoamericana de Alergia e Inmunologia. 2008; 18(5); 357-365. [PubMed: 18973099].
  16. Westritschnig et al., 2004: Westritschnig K, Focke M, Verdino P, Goessler W, Keller W, Twardosz A, Mari A, Horak F, Wiedermann U, Hartl A, Thalhamer J, Sperr WR, Valent P, Valenta R. Generation of an allergy vaccine by disruption of the three-dimensional structure of the cross-reactive calcium-binding allergen, Phl p 7. Journal of immunology (Baltimore, Md. : 1950). 2004; 172(9); 5684-5692. [PubMed: 15100313].
  17. Westritschnig et al., 2007: Westritschnig K, Linhart B, Focke-Tejkl M, Pavkov T, Keller W, Ball T, Mari A, Hartl A, Stöcklinger A, Scheiblhofer S, Thalhamer J, Ferreira F, Vieths S, Vogel L, Böhm A, Valent P, Valenta R. A hypoallergenic vaccine obtained by tail-to-head restructuring of timothy grass pollen profilin, Phl p 12, for the treatment of cross-sensitization to profilin. Journal of immunology (Baltimore, Md. : 1950). 2007; 179(11); 7624-7634. [PubMed: 18025208].
  18. Wiki: Allergy: Allergy [http://en.wikipedia.org/wiki/Allergy]

Arthritis

  1. Ho et al., 2006: Ho PP, Higgins JP, Kidd BA, Tomooka B, Digennaro C, Lee LY, de Vegvar HE, Steinman L, Robinson WH. Tolerizing DNA vaccines for autoimmune arthritis. Autoimmunity. 2006; 39(8); 675-682. [PubMed: 17178564].
  2. Mayo Clinic - Arthritis: Arthritis [http://www.mayoclinic.com/health/arthritis/DS01122]
  3. Quintana et al., 2002: Quintana FJ, Carmi P, Mor F, Cohen IR. Inhibition of adjuvant arthritis by a DNA vaccine encoding human heat shock protein 60. Journal of immunology (Baltimore, Md. : 1950). 2002; 169(6); 3422-3428. [PubMed: 12218165].
  4. Ragno et al., 1997: Ragno S, Colston MJ, Lowrie DB, Winrow VR, Blake DR, Tascon R. Protection of rats from adjuvant arthritis by immunization with naked DNA encoding for mycobacterial heat shock protein 65. Arthritis and rheumatism. 1997; 40(2); 277-283. [PubMed: 9041939].
  5. Santos-Junior et al., 2005: Santos-Junior RR, Sartori A, De Franco M, Filho OG, Coelho-Castelo AA, Bonato VL, Cabrera WH, Ibañez OM, Silva CL. Immunomodulation and protection induced by DNA-hsp65 vaccination in an animal model of arthritis. Human gene therapy. 2005; 16(11); 1338-1345. [PubMed: 16259568].
  6. Song et al., 2009: Song X, Liang F, Liu N, Luo Y, Xue H, Yuan F, Tan L, Sun Y, Xi C, Xi Y. Construction and characterization of a novel DNA vaccine that is potent antigen-specific tolerizing therapy for experimental arthritis by increasing CD4+CD25+Treg cells and inducing Th1 to Th2 shift in both cells and cytokines. Vaccine. 2009; 27(5); 690-700. [PubMed: 19095031].
  7. Xue et al., 2011: Xue H, Liang F, Liu N, Song X, Yuan F, Luo Y, Zhao X, Long J, Sun Y, Xi Y. Potent antirheumatic activity of a new DNA vaccine targeted to B7-2/CD28 costimulatory signaling pathway in autoimmune arthritis. Human gene therapy. 2011; 22(1); 65-76. [PubMed: 20695769].

Atherosclerosis

  1. Chyu et al., 2005: Chyu KY, Zhao X, Reyes OS, Babbidge SM, Dimayuga PC, Yano J, Cercek B, Fredrikson GN, Nilsson J, Shah PK. Immunization using an Apo B-100 related epitope reduces atherosclerosis and plaque inflammation in hypercholesterolemic apo E (-/-) mice. Biochemical and biophysical research communications. 2005; 338(4); 1982-1989. [PubMed: 16288717].
  2. Fredrikson et al., 2005: Fredrikson GN, Andersson L, Söderberg I, Dimayuga P, Chyu KY, Shah PK, Nilsson J. Atheroprotective immunization with MDA-modified apo B-100 peptide sequences is associated with activation of Th2 specific antibody expression. Autoimmunity. 2005; 38(2); 171-179. [PubMed: 16040338].
  3. Jan et al., 2010: Jan M, Meng S, Chen NC, Mai J, Wang H, Yang XF. Inflammatory and autoimmune reactions in atherosclerosis and vaccine design informatics. Journal of biomedicine & biotechnology. 2010; 2010; 459798. [PubMed: 20414374].

Avian Encephalomyelitis Virus

  1. AE-Poxine: AE-Poxine vaccine website [https://online.zoetis.com/US/EN/Products/Pages/AE_Poxine.aspx]
  2. Calneck, B. W., 2003: Bruce N. Calneck. Avian Encephalomyelitis. 271-281. Diseases of poultry, 11th ed. 2003. Iowa State University Press, Ames, IA.
  3. Marvil et al., 1999: Marvil P, Knowles NJ, Mockett AP, Britton P, Brown TD, Cavanagh D. Avian encephalomyelitis virus is a picornavirus and is most closely related to hepatitis A virus. The Journal of general virology. 1999; 80 ( Pt 3); 653-662. [PubMed: 10092005].

Avian Paramyxovirus

  1. Beck et al., 2003: Beck I, Gerlach H, Burkhardt E, Kaleta EF. Investigation of several selected adjuvants regarding their efficacy and side effects for the production of a vaccine for parakeets to prevent a disease caused by a paramyxovirus type 3. Vaccine. 2003; 21(9-10); 1006-1022. [PubMed: 12547615].
  2. Wiki: Avain paramyxovirus: Wiki: Avain paramyxovirus [http://en.wikipedia.org/wiki/Avian_paramyxovirus]

Avian pneumovirus

  1. Kapczynski and Sellers, 2003: Kapczynski DR, Sellers HS. Immunization of turkeys with a DNA vaccine expressing either the F or N gene of avian metapneumovirus. Avian diseases. 2003; 47(4); 1376-1383. [PubMed: 14708985].
  2. Merck Vet Manual: Avian Pneumovirus: Merck Vet Manual: Avian Pneumovirus [http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/206300.htm]

Avian Polyomavirus

  1. Merck Vet Manual: Avian Polyomavirus: Merck Vet Manual: Avian Polyomavirus [http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/170221.htm]
  2. Ritchie et al., 1996: Ritchie BW, Niagro FD, Latimer KS, Pritchard N, Campagnoli RP, Lukert PD. An inactivated avian polyomavirus vaccine is safe and immunogenic in various Psittaciformes. Vaccine. 1996; 14(12); 1103-1107. [PubMed: 8911004].

Avian Reovirus

  1. Avian Reovirus Infections: Avian Reovirus Infections [http://www.thepoultrysite.com/articles/96/avian-reovirus-infections]
  2. Wan et al., 2011: Wan J, Wang C, Wen X, Huang X, Ling S, Huang Y, Cao S. Immunogenicity of a DNA vaccine of Avian Reovirus orally delivered by attenuated Salmonella typhimurium. Research in veterinary science. 2011; 91(3); 382-383. [PubMed: 20947110].
  3. Wan et al., 2012: Wan J, Wen X, Huang X, Tang Y, Huang Y, Yan Q, Zhao Q, Cao S. Immunogenic analysis of two DNA vaccines of avian reovirus mediated by attenuated Salmonella typhimurium in chickens. Veterinary immunology and immunopathology. 2012; 147(3-4); 154-160. [PubMed: 22575372].
  4. Wu et al., 2005: Wu H, Williams Y, Gunn KS, Singh NK, Locy RD, Giambrone JJ. Yeast-derived sigma C protein-induced immunity against avian reovirus. Avian diseases. 2005; 49(2); 281-284. [PubMed: 16094835].

Babesia bovis

  1. Antonio et al., 2010: Antonio Alvarez J, Lopez U, Rojas C, Borgonio VM, Sanchez V, Castañeda R, Vargas P, Figueroa JV. Immunization of Bos taurus steers with Babesia bovis recombinant antigens MSA-1, MSA-2c and 12D3. Transboundary and emerging diseases. 2010; 57(1-2); 87-90. [PubMed: 20537116].
  2. Brown et al., 1993: Brown WC, Palmer GH, McElwain TF, Hines SA, Dobbelaere DA. Babesia bovis: characterization of the T helper cell response against the 42-kDa merozoite surface antigen (MSA-1) in cattle. Experimental parasitology. 1993; 77(1); 97-9110. [PubMed: 8344411].
  3. Brown et al., 1996: Brown WC, McElwain TF, Ruef BJ, Suarez CE, Shkap V, Chitko-McKown CG, Tuo W, Rice-Ficht AC, Palmer GH. Babesia bovis rhoptry-associated protein 1 is immunodominant for T helper cells of immune cattle and contains T-cell epitopes conserved among geographically distant B. bovis strains. Infection and immunity. 1996; 64(8); 3341-3350. [PubMed: 8757873].
  4. de and Combrink, 2006: de Waal DT, Combrink MP. Live vaccines against bovine babesiosis. Veterinary parasitology. 2006; 138(1-2); 88-96. [PubMed: 16504404].
  5. Ishizaki et al., 2017: Ishizaki T, Sivakumar T, Hayashida K, Takemae H, Tuvshintulga B, Munkhjargal T, Guswanto A, Igarashi I, Yokoyama N. Babesia bovis BOV57, a Theileria parva P67 homolog, is an invasion-related, neutralization-sensitive antigen. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2017; 54; 138-145. [PubMed: 28668608].
  6. Norimine et al., 2004: Norimine J, Mosqueda J, Palmer GH, Lewin HA, Brown WC. Conservation of Babesia bovis small heat shock protein (Hsp20) among strains and definition of T helper cell epitopes recognized by cattle with diverse major histocompatibility complex class II haplotypes. Infection and immunity. 2004; 72(2); 1096-1106. [PubMed: 14742557].
  7. Terkawi et al., 2013: Terkawi MA, Ratthanophart J, Salama A, AbouLaila M, Asada M, Ueno A, Alhasan H, Guswanto A, Masatani T, Yokoyama N, Nishikawa Y, Xuan X, Igarashi I. Molecular characterization of a new Babesia bovis thrombospondin-related anonymous protein (BbTRAP2). PloS one. 2013; 8(12); e83305. [PubMed: 24349483].
  8. Wiki: Babesia bovis: Babesia bovis [http://en.wikipedia.org/wiki/Babesia_bovis]
  9. Wright et al., 1992: Wright IG, Casu R, Commins MA, Dalrymple BP, Gale KR, Goodger BV, Riddles PW, Waltisbuhl DJ, Abetz I, Berrie DA. The development of a recombinant Babesia vaccine. Veterinary parasitology. 1992; 44(1-2); 3-13. [PubMed: 1441189].

Babesia canis

  1. Moreau et al., 1989: Moreau Y, Vidor E, Bissuel G, Dubreuil N. Vaccination against canine babesiosis: an overview of field observations. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1989; 83 Suppl; 95-96. [PubMed: 2623757].
  2. Pet Education.com: Babesia canis: Babesia canis: The Cause of Piroplasmosis [http://www.peteducation.com/article.cfm?c=2+2101&aid=720]

Bacillus anthracis

  1. Balderas et al., 2016: Balderas MA, Nguyen CT, Terwilliger A, Keitel WA, Iniguez A, Torres R, Palacios F, Goulding CW, Maresso AW. Progress toward the Development of a NEAT Protein Vaccine for Anthrax Disease. Infection and immunity. 2016; 84(12); 3408-3422. [PubMed: 27647868].
  2. Bielinska et al., 2007: Bielinska AU, Janczak KW, Landers JJ, Makidon P, Sower LE, Peterson JW, Baker JR Jr. Mucosal immunization with a novel nanoemulsion-based recombinant anthrax protective antigen vaccine protects against Bacillus anthracis spore challenge. Infection and immunity. 2007; 75(8); 4020-4029. [PubMed: 17502384].
  3. Brey, 2005: Brey RN. Molecular basis for improved anthrax vaccines. Advanced drug delivery reviews. 2005 Jun 17; 57(9); 1266-92. [PubMed: 15935874].
  4. CDC, 2000: Use of anthrax vaccine in the United States: recommendations of the Advisory Committee on Immunization Practices (ACIP) [http://www.cdc.gov/mmwr/PDF/rr/rr4915.pdf]
  5. Chabot et al., 2004: Chabot DJ, Scorpio A, Tobery SA, Little SF, Norris SL, Friedlander AM. Anthrax capsule vaccine protects against experimental infection. Vaccine. 2004 Nov 15; 23(1); 43-7. [PubMed: 15519706].
  6. Chekanov et al., 2006: Chekanov AV, Remacle AG, Golubkov VS, Akatov VS, Sikora S, Savinov AY, Fugere M, Day R, Rozanov DV, Strongin AY. Both PA63 and PA83 are endocytosed within an anthrax protective antigen mixed heptamer: a putative mechanism to overcome a furin deficiency. Archives of biochemistry and biophysics. 2006 Feb 1; 446(1); 52-9. [PubMed: 16384550].
  7. Chitlaru et al., 2007: Chitlaru T, Gat O, Grosfeld H, Inbar I, Gozlan Y, Shafferman A. Identification of in vivo-expressed immunogenic proteins by serological proteome analysis of the Bacillus anthracis secretome. Infection and immunity. 2007; 75(6); 2841-2852. [PubMed: 17353282].
  8. Coeshott et al., 2004: Coeshott CM, Smithson SL, Verderber E, Samaniego A, Blonder JM, Rosenthal GJ, Westerink MA. Pluronic F127-based systemic vaccine delivery systems. Vaccine. 2004 Jun 23; 22(19); 2396-405. [PubMed: 15193401].
  9. Coker et al., 2003: Coker PR, Smith KL, Fellows PF, Rybachuck G, Kousoulas KG, Hugh-Jones ME. Bacillus anthracis virulence in Guinea pigs vaccinated with anthrax vaccine adsorbed is linked to plasmid quantities and clonality. Journal of clinical microbiology. 2003 Mar; 41(3); 1212-8. [PubMed: 12624053].
  10. Cui et al., 2006: Cui Z, Sloat BR. Topical immunization onto mouse skin using a microemulsion incorporated with an anthrax protective antigen protein-encoding plasmid. International journal of pharmaceutics. 2006 Jul 24; 317(2); 187-91. [PubMed: 16730934 ].
  11. FDA: Anthrax Vaccine Adsorbed: FDA: Anthrax Vaccine Adsorbed for Bacillus anthracis [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm093863.htm]
  12. Flick-Smith et al., 2002: Flick-Smith HC, Walker NJ, Gibson P, Bullifent H, Hayward S, Miller J, Titball RW, Williamson ED. A recombinant carboxy-terminal domain of the protective antigen of Bacillus anthracis protects mice against anthrax infection. Infection and immunity. 2002 Mar; 70(3); 1653-6. [PubMed: 11854261].
  13. Galloway et al., 2004: Galloway D, Liner A, Legutki J, Mateczun A, Barnewall R, Estep J. Genetic immunization against anthrax. Vaccine. 2004 Apr 16; 22(13-14); 1604-8. [PubMed: 15068841].
  14. Gat et al., 2005: Gat O, Mendelson I, Chitlaru T, Ariel N, Altboum Z, Levy H, Weiss S, Grosfeld H, Cohen S, Shafferman A. The solute-binding component of a putative Mn(II) ABC transporter (MntA) is a novel Bacillus anthracis virulence determinant. Molecular microbiology. 2005; 58(2); 533-551. [PubMed: 16194238].
  15. Glomski et al., 2007: Glomski IJ, Corre JP, Mock M, Goossens PL. Cutting Edge: IFN-gamma-producing CD4 T lymphocytes mediate spore-induced immunity to capsulated Bacillus anthracis. Journal of immunology (Baltimore, Md. : 1950). 2007 Mar 1; 178(5); 2646-50. [PubMed: 17312104 ].
  16. Gu et al., 1999: Gu ML, Leppla SH, Klinman DM. Protection against anthrax toxin by vaccination with a DNA plasmid encoding anthrax protective antigen. Vaccine. 1999 Jan 28; 17(4); 340-4. [PubMed: 9987172].
  17. Hahn et al., 2004: Hahn UK, Alex M, Czerny CP, Bohm R, Beyer W. Protection of mice against challenge with Bacillus anthracis STI spores after DNA vaccination. International journal of medical microbiology : IJMM. 2004 Jul; 294(1); 35-44. [PubMed: 15293452].
  18. Hanna et al., 1999: Hanna PC, Ireland JA. Understanding Bacillus anthracis pathogenesis. Trends in microbiology. 1999 May; 7(5); 180-2. [PubMed: 10383221].
  19. Hermanson et al., 2004: Hermanson G, Whitlow V, Parker S, Tonsky K, Rusalov D, Ferrari M, Lalor P, Komai M, Mere R, Bell M, Brenneman K, Mateczun A, Evans T, Kaslow D, Galloway D, Hobart P. A cationic lipid-formulated plasmid DNA vaccine confers sustained antibody-mediated protection against aerosolized anthrax spores. Proceedings of the National Academy of Sciences of the United States of America. 2004 Sep 14; 101(37); 13601-6. [PubMed: 15342913].
  20. Hirsh et al, 2004: Hirsh DC, Biberstrein EL.. Bacillus. . 170-174.. Veterinary Microbiology, 2nd Ed.. 2004. Blackwell Publishing, Ames, Iowa...
  21. Ivins et al., 1992: Ivins BE, Welkos SL, Little SF, Crumrine MH, Nelson GO. Immunization against anthrax with Bacillus anthracis protective antigen combined with adjuvants. Infection and immunity. 1992; 60(2); 662-668. [PubMed: 1730501].
  22. Ivins et al., 1995: Ivins B, Fellows P, Pitt L, Estep J, Farchaus J, Friedlander A, Gibbs P. Experimental anthrax vaccines: efficacy of adjuvants combined with protective antigen against an aerosol Bacillus anthracis spore challenge in guinea pigs. Vaccine. 1995; 13(18); 1779-1784. [PubMed: 8701593].
  23. Klaschik et al., 2007: Klaschik S, Gursel I, Klinman DM. CpG-mediated changes in gene expression in murine spleen cells identified by microarray analysis. Molecular immunology. 2007 Feb; 44(6); 1095-104. [PubMed: 16930709].
  24. Klinman et al., 2004: Klinman DM, Xie H, Little SF, Currie D, Ivins BE. CpG oligonucleotides improve the protective immune response induced by the anthrax vaccination of rhesus macaques. Vaccine. 2004 Jul 29; 22(21-22); 2881-6. [PubMed: 15246624 ].
  25. Kutsenko et al., 2002: Kutsenko AS, Gizatullin RZ, Al-Amin AN, Wang F, Kvasha SM, Podowski RM, Matushkin YG, Gyanchandani A, Muravenko OV, Levitsky VG, Kolchanov NA, Protopopov AI, Kashuba VI, Kisselev LL, Wasserman W, Wahlestedt C, Zabarovsky ER. NotI flanking sequences: a tool for gene discovery and verification of the human genome. Nucleic acids research. 2002 Jul 15; 30(14); 3163-70. [PubMed: 12136098].
  26. Leppla et al., 2002: Leppla SH, Robbins JB, Schneerson R, Shiloach J. Development of an improved vaccine for anthrax. The Journal of clinical investigation. 2002 Jul; 110(2); 141-4. [PubMed: 12122102].
  27. Little et al., 1986: Little SF, Knudson GB. Comparative efficacy of Bacillus anthracis live spore vaccine and protective antigen vaccine against anthrax in the guinea pig. Infection and immunity. 1986 May; 52(2); 509-12. [PubMed: 3084385].
  28. Livingston et al., 2010: Livingston BD, Little SF, Luxembourg A, Ellefsen B, Hannaman D. Comparative performance of a licensed anthrax vaccine versus electroporation based delivery of a PA encoding DNA vaccine in rhesus macaques. Vaccine. 2010; 28(4); 1056-1061. [PubMed: 19896452].
  29. Luxembourg et al., 2008: Luxembourg A, Hannaman D, Nolan E, Ellefsen B, Nakamura G, Chau L, Tellez O, Little S, Bernard R. Potentiation of an anthrax DNA vaccine with electroporation. Vaccine. 2008; 26(40); 5216-5222. [PubMed: 18462850].
  30. McConnell et al., 2006: McConnell MJ, Hanna PC, Imperiale MJ. Cytokine response and survival of mice immunized with an adenovirus expressing Bacillus anthracis protective antigen domain 4. Infection and immunity. 2006; 74(2); 1009-1015. [PubMed: 16428747].
  31. Midha and Bhatnagar, 2009: Midha S, Bhatnagar R. Anthrax protective antigen administered by DNA vaccination to distinct subcellular locations potentiates humoral and cellular immune responses. European journal of immunology. 2009; 39(1); 159-177. [PubMed: 19130551].
  32. Mikshis et al., 2014: Mikshis NI, Popova PIu, Kudriavtseva OM, Semakova AP, Novikova LN, Kravtsov AL, Bugorkova SA, Shchukovskaia TN, Popov IuA, Kutyrev VV. [Immunogenicity and safety of a prototype chemical anthrax vaccine in laboratory animal models]. Zhurnal mikrobiologii, epidemiologii, i immunobiologii. 2014; (4); 22-30. [PubMed: 25286524].
  33. Mohamadzadeh et al., 2010: Mohamadzadeh M, Durmaz E, Zadeh M, Pakanati KC, Gramarossa M, Cohran V, Klaenhammer TR. Targeted expression of anthrax protective antigen by Lactobacillus gasseri as an anthrax vaccine. Future microbiology. 2010; 5(8); 1289-1296. [PubMed: 20722604].
  34. Osorio et al., 2009: Osorio M, Wu Y, Singh S, Merkel TJ, Bhattacharyya S, Blake MS, Kopecko DJ. Anthrax protective antigen delivered by Salmonella enterica serovar Typhi Ty21a protects mice from a lethal anthrax spore challenge. Infection and immunity. 2009; 77(4); 1475-1482. [PubMed: 19179420].
  35. PathPort: Virginia Bioinformatics Institute [http://pathport.vbi.vt.edu/pathinfo/pathogens/Bacillus-anthracis_Info.shtml]
  36. Pittman et al., 2006: Pittman PR, Norris SL, Barrera Oro JG, Bedwell D, Cannon TL, McKee KT Jr. Patterns of antibody response in humans to the anthrax vaccine adsorbed (AVA) primary (six-dose) series. Vaccine. 2006 Apr 24; 24(17); 3654-60. [PubMed: 16497418].
  37. Price et al., 2001: Price BM, Liner AL, Park S, Leppla SH, Mateczun A, Galloway DR. Protection against anthrax lethal toxin challenge by genetic immunization with a plasmid encoding the lethal factor protein. Infection and immunity. 2001 Jul; 69(7); 4509-15. [PubMed: 11401993].
  38. Rhie et al., 2003: Rhie GE, Roehrl MH, Mourez M, Collier RJ, Mekalanos JJ, Wang JY. A dually active anthrax vaccine that confers protection against both bacilli and toxins. Proceedings of the National Academy of Sciences of the United States of America. 2003 Sep 16; 100(19); 10925-30. [PubMed: 12960361].
  39. Rhie et al., 2005: Rhie GE, Park YM, Chun JH, Yoo CK, Seong WK, Oh HB. Expression and secretion of the protective antigen of Bacillus anthracis in Bacillus brevis. FEMS immunology and medical microbiology. 2005; 45(2); 331-339. [PubMed: 16009541].
  40. Ribeiro et al., 2007: Ribeiro S, Rijpkema SG, Durrani Z, Florence AT. PLGA-dendron nanoparticles enhance immunogenicity but not lethal antibody production of a DNA vaccine against anthrax in mice. International journal of pharmaceutics. 2007; 331(2); 228-232. [PubMed: 17258876].
  41. Ribot et al., 2006: Ribot WJ, Powell BS, Ivins BE, Little SF, Johnson WM, Hoover TA, Norris SL, Adamovicz JJ, Friedlander AM, Andrews GP. Comparative vaccine efficacy of different isoforms of recombinant protective antigen against Bacillus anthracis spore challenge in rabbits. Vaccine. 2006 Apr 24; 24(17); 3469-76. [PubMed: 16519970].
  42. Riemenschneider et al., 2003: Riemenschneider J, Garrison A, Geisbert J, Jahrling P, Hevey M, Negley D, Schmaljohn A, Lee J, Hart MK, Vanderzanden L, Custer D, Bray M, Ruff A, Ivins B, Bassett A, Rossi C, Schmaljohn C. Comparison of individual and combination DNA vaccines for B. anthracis, Ebola virus, Marburg virus and Venezuelan equine encephalitis virus. Vaccine. 2003; 21(25-26); 4071-4080. [PubMed: 12922144].
  43. Schneerson et al., 2003: Schneerson R, Kubler-Kielb J, Liu TY, Dai ZD, Leppla SH, Yergey A, Backlund P, Shiloach J, Majadly F, Robbins JB. Poly(gamma-D-glutamic acid) protein conjugates induce IgG antibodies in mice to the capsule of Bacillus anthracis: a potential addition to the anthrax vaccine. Proceedings of the National Academy of Sciences of the United States of America. 2003 Jul 22; 100(15); 8945-50. [PubMed: 12857944].
  44. Sloat and Cui, 2006: Sloat BR, Cui Z. Nasal immunization with anthrax protective antigen protein adjuvanted with polyriboinosinic-polyribocytidylic acid induced strong mucosal and systemic immunities. Pharmaceutical research. 2006; 23(6); 1217-1226. [PubMed: 16718616].
  45. Smith et al., 2006: Smith ME, Koser M, Xiao S, Siler C, McGettigan JP, Calkins C, Pomerantz RJ, Dietzschold B, Schnell MJ. Rabies virus glycoprotein as a carrier for anthrax protective antigen. Virology. 2006 Sep 30; 353(2); 344-56. [PubMed: 16820183].
  46. Spore vaccine: Anthrax Spore Vaccine [http://www.atozvetsupply.com/Anthrax-Vaccine-p/313-csav.htm]
  47. Tucker et al., 2003: Tucker SN, Lin K, Stevens S, Scollay R, Bennett MJ, Olson DC. Systemic and mucosal antibody responses following retroductal gene transfer to the salivary gland. Molecular therapy : the journal of the American Society of Gene Therapy. 2003; 8(3); 392-399. [PubMed: 12946312].
  48. Vilalta et al., 2005: Vilalta A, Mahajan RK, Hartikka J, Leamy V, Martin T, Rusalov D, Bozoukova V, Lalor P, Hall K, Kaslow DC, Rolland A. II. Cationic lipid-formulated plasmid DNA-based Bacillus anthracis vaccine: evaluation of plasmid DNA persistence and integration potential. Human gene therapy. 2005; 16(10); 1151-1156. [PubMed: 16218776].
  49. Wang et al., 2004: Wang TT, Fellows PF, Leighton TJ, Lucas AH. Induction of opsonic antibodies to the gamma-D-glutamic acid capsule of Bacillus anthracis by immunization with a synthetic peptide-carrier protein conjugate. FEMS immunology and medical microbiology. 2004 Apr 9; 40(3); 231-7. [PubMed: 15039099].
  50. Xie et al., 2005: Xie H, Gursel I, Ivins BE, Singh M, O'Hagan DT, Ulmer JB, Klinman DM. CpG oligodeoxynucleotides adsorbed onto polylactide-co-glycolide microparticles improve the immunogenicity and protective activity of the licensed anthrax vaccine. Infection and immunity. 2005 Feb; 73(2); 828-33. [PubMed: 15664922].

Bluetongue virus

  1. Boone et al., 2007: Boone JD, Balasuriya UB, Karaca K, Audonnet JC, Yao J, He L, Nordgren R, Monaco F, Savini G, Gardner IA, Maclachlan NJ. Recombinant canarypox virus vaccine co-expressing genes encoding the VP2 and VP5 outer capsid proteins of bluetongue virus induces high level protection in sheep. Vaccine. 2007; 25(4); 672-678. [PubMed: 17059856].
  2. Bouet-Cararo et al., 2014: Bouet-Cararo C, Contreras V, Caruso A, Top S, Szelechowski M, Bergeron C, Viarouge C, Desprat A, Relmy A, Guibert JM, Dubois E, Thiery R, Bréard E, Bertagnoli S, Richardson J, Foucras G, Meyer G, Schwartz-Cornil I, Zientara S, Klonjkowski B. Expression of VP7, a Bluetongue virus group specific antigen by viral vectors: analysis of the induced immune responses and evaluation of protective potential in sheep. PloS one. 2014; 9(11); e111605. [PubMed: 25364822].
  3. Franceschi et al., 2011: Franceschi V, Capocefalo A, Calvo-Pinilla E, Redaelli M, Mucignat-Caretta C, Mertens P, Ortego J, Donofrio G. Immunization of knock-out α/β interferon receptor mice against lethal bluetongue infection with a BoHV-4-based vector expressing BTV-8 VP2 antigen. Vaccine. 2011; 29(16); 3074-3082. [PubMed: 21320537].
  4. Legisa et al., 2015: Legisa DM, Perez Aguirreburualde MS, Gonzalez FN, Marin-Lopez A, Ruiz V, Wigdorovitz A, Martinez-Escribano JA, Ortego J, Dus Santos MJ. An experimental subunit vaccine based on Bluetongue virus 4 VP2 protein fused to an antigen-presenting cells single chain antibody elicits cellular and humoral immune responses in cattle, guinea pigs and IFNAR(-/-) mice. Vaccine. 2015; 33(22); 2614-2619. [PubMed: 25858859].
  5. Maclachlan et al., 2009: Maclachlan NJ, Drew CP, Darpel KE, Worwa G. The pathology and pathogenesis of bluetongue. Journal of comparative pathology. 2009; 141(1); 1-16. [PubMed: 19476953].
  6. Perrin et al., 2007: Perrin A, Albina E, Bréard E, Sailleau C, Promé S, Grillet C, Kwiatek O, Russo P, Thiéry R, Zientara S, Cêtre-Sossah C. Recombinant capripoxviruses expressing proteins of bluetongue virus: evaluation of immune responses and protection in small ruminants. Vaccine. 2007; 25(37-38); 6774-6783. [PubMed: 17669563].
  7. Top et al., 2012: Top S, Foucras G, Deplanche M, Rives G, Calvalido J, Comtet L, Bertagnoli S, Meyer G. Myxomavirus as a vector for the immunisation of sheep: protection study against challenge with bluetongue virus. Vaccine. 2012; 30(9); 1609-1616. [PubMed: 22244980].
  8. Wang et al., 2013: Wang WS, Sun EC, Liu NH, Yang T, Xu QY, Qin YL, Zhao J, Feng YF, Li JP, Wei P, Zhang CY, Wu DL. Identification of three novel linear B-cell epitopes on the VP5 protein of BTV16. Veterinary microbiology. 2013; 162(2-4); 631-642. [PubMed: 23290575].
  9. Wiki: Bluetongue: Wiki: Bluetongue [http://en.wikipedia.org/wiki/Bluetongue]

Bordetella avium

  1. HealthGene Corp: Bordetella avium: D417 - Bordetella avium [http://www.healthgene.com/avian/d417.asp]
  2. Jackwood and Saif, 1985: Jackwood MW, Saif YM. Efficacy of a commercial turkey coryza vaccine (Art-Vax) in turkey poults. Avian diseases. 1985; 29(4); 1130-1139. [PubMed: 3833219].

Bordetella bronchiseptica

  1. Goodnow, 1980: Goodnow RA. Biology of Bordetella bronchiseptica. Microbiological reviews. 1980; 44(4); 722-738. [PubMed: 7010115].
  2. Mann et al., 2007: Mann P, Goebel E, Barbarich J, Pilione M, Kennett M, Harvill E. Use of a genetically defined double mutant strain of Bordetella bronchiseptica lacking adenylate cyclase and type III secretion as a live vaccine. Infection and immunity. 2007; 75(7); 3665-3672. [PubMed: 17452472].
  3. Mattoo et al., 2001: Mattoo S, Foreman-Wykert AK, Cotter PA, Miller JF. Mechanisms of Bordetella pathogenesis. Frontiers in bioscience : a journal and virtual library. 2001; 6; E168-186. [PubMed: 11689354].
  4. McArthur et al., 2003: McArthur JD, West NP, Cole JN, Jungnitz H, Guzmán CA, Chin J, Lehrbach PR, Djordjevic SP, Walker MJ. An aromatic amino acid auxotrophic mutant of Bordetella bronchiseptica is attenuated and immunogenic in a mouse model of infection. FEMS microbiology letters. 2003; 221(1); 7-16. [PubMed: 12694904].
  5. Nagano et al., 1988: Nagano H, Nakai T, Horiguchi Y, Kume K. Isolation and characterization of mutant strains of Bordetella bronchiseptica lacking dermonecrotic toxin-producing ability. Journal of clinical microbiology. 1988; 26(10); 1983-1987. [PubMed: 3182989].
  6. Register et al., 2007: Register KB, Sacco RE, Brockmeier SL. Immune response in mice and swine to DNA vaccines derived from the Pasteurella multocida toxin gene. Vaccine. 2007; 25(32); 6118-6128. [PubMed: 17590484].
  7. Scheiblhofer et al., 2003: Scheiblhofer S, Weiss R, Dürnberger H, Mostböck S, Breitenbach M, Livey I, Thalhamer J. A DNA vaccine encoding the outer surface protein C from Borrelia burgdorferi is able to induce protective immune responses. Microbes and infection / Institut Pasteur. 2003; 5(11); 939-946. [PubMed: 12941385].
  8. Stevenson and Roberts, 2002: Stevenson A, Roberts M. Use of a rationally attenuated Bordetella bronchiseptica as a live mucosal vaccine and vector for heterologous antigens. Vaccine. 2002; 20(17-18); 2325-2335. [PubMed: 12009288].

Bordetella pertussis

  1. Bruss and Siber, 2002: Bruss JB, Siber GR. Quantitative priming with inactivated pertussis toxoid vaccine in the aerosol challenge model. Infection and immunity. 2002; 70(8); 4600-4608. [PubMed: 12117973].
  2. Cainelli et al., 2007: Cainelli Gebara VC, Risoléo L, Lopes AP, Ferreira VR, Quintilio W, Lépine F, Silva WD, Raw I. Adjuvant and immunogenic activities of the 73kDa N-terminal alpha-domain of BrkA autotransporter and Cpn60/60kDa chaperonin of Bordetella pertussis. Vaccine. 2007; 25(4); 621-629. [PubMed: 17011680].
  3. Chen et al., 1998: Chen I, Finn TM, Yanqing L, Guoming Q, Rappuoli R, Pizza M. A recombinant live attenuated strain of Vibrio cholerae induces immunity against tetanus toxin and Bordetella pertussis tracheal colonization factor. Infection and immunity. 1998; 66(4); 1648-1653. [PubMed: 9529093].
  4. FDA: Adacel: FDA: Adacel [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm172481.htm]
  5. FDA: Boostrix: FDA: Boostrix [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm172925.htm]
  6. FDA: DAPTACEL: FDA: DAPTACEL [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm101572.htm]
  7. FDA: Infanrix: FDA: Infanrix [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm101568.htm]
  8. FDA: KINRIX: FDA: KINRIX vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM241453.pdf]
  9. FDA: Pediarix: FDA: Pediarix [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm146759.htm]
  10. FDA: Pentacel: FDA: Pentacel [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm172502.htm]
  11. FDA: Quadracel: FDA: Quadracel vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM439903.pdf]
  12. FDA: Tripedia: FDA: Tripedia [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm101565.htm]
  13. Fennelly et al., 2008: Fennelly NK, Sisti F, Higgins SC, Ross PJ, van der Heide H, Mooi FR, Boyd A, Mills KH. Bordetella pertussis expresses a functional type III secretion system that subverts protective innate and adaptive immune responses. Infection and immunity. 2008; 76(3); 1257-1266. [PubMed: 18195025].
  14. Feunou et al., 2008: Feunou PF, Ismaili J, Debrie AS, Huot L, Hot D, Raze D, Lemoine Y, Locht C. Genetic stability of the live attenuated Bordetella pertussis vaccine candidate BPZE1. Vaccine. 2008; 26(45); 5722-5727. [PubMed: 18762220].
  15. GSK: Boostrix-Polio: GSK: Boostrix-Polio vaccine information [https://ca.gsk.com/media/589683/boostrix-polio.pdf]
  16. GSK: Infanrix-hexa: GSK: Infanrix-hexa vaccine information [http://ca.gsk.com/media/537989/infanrix-hexa.pdf]
  17. GSK: Infanrix-IPV: GSK: Infanrix-IPV vaccine information [http://ca.gsk.com/media/590851/infanrix-ipv.pdf]
  18. GSK: Infanrix-IPV/Hib: GSK: Infanrix-IPV/Hib vaccine information [http://ca.gsk.com/media/590970/infanrix-ipv-hib.pdf]
  19. Guiso et al., 1989: Guiso N, Rocancourt M, Szatanik M, Alonso JM. Bordetella adenylate cyclase is a virulence associated factor and an immunoprotective antigen. Microbial pathogenesis. 1989; 7(5); 373-380. [PubMed: 2622329].
  20. Kamachi et al., 2003: Kamachi K, Konda T, Arakawa Y. DNA vaccine encoding pertussis toxin S1 subunit induces protection against Bordetella pertussis in mice. Vaccine. 2003; 21(31); 4609-4615. [PubMed: 14575775].
  21. Kinnear et al., 2001: Kinnear SM, Marques RR, Carbonetti NH. Differential regulation of Bvg-activated virulence factors plays a role in Bordetella pertussis pathogenicity. Infection and immunity. 2001; 69(4); 1983-1993. [PubMed: 11254549].
  22. Komatsu et al., 2010: Komatsu E, Yamaguchi F, Abe A, Weiss AA, Watanabe M. Synergic effect of genotype changes in pertussis toxin and pertactin on adaptation to an acellular pertussis vaccine in the murine intranasal challenge model. Clinical and vaccine immunology : CVI. 2010; 17(5); 807-812. [PubMed: 20357056].
  23. Lee et al., 1999: Lee SF, March RJ, Halperin SA, Faulkner G, Gao L. Surface expression of a protective recombinant pertussis toxin S1 subunit fragment in Streptococcus gordonii. Infection and immunity. 1999; 67(3); 1511-1516. [PubMed: 10024603].
  24. Merkel et al., 1998: Merkel TJ, Stibitz S, Keith JM, Leef M, Shahin R. Contribution of regulation by the bvg locus to respiratory infection of mice by Bordetella pertussis. Infection and immunity. 1998; 66(9); 4367-4373. [PubMed: 9712789].
  25. Mielcarek et al., 2006: Mielcarek N, Debrie AS, Raze D, Quatannens J, Engle J, Goldman WE, Locht C. Attenuated Bordetella pertussis: new live vaccines for intranasal immunisation. Vaccine. 2006; 24 Suppl 2; S2-54-5. [PubMed: 16823926].
  26. Nascimento et al., 2008: Nascimento IP, Dias WO, Quintilio W, Christ AP, Moraes JF, Vancetto MD, Ribeiro-Dos-Santos G, Raw I, Leite LC. Neonatal immunization with a single dose of recombinant BCG expressing subunit S1 from pertussis toxin induces complete protection against Bordetella pertussis intracerebral challenge. Microbes and infection / Institut Pasteur. 2008; 10(2); 198-202. [PubMed: 18248757].
  27. Novotny et al., 1985: Novotny P, Chubb AP, Cownley K, Montaraz JA, Beesley JE. Bordetella adenylate cyclase: a genus specific protective antigen and virulence factor. Developments in biological standardization. 1985; 61; 27-41. [PubMed: 2872113].
  28. Novotny et al., 1991: Novotny P, Chubb AP, Cownley K, Charles IG. Biologic and protective properties of the 69-kDa outer membrane protein of Bordetella pertussis: a novel formulation for an acellular pertussis vaccine. The Journal of infectious diseases. 1991; 164(1); 114-122. [PubMed: 2056199].
  29. Product Monograph: Adacel-Polio: Product Monograph: Adacel-Polio vaccine information [https://www.vaccineshoppecanada.com/document.cfm?file=adacel-polio_e.pdf]
  30. Product Monograph: Pediacel: Product Monograph: Pediacel vaccine information [https://www.vaccineshoppecanada.com/document.cfm?file=Pediacel_E.pdf]
  31. Roberts et al., 1990: Roberts M, Maskell D, Novotny P, Dougan G. Construction and characterization in vivo of Bordetella pertussis aroA mutants. Infection and immunity. 1990; 58(3); 732-739. [PubMed: 2407655].
  32. Salyers and Whitt., 2002: Abigail A. Salyers, Dixie D. Whitt. Bordetella pertussis. 263-73. Bacterial Pathogenesis: A Molecular Approach. 2002. ASM Press, Washington D.C. USA.
  33. Sato and Sato, 1984: Sato H, Sato Y. Bordetella pertussis infection in mice: correlation of specific antibodies against two antigens, pertussis toxin, and filamentous hemagglutinin with mouse protectivity in an intracerebral or aerosol challenge system. Infection and immunity. 1984; 46(2); 415-421. [PubMed: 6542069].
  34. Sukumar et al., 2007: Sukumar N, Mishra M, Sloan GP, Ogi T, Deora R. Differential Bvg phase-dependent regulation and combinatorial role in pathogenesis of two Bordetella paralogs, BipA and BcfA. Journal of bacteriology. 2007; 189(10); 3695-3704. [PubMed: 17351043].
  35. Wiki: Bordetella pertussis: Bordetella pertussis [http://en.wikipedia.org/wiki/Bordetella_pertussis]

Borna disease virus

  1. Hashimoto et al., 2003: Hashimoto Y, Chen HS, Cunningham C, Malik TH, Lai PK. Two major histocompatibility complex class I-restricted epitopes of the Borna disease virus p10 protein identified by cytotoxic T lymphocytes induced by DNA-based immunization. Journal of virology. 2003; 77(10); 6076-6081. [PubMed: 12719601].
  2. Hausmann et al., 2005: Hausmann J, Baur K, Engelhardt KR, Fischer T, Rziha HJ, Staeheli P. Vaccine-induced protection against Borna disease in wild-type and perforin-deficient mice. The Journal of general virology. 2005; 86(Pt 2); 399-403. [PubMed: 15659759].
  3. Henkel et al., 2005: Henkel M, Planz O, Fischer T, Stitz L, Rziha HJ. Prevention of virus persistence and protection against immunopathology after Borna disease virus infection of the brain by a novel Orf virus recombinant. Journal of virology. 2005; 79(1); 314-325. [PubMed: 15596826].

Borrelia burgdorferi

  1. Brandt et al., 2014: Brandt KS, Patton TG, Allard AS, Caimano MJ, Radolf JD, Gilmore RD. Evaluation of the Borrelia burgdorferi BBA64 protein as a protective immunogen in mice. Clinical and vaccine immunology : CVI. 2014; 21(4); 526-533. [PubMed: 24501342].
  2. Bryksin et al., 2005: Bryksin AV, Godfrey HP, Carbonaro CA, Wormser GP, Aguero-Rosenfeld ME, Cabello FC. Borrelia burgdorferi BmpA, BmpB, and BmpD proteins are expressed in human infection and contribute to P39 immunoblot reactivity in patients with Lyme disease. Clinical and diagnostic laboratory immunology. 2005; 12(8); 935-940. [PubMed: 16085911].
  3. Floden et al., 2013: Floden AM, Gonzalez T, Gaultney RA, Brissette CA. Evaluation of RevA, a fibronectin-binding protein of Borrelia burgdorferi, as a potential vaccine candidate for lyme disease. Clinical and vaccine immunology : CVI. 2013; 20(6); 892-899. [PubMed: 23595502].
  4. Hanson et al., 1998: Hanson MS, Cassatt DR, Guo BP, Patel NK, McCarthy MP, Dorward DW, Höök M. Active and passive immunity against Borrelia burgdorferi decorin binding protein A (DbpA) protects against infection. Infection and immunity. 1998; 66(5); 2143-2153. [PubMed: 9573101].
  5. Hanson et al., 2000: Hanson MS, Patel NK, Cassatt DR, Ulbrandt ND. Evidence for vaccine synergy between Borrelia burgdorferi decorin binding protein A and outer surface protein A in the mouse model of lyme borreliosis. Infection and immunity. 2000; 68(11); 6457-6460. [PubMed: 11035759].
  6. Labandeira-Rey et al., 2001: Labandeira-Rey M, Baker EA, Skare JT. VraA (BBI16) protein of Borrelia burgdorferi is a surface-exposed antigen with a repetitive motif that confers partial protection against experimental Lyme borreliosis. Infection and immunity. 2001; 69(3); 1409-1419. [PubMed: 11179306].
  7. Luke et al., 1997: Luke CJ, Carner K, Liang X, Barbour AG. An OspA-based DNA vaccine protects mice against infection with Borrelia burgdorferi. The Journal of infectious diseases. 1997; 175(1); 91-97. [PubMed: 8985201].
  8. Probert and LeFebvre, 1994: Probert WS, LeFebvre RB. Protection of C3H/HeN mice from challenge with Borrelia burgdorferi through active immunization with OspA, OspB, or OspC, but not with OspD or the 83-kilodalton antigen. Infection and immunity. 1994; 62(5); 1920-1926. [PubMed: 8168958].
  9. Sadziene et al., 1996: Sadziene A, Thompson PA, Barbour AG. A flagella-less mutant of Borrelia burgdorferi as a live attenuated vaccine in the murine model of Lyme disease. The Journal of infectious diseases. 1996; 173(5); 1184-1193. [PubMed: 8627071].
  10. Salyers and Whitt., 2002: Abigail A. Salyers, Dixie D. Whitt. The Spirochetes: Borrelia burgdorferi and Treponema pallidum. 187-199. Bacterial Pathogenesis: A Molecular Approach. 2002. ASM Press, Washington D.C. USA.
  11. Scheiblhofer et al., 2003: Scheiblhofer S, Weiss R, Dürnberger H, Mostböck S, Breitenbach M, Livey I, Thalhamer J. A DNA vaccine encoding the outer surface protein C from Borrelia burgdorferi is able to induce protective immune responses. Microbes and infection / Institut Pasteur. 2003; 5(11); 939-946. [PubMed: 12941385].
  12. Ulbrandt et al., 2001: Ulbrandt ND, Cassatt DR, Patel NK, Roberts WC, Bachy CM, Fazenbaker CA, Hanson MS. Conformational nature of the Borrelia burgdorferi decorin binding protein A epitopes that elicit protective antibodies. Infection and immunity. 2001; 69(8); 4799-4807. [PubMed: 11447153].
  13. Weiss et al., 1999: Weiss R, Dürnberger J, Mostböck S, Scheiblhofer S, Hartl A, Breitenbach M, Strasser P, Dorner F, Livey I, Crowe B, Thalhamer J. Improvement of the immune response against plasmid DNA encoding OspC of Borrelia by an ER-targeting leader sequence. Vaccine. 1999; 18(9-10); 815-824. [PubMed: 10580194].
  14. Wiki: B. burgdorferi: Wiki: Borrelia burgdorferi [http://en.wikipedia.org/wiki/Borrelia_burgdorferi]

Bovine coronavirus

  1. Liu et al., 2006: Liu L, Hägglund S, Hakhverdyan M, Alenius S, Larsen LE, Belák S. Molecular epidemiology of bovine coronavirus on the basis of comparative analyses of the S gene. Journal of clinical microbiology. 2006; 44(3); 957-960. [PubMed: 16517883].
  2. Nasiri et al., 2016: Nasiri K, Nassiri M, Tahmoorespur M, Haghparast A, Zibaee S. Design and Construction of Chimeric VP8-S2 Antigen for Bovine Rotavirus and Bovine Coronavirus. Advanced pharmaceutical bulletin. 2016; 6(1); 91-98. [PubMed: 27123423].

Bovine herpesvirus 1

  1. Babiuk et al., 1987: Babiuk LA, L'Italien J, van Drunen Littel-van den Hurk S, Zamb T, Lawman JP, Hughes G, Gifford GA. Protection of cattle from bovine herpesvirus type I (BHV-1) infection by immunization with individual viral glycoproteins. Virology. 1987; 159(1); 57-66. [PubMed: 3037783].
  2. Caselli et al., 2005: Caselli E, Boni M, Di Luca D, Salvatori D, Vita A, Cassai E. A combined bovine herpesvirus 1 gB-gD DNA vaccine induces immune response in mice. Comparative immunology, microbiology and infectious diseases. 2005; 28(2); 155-166. [PubMed: 15582691].
  3. Castrucci et al., 2004: Castrucci G, Ferrari M, Marchini C, Salvatori D, Provinciali M, Tosini A, Petrini S, Sardonini Q, Lo Dico M, Frigeri F, Amici A. Immunization against bovine herpesvirus-1 infection. Preliminary tests in calves with a DNA vaccine. Comparative immunology, microbiology and infectious diseases. 2004; 27(3); 171-179. [PubMed: 15001312].
  4. Cox et al., 1993: Cox GJ, Zamb TJ, Babiuk LA. Bovine herpesvirus 1: immune responses in mice and cattle injected with plasmid DNA. Journal of virology. 1993; 67(9); 5664-5667. [PubMed: 8350420].
  5. Deshpande et al., 2002: Deshpande MS, Ambagala TC, Hegde NR, Hariharan MJ, Navaratnam M, Srikumaran S. Induction of cytotoxic T-lymphocytes specific for bovine herpesvirus-1 by DNA immunization. Vaccine. 2002; 20(31-32); 3744-3751. [PubMed: 12399204].
  6. Gao et al., 1994: Gao Y, Leary TP, Eskra L, Splitter GA. Truncated bovine herpesvirus-1 glycoprotein I (gpI) initiates a protective local immune response in its natural host. Vaccine. 1994; 12(2); 145-152. [PubMed: 8147097].
  7. Gogev et al., 2002: Gogev S, Vanderheijden N, Lemaire M, Schynts F, D'Offay J, Deprez I, Adam M, Eloit M, Thiry E. Induction of protective immunity to bovine herpesvirus type 1 in cattle by intranasal administration of replication-defective human adenovirus type 5 expressing glycoprotein gC or gD. Vaccine. 2002; 20(9-10); 1451-1465. [PubMed: 11818166].
  8. Gupta et al., 2001: Gupta PK, Saini M, Gupta LK, Rao VD, Bandyopadhyay SK, Butchaiah G, Garg GK, Garg SK. Induction of immune responses in cattle with a DNA vaccine encoding glycoprotein C of bovine herpesvirus-1. Veterinary microbiology. 2001; 78(4); 293-305. [PubMed: 11182496].
  9. Huang et al., 2005: Huang Y, Babiuk LA, van Drunen Littel-van den Hurk S. Immunization with a bovine herpesvirus 1 glycoprotein B DNA vaccine induces cytotoxic T-lymphocyte responses in mice and cattle. The Journal of general virology. 2005; 86(Pt 4); 887-898. [PubMed: 15784883].
  10. Kaashoek et al., 1994: Kaashoek MJ, Moerman A, Madić J, Rijsewijk FA, Quak J, Gielkens AL, van Oirschot JT. A conventionally attenuated glycoprotein E-negative strain of bovine herpesvirus type 1 is an efficacious and safe vaccine. Vaccine. 1994; 12(5); 439-444. [PubMed: 8023552].
  11. Kaashoek et al., 1995: Kaashoek MJ, Moerman A, Madić J, Weerdmeester K, Maris-Veldhuis M, Rijsewijk FA, van Oirschot JT. An inactivated vaccine based on a glycoprotein E-negative strain of bovine herpesvirus 1 induces protective immunity and allows serological differentiation. Vaccine. 1995; 13(4); 342-346. [PubMed: 7793128].
  12. Kaashoek et al., 1998: Kaashoek MJ, Rijsewijk FA, Ruuls RC, Keil GM, Thiry E, Pastoret PP, Van Oirschot JT. Virulence, immunogenicity and reactivation of bovine herpesvirus 1 mutants with a deletion in the gC, gG, gI, gE, or in both the gI and gE gene. Vaccine. 1998; 16(8); 802-809. [PubMed: 9627937].
  13. Khattar et al., 2010: Khattar SK, Collins PL, Samal SK. Immunization of cattle with recombinant Newcastle disease virus expressing bovine herpesvirus-1 (BHV-1) glycoprotein D induces mucosal and serum antibody responses and provides partial protection against BHV-1. Vaccine. 2010; 28(18); 3159-3170. [PubMed: 20189484].
  14. Kit et al., 1985: Kit S, Qavi H, Gaines JD, Billingsley P, McConnell S. Thymidine kinase-negative bovine herpesvirus type 1 mutant is stable and highly attenuated in calves. Archives of virology. 1985; 86(1-2); 63-83. [PubMed: 2994602].
  15. Langellotti et al., 2011: Langellotti CA, Pappalardo JS, Quattrocchi V, Mongini C, Zamorano P. Induction of specific cytotoxic activity for bovine herpesvirus-1 by DNA immunization with different adjuvants. Antiviral research. 2011; 90(3); 134-142. [PubMed: 21443903].
  16. Petrini et al., 2011: Petrini S, Ramadori G, Corradi A, Borghetti P, Lombardi G, Villa R, Bottarelli E, Guercio A, Amici A, Ferrari M. Evaluation of safety and efficacy of DNA vaccines against bovine herpesvirus-1 (BoHV-1) in calves. Comparative immunology, microbiology and infectious diseases. 2011; 34(1); 3-10. [PubMed: 19906427].
  17. Pontarollo et al., 2002: Pontarollo RA, Babiuk LA, Hecker R, Van Drunen Littel-Van Den Hurk S. Augmentation of cellular immune responses to bovine herpesvirus-1 glycoprotein D by vaccination with CpG-enhanced plasmid vectors. The Journal of general virology. 2002; 83(Pt 12); 2973-2981. [PubMed: 12466473].
  18. Schrijver et al., 1997: Schrijver RS, Langedijk JP, Keil GM, Middel WG, Maris-Veldhuis M, Van Oirschot JT, Rijsewijk FA. Immunization of cattle with a BHV1 vector vaccine or a DNA vaccine both coding for the G protein of BRSV. Vaccine. 1997; 15(17-18); 1908-1916. [PubMed: 9413101].
  19. van et al., 1996: van Oirschot JT, Kaashoek MJ, Rijsewijk FA. Advances in the development and evaluation of bovine herpesvirus 1 vaccines. Veterinary microbiology. 1996; 53(1-2); 43-54. [PubMed: 9010997].
  20. van et al., 1997: van Drunen Littel-van den Hurk S, Tikoo SK, van den Hurk JV, Babiuk LA, Van Donkersgoed J. Protective immunity in cattle following vaccination with conventional and marker bovine herpesvirus-1 (BHV1) vaccines. Vaccine. 1997; 15(1); 36-44. [PubMed: 9041664].
  21. Wiki: Bovine herpesvirus 1: Bovine herpesvirus 1 [http://en.wikipedia.org/wiki/Bovine_herpesvirus_1]
  22. Zheng et al., 2005: Zheng C, Babiuk LA, van Drunen Littel-van den Hurk S. Bovine herpesvirus 1 VP22 enhances the efficacy of a DNA vaccine in cattle. Journal of virology. 2005; 79(3); 1948-1953. [PubMed: 15650221].

Bovine Leukemia virus

  1. Brillowska et al., 1999: Brillowska A, Dabrowski S, Rułka J, Kubiś P, Buzała E, Kur J. Protection of cattle against bovine leukemia virus (BLV) infection could be attained by DNA vaccination. Acta biochimica Polonica. 1999; 46(4); 971-976. [PubMed: 10824867].
  2. Kabeya et al., 1996: Kabeya H, Ohashi K, Ohishi K, Sugimoto C, Amanuma H, Onuma M. An effective peptide vaccine to eliminate bovine leukaemia virus (BLV) infected cells in carrier sheep. Vaccine. 1996; 14(12); 1118-1122. [PubMed: 8911007].
  3. Larsen et al., 2013: Larsen A, Gonzalez ET, Serena MS, Echeverría MG, Mortola E. Expression of p24 gag protein of bovine leukemia virus in insect cells and its use in immunodetection of the disease. Molecular biotechnology. 2013; 54(2); 475-483. [PubMed: 22829115].
  4. Suárez et al., 2022: Suárez Archilla G, Gutiérrez G, Camussone C, Calvinho L, Abdala A, Alvarez I, Petersen M, Franco L, Destefano G, Monti G, Jacques JR, Joris T, Willems L, Trono K. A safe and effective vaccine against bovine leukemia virus. Frontiers in immunology. 2022; 13; 980514. [PubMed: 36032174].
  5. Usui et al., 2003: Usui T, Konnai S, Tajima S, Watarai S, Aida Y, Ohashi K, Onuma M. Protective effects of vaccination with bovine leukemia virus (BLV) Tax DNA against BLV infection in sheep. The Journal of veterinary medical science / the Japanese Society of Veterinary Science. 2003; 65(11); 1201-1205. [PubMed: 14665749].
  6. Wiki: Bovine leukemia virus: Bovine leukemia virus [http://en.wikipedia.org/wiki/Bovine_leukemia_virus]

Bovine papillomavirus

  1. Avki et al., 2004: Avki S, Turutoglu H, Simsek A, Unsal A. Clinical and immunological effects of Newcastle disease virus vaccine on bovine papillomatosis. Veterinary immunology and immunopathology. 2004; 98(1-2); 9-16. [PubMed: 15127837].
  2. Jagu et al., 2011: Jagu S, Malandro N, Kwak K, Yuan H, Schlegel R, Palmer KE, Huh WK, Campo MS, Roden RB. A multimeric L2 vaccine for prevention of animal papillomavirus infections. Virology. 2011; 420(1); 43-50. [PubMed: 21920572].
  3. Módolo et al., 2017: Módolo DG, Araldi RP, Mazzuchelli-de-Souza J, Pereira A, Pimenta DC, Zanphorlin LM, Beçak W, Menossi M, de Cassia Stocco R, de Carvalho RF. Integrated analysis of recombinant BPV-1 L1 protein for the production of a bovine papillomavirus VLP vaccine. Vaccine. 2017; 35(12); 1590-1593. [PubMed: 28222997].
  4. Wiki: Bovine papillomavirus: Wiki: Bovine papillomavirus [http://en.wikipedia.org/wiki/Bovine_papillomavirus]

Bovine Parainfluenza 3 Virus (BPIV-3)

  1. Merck Vet Manual: Parainfluenza-3 Virus: Merck Veterinary Manual: Parainfluenza-3 Virus [http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/121210.htm]

Bovine Respiratory Syncytial Virus

  1. Blodörn et al., 2014: Blodörn K, Hägglund S, Fix J, Dubuquoy C, Makabi-Panzu B, Thom M, Karlsson P, Roque JL, Karlstam E, Pringle J, Eléouët JF, Riffault S, Taylor G, Valarcher JF. Vaccine safety and efficacy evaluation of a recombinant bovine respiratory syncytial virus (BRSV) with deletion of the SH gene and subunit vaccines based on recombinant human RSV proteins: N-nanorings, P and M2-1, in calves with maternal antibodies. PloS one. 2014; 9(6); e100392. [PubMed: 24945377].
  2. Gershwin et al., 2017: Gershwin LJ, Behrens NE, McEligot HA, Carvallo-Chaigneau FR, Crum LT, Gunnarson BM, Corbeil LB. A recombinant subunit vaccine for bovine RSV and Histophilus somni protects calves against dual pathogen challenge. Vaccine. 2017; 35(15); 1954-1963. [PubMed: 28274639].
  3. Merck Vet Manual: BRSV: Merck Veterinary Manual-Bovine Respiratory Syncytial Virus [http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/121211.htm]
  4. Schmidt et al., 2002: Schmidt U, Beyer J, Polster U, Gershwin LJ, Buchholz UJ. Mucosal immunization with live recombinant bovine respiratory syncytial virus (BRSV) and recombinant BRSV lacking the envelope glycoprotein G protects against challenge with wild-type BRSV. Journal of virology. 2002; 76(23); 12355-12359. [PubMed: 12414977].
  5. Schrijver et al., 1997: Schrijver RS, Langedijk JP, Keil GM, Middel WG, Maris-Veldhuis M, Van Oirschot JT, Rijsewijk FA. Immunization of cattle with a BHV1 vector vaccine or a DNA vaccine both coding for the G protein of BRSV. Vaccine. 1997; 15(17-18); 1908-1916. [PubMed: 9413101].
  6. Taylor et al., 2005: Taylor G, Bruce C, Barbet AF, Wyld SG, Thomas LH. DNA vaccination against respiratory syncytial virus in young calves. Vaccine. 2005; 23(10); 1242-1250. [PubMed: 15652666].

Bovine viral diarrhea virus 1

  1. Beer et al., 2000: Beer M, Hehnen HR, Wolfmeyer A, Poll G, Kaaden OR, Wolf G. A new inactivated BVDV genotype I and II vaccine. An immunisation and challenge study with BVDV genotype I. Veterinary microbiology. 2000; 77(1-2); 195-208. [PubMed: 11042413].
  2. Mahony et al., 2015: Mahony D, Mody KT, Cavallaro AS, Hu Q, Mahony TJ, Qiao S, Mitter N. Immunisation of Sheep with Bovine Viral Diarrhoea Virus, E2 Protein Using a Freeze-Dried Hollow Silica Mesoporous Nanoparticle Formulation. PloS one. 2015; 10(11); e0141870. [PubMed: 26535891].
  3. Merck Vet Manual: Bovine Viral Diarrhea: Merck Vet Manual: Bovine Viral Diarrhea and Mucosal Disease Complex [http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/22103.htm]
  4. Petrini et al., 2011: Petrini S, Ramadori G, Corradi A, Borghetti P, Lombardi G, Villa R, Bottarelli E, Guercio A, Amici A, Ferrari M. Evaluation of safety and efficacy of DNA vaccines against bovine herpesvirus-1 (BoHV-1) in calves. Comparative immunology, microbiology and infectious diseases. 2011; 34(1); 3-10. [PubMed: 19906427].

Bovine viral diarrhea virus 2

  1. Liang et al., 2008: Liang R, van den Hurk JV, Landi A, Lawman Z, Deregt D, Townsend H, Babiuk LA, van Drunen Littel-van den Hurk S. DNA prime protein boost strategies protect cattle from bovine viral diarrhea virus type 2 challenge. The Journal of general virology. 2008; 89(Pt 2); 453-466. [PubMed: 18198376].
  2. Merck Vet Manual: Bovine Viral Diarrhea: Merck Vet Manual: Bovine Viral Diarrhea and Mucosal Disease Complex [http://www.merckmanuals.com/vet/digestive_system/intestinal_diseases_in_ruminants/intestinal_diseases_in_cattle.html#v3263133?qt=&sc=&alt=]
  3. van et al., 2013: van Drunen Littel-van den Hurk S, Lawman Z, Snider M, Wilson D, van den Hurk JV, Ellefsen B, Hannaman D. Two doses of bovine viral diarrhea virus DNA vaccine delivered by electroporation induce long-term protective immune responses. Clinical and vaccine immunology : CVI. 2013; 20(2); 166-173. [PubMed: 23220999].
  4. Zimmerman et al., 2006: Zimmerman AD, Boots RE, Valli JL, Chase CC. Evaluation of protection against virulent bovine viral diarrhea virus type 2 in calves that had maternal antibodies and were vaccinated with a modified-live vaccine. Journal of the American Veterinary Medical Association. 2006; 228(11); 1757-1761. [PubMed: 16740078].

Brucella spp.

  1. Abtahi et al., 2008: Abtahi H, Salmanian AH, Rafati S, Nejad GB, Saffari M, Ghazavi A, Mosayebi G. The profile of cytokines and IgG subclasses in BALB/c mice after immunization with Brucella ribosomal gene. Pakistan journal of biological sciences: PJBS. 2008; 11(21); 2472-2477. [PubMed: 19205266].
  2. Adone et al., 2005: Adone R, Ciuchini F, Marianelli C, Tarantino M, Pistoia C, Marcon G, Petrucci P, Francia M, Riccardi G, Pasquali P. Protective properties of rifampin-resistant rough mutants of Brucella melitensis. Infection and immunity. 2005; 73(7); 4198-4204. [PubMed: 15972510].
  3. Al-Mariri et al., 2001: Al-Mariri A, Tibor A, Mertens P, De Bolle X, Michel P, Godefroid J, Walravens K, Letesson JJ. Protection of BALB/c mice against Brucella abortus 544 challenge by vaccination with bacterioferritin or P39 recombinant proteins with CpG oligodeoxynucleotides as adjuvant. Infection and immunity. 2001 Aug; 69(8); 4816-22. [PubMed: 11447155 ].
  4. Al-Mariri et al., 2001: Al-Mariri A, Tibor A, Mertens P, De Bolle X, Michel P, Godfroid J, Walravens K, Letesson JJ. Induction of immune response in BALB/c mice with a DNA vaccine encoding bacterioferritin or P39 of Brucella spp. Infection and immunity. 2001; 69(10); 6264-6270. [PubMed: 11553569].
  5. Al-Mariri et al., 2002: Al-Mariri A, Tibor A, Lestrate P, Mertens P, De Bolle X, Letesson JJ. Yersinia enterocolitica as a vehicle for a naked DNA vaccine encoding Brucella abortus bacterioferritin or P39 antigen. Infection and immunity. 2002; 70(4); 1915-1923. [PubMed: 11895955].
  6. Arenas-Gamboa et al., 2008: Arenas-Gamboa AM, Ficht TA, Kahl-McDonagh MM, Rice-Ficht AC. Immunization with a Single Dose of a Microencapsulated Brucella melitensis Mutant Enhances Protection Against Wild-type Challenge. Infection and immunity. 2008; ; . [PubMed: 18362129].
  7. Arenas-Gamboa et al., 2009: Arenas-Gamboa AM, Ficht TA, Davis DS, Elzer PH, Wong-Gonzalez A, Rice-Ficht AC. Enhanced immune response of red deer (Cervus elaphus) to live rb51 vaccine strain using composite microspheres. Journal of wildlife diseases. 2009; 45(1); 165-173. [PubMed: 19204345].
  8. Arenas-Gamboa et al., 2009: Arenas-Gamboa AM, Ficht TA, Kahl-McDonagh MM, Gomez G, Rice-Ficht AC. The Brucella abortus S19 DeltavjbR live vaccine candidate is safer than S19 and confers protection against wild-type challenge in BALB/c mice when delivered in a sustained-release vehicle. Infection and immunity. 2009; 77(2); 877-884. [PubMed: 19047401].
  9. Arenas-Gamboa et al., 2011: Arenas-Gamboa AM, Rice-Ficht AC, Kahl-McDonagh MM, Ficht TA. The protective efficacy and safety of 16M{Delta}mucR against intraperitoneal and aerosol challenge in BALB/c mice. Infection and immunity. 2011; ; . [PubMed: 21708998].
  10. Banai, 2002: Banai M. Control of small ruminant brucellosis by use of Brucella melitensis Rev.1 vaccine: laboratory aspects and field observations. Veterinary microbiology. 2002 Dec 20; 90(1-4); 497-519. [PubMed: 12414167].
  11. Bhattacharjee et al., 2002: Bhattacharjee AK, Van de Verg L, Izadjoo MJ, Yuan L, Hadfield TL, Zollinger WD, Hoover DL. Protection of mice against brucellosis by intranasal immunization with Brucella melitensis lipopolysaccharide as a noncovalent complex with Neisseria meningitidis group B outer membrane protein. Infection and immunity. 2002; 70(7); 3324-3329. [PubMed: 12065469].
  12. Bhattacharjee et al., 2006: Bhattacharjee AK, Izadjoo MJ, Zollinger WD, Nikolich MP, Hoover DL. Comparison of protective efficacy of subcutaneous versus intranasal immunization of mice with a Brucella melitensis lipopolysaccharide subunit vaccine. Infection and immunity. 2006 Oct; 74(10); 5820-5. [PubMed: 16988260].
  13. Blasco et al., 1993: Blasco JM, Gamazo C, Winter AJ, Jimenez de Bagues MP, Marin C, Barberan M, Moriyon I, Alonso-Urmeneta B, Diaz R. Evaluation of whole cell and subcellular vaccines against Brucella ovis in rams. Veterinary immunology and immunopathology. 1993 Aug; 37(3-4); 257-70. [PubMed: 8236802].
  14. Bosseray, 1991: Bosseray N. Brucella melitensis Rev. 1 living attenuated vaccine: stability of markers, residual virulence and immunogenicity in mice. Biologicals : journal of the International Association of Biological Standardization. 1991 Oct; 19(4); 355-63. [PubMed: 1797046].
  15. Cassataro et al., 2002: Cassataro J, Velikovsky CA, Giambartolomei GH, Estein S, Bruno L, Cloeckaert A, Bowden RA, Spitz M, Fossati CA. Immunogenicity of the Brucella melitensis recombinant ribosome recycling factor-homologous protein and its cDNA. Vaccine. 2002; 20(11-12); 1660-1669. [PubMed: 11858876].
  16. Cassataro et al., 2004: Cassataro J, Pasquevich K, Bruno L, Wallach JC, Fossati CA, Baldi PC. Antibody reactivity to Omp31 from Brucella melitensis in human and animal infections by smooth and rough Brucellae. Clinical and diagnostic laboratory immunology. 2004 Jan; 11(1); 111-4. [PubMed: 14715555].
  17. Cassataro et al., 2005: Cassataro J, Velikovsky CA, de la Barrera S, Estein SM, Bruno L, Bowden R, Pasquevich KA, Fossati CA, Giambartolomei GH. A DNA vaccine coding for the Brucella outer membrane protein 31 confers protection against B. melitensis and B. ovis infection by eliciting a specific cytotoxic response. Infection and immunity. 2005 Oct; 73(10); 6537-46. [PubMed: 16177328].
  18. Cassataro et al., 2007: Cassataro J, Pasquevich KA, Estein SM, Laplagne DA, Zwerdling A, de la Barrera S, Bowden R, Fossati CA, Giambartolomei GH, Goldbaum FA. A DNA vaccine coding for the quimera BLSOmp31 induced a better degree of protection against B. ovis and a similar degree of protection against B. melitensis than Rev.1 vaccination. Vaccine. 2007 Jun 12; ; . [PubMed: 17600596].
  19. Cassataro et al., 2007: Cassataro J, Pasquevich KA, Estein SM, Laplagne DA, Velikovsky CA, de la Barrera S, Bowden R, Fossati CA, Giambartolomei GH, Goldbaum FA. A recombinant subunit vaccine based on the insertion of 27 amino acids from Omp31 to the N-terminus of BLS induced a similar degree of protection against B. ovis than Rev.1 vaccination. Vaccine. 2007 May 30; 25(22); 4437-46. [PubMed: 17442465].
  20. Cassataro et al., 2007: Cassataro J, Velikovsky CA, Bruno L, Estein SM, de la Barrera S, Bowden R, Fossati CA, Giambartolomei GH. Improved immunogenicity of a vaccination regimen combining a DNA vaccine encoding Brucella melitensis outer membrane protein 31 (Omp31) and recombinant Omp31 boosting. Clinical and vaccine immunology : CVI. 2007; 14(7); 869-874. [PubMed: 17428946].
  21. Cheville, 2000: Cheville NF. Development, testing and commercialization of a new brucellosis vaccine for cattle. Annals of the New York Academy of Sciences. 2000; 916; 147-53. [PubMed: 11193615].
  22. Cloeckaert et al., 2002: Cloeckaert A, Grayon M, Grepinet O. Identification of Brucella melitensis vaccine strain Rev.1 by PCR-RFLP based on a mutation in the rpsL gene. Vaccine. 2002 Jun 7; 20(19-20); 2546-50. [PubMed: 12057611].
  23. Cloeckaert et al., 2004: Cloeckaert A, Jacques I, Grilló MJ, Marín CM, Grayon M, Blasco JM, Verger JM. Development and evaluation as vaccines in mice of Brucella melitensis Rev.1 single and double deletion mutants of the bp26 and omp31 genes coding for antigens of diagnostic significance in ovine brucellosis. Vaccine. 2004; 22(21-22); 2827-2835. [PubMed: 15246618].
  24. Colby et al., 2002: Colby LA, Schurig GG, Elzer PH. An indirect ELISA to detect the serologic response of elk (Cervus elaphus nelsoni) inoculated with Brucella abortus strain RB51. Journal of wildlife diseases. 2002; 38(4); 752-759. [PubMed: 12528442].
  25. Commander et al., 2007: Commander NJ, Spencer SA, Wren BW, MacMillan AP. The identification of two protective DNA vaccines from a panel of five plasmid constructs encoding Brucella melitensis 16M genes. Vaccine. 2007; 25(1); 43-54. [PubMed: 17049676].
  26. Cook et al., 2001: Cook WE, Williams ES, Thorne ET, Taylor SK, Anderson S. Safety of Brucella abortus strain RB51 in deer mice. Journal of wildlife diseases. 2001; 37(3); 621-625. [PubMed: 11504238].
  27. Corbel, 1997: Corbel MJ. Recent advances in brucellosis. Journal of medical microbiology. 1997 Feb; 46(2); 101-3. [PubMed: 9060868 ].
  28. Crawford et al., 1996: Crawford RM, Van De Verg L, Yuan L, Hadfield TL, Warren RL, Drazek ES, Houng HH, Hammack C, Sasala K, Polsinelli T, Thompson J, Hoover DL. Deletion of purE attenuates Brucella melitensis infection in mice. Infection and immunity. 1996; 64(6); 2188-2192. [PubMed: 8675325].
  29. Delpino et al., 2007a: Delpino MV, Estein SM, Fossati CA, Baldi PC. Partial protection against Brucella infection in mice by immunization with nonpathogenic alphaproteobacteria. Clinical and vaccine immunology : CVI. 2007; 14(10); 1296-1301. [PubMed: 17715332].
  30. Delpino et al., 2007b: Delpino MV, Estein SM, Fossati CA, Baldi PC, Cassataro J. Vaccination with Brucella recombinant DnaK and SurA proteins induces protection against Brucella abortus infection in BALB/c mice. Vaccine. 2007; 25(37-38); 6721-6729. [PubMed: 17686554].
  31. Drazek et al., 1995: Drazek ES, Houng HS, Crawford RM, Hadfield TL, Hoover DL, Warren RL. Deletion of purE attenuates Brucella melitensis 16M for growth in human monocyte-derived macrophages. Infection and immunity. 1995; 63(9); 3297-3301. [PubMed: 7642258].
  32. Edmonds et al., 2002: Edmonds MD, Cloeckaert A, Elzer PH. Brucella species lacking the major outer membrane protein Omp25 are attenuated in mice and protect against Brucella melitensis and Brucella ovis. Veterinary microbiology. 2002; 88(3); 205-221. [PubMed: 12151196].
  33. ELBERG and FAUNCE, 1957: ELBERG SS, FAUNCE K Jr. Immunization against Brucella infection. VI. Immunity conferred on goats by a nondependent mutant from a streptomycin-dependent mutant strain of Brucella melitensis. Journal of bacteriology. 1957; 73(2); 211-217. [PubMed: 13416171].
  34. Estein et al., 2003: Estein SM, Cassataro J, Vizcaino N, Zygmunt MS, Cloeckaert A, Bowden RA. The recombinant Omp31 from Brucella melitensis alone or associated with rough lipopolysaccharide induces protection against Brucella ovis infection in BALB/c mice. Microbes and infection / Institut Pasteur. 2003 Feb; 5(2); 85-93. [PubMed: 12650766].
  35. Estevan et al., 2006: Estevan M, Gamazo C, Grilló MJ, Del Barrio GG, Blasco JM, Irache JM. Experiments on a sub-unit vaccine encapsulated in microparticles and its efficacy against Brucella melitensis in mice. Vaccine. 2006; 24(19); 4179-4187. [PubMed: 16481077].
  36. Fernandes et al., 1996: Fernandes DM, Jiang X, Jung JH, Baldwin CL. Comparison of T cell cytokines in resistant and susceptible mice infected with virulent Brucella abortus strain 2308. FEMS immunology and medical microbiology. 1996 Dec 31; 16(3-4); 193-203. [PubMed: 9116636 ].
  37. Fu et al., 2012: Fu S, Xu J, Li X, Xie Y, Qiu Y, Du X, Yu S, Bai Y, Chen Y, Wang T, Wang Z, Yu Y, Peng G, Huang K, Huang L, Wang Y, Chen Z. Immunization of Mice with Recombinant Protein CobB or AsnC Confers Protection against Brucella abortus Infection. PloS one. 2012; 7(2); e29552. [PubMed: 22383953].
  38. Galindo et al., 2009: Galindo RC, Muñoz PM, de Miguel MJ, Marin CM, Blasco JM, Gortazar C, Kocan KM, de la Fuente J. Characterization of possible correlates of protective response against Brucella ovis infection in rams immunized with the B. melitensis Rev 1 vaccine. Vaccine. 2009; 27(23); 3039-3044. [PubMed: 19428917].
  39. Gee et al., 2005: Gee JM, Valderas MW, Kovach ME, Grippe VK, Robertson GT, Ng WL, Richardson JM, Winkler ME, Roop RM 2nd. The Brucella abortus Cu,Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice. Infection and immunity. 2005 May; 73(5); 2873-80. [PubMed: 15845493].
  40. Geong et al., 2000: Geong M, Robertson ID. Response of Bali cattle (Bos javanicus) to vaccination with Brucella abortus strain 19 in West Timor. Preventive veterinary medicine. 2000 Nov 16; 47(3); 177-86. [PubMed: 11058778].
  41. Goldbaum et al., 1999: Goldbaum FA, Velikovsky CA, Baldi PC, Mortl S, Bacher A, Fossati CA. The 18-kDa cytoplasmic protein of Brucella species --an antigen useful for diagnosis--is a lumazine synthase. Journal of medical microbiology. 1999 Sep; 48(9); 833-9. [PubMed: 10482294 ].
  42. Guilloteau et al., 2006: Guilloteau LA, Laroucau K, Olivier M, Grillo MJ, Marin CM, Verger JM, Blasco JM. Residual virulence and immunogenicity of CGV26 and CGV2631 B. melitensis Rev. 1 deletion mutant strains in sheep after subcutaneous or conjunctival vaccination. Vaccine. 2006; 24(17); 3461-3468. [PubMed: 16519974].
  43. Gupta et al., 2007: Gupta VK, Rout PK, Vihan VS. Induction of immune response in mice with a DNA vaccine encoding outer membrane protein (omp31) of Brucella melitensis 16M. Research in veterinary science. 2007; 82(3); 305-313. [PubMed: 17014873].
  44. Hamdy et al., 2002: Hamdy ME, El-Gibaly SM, Montasser AM. Comparison between immune responses and resistance induced in BALB/c mice vaccinated with RB51 and Rev. 1 vaccines and challenged with Brucella melitensis bv. 3. Veterinary microbiology. 2002; 88(1); 85-94. [PubMed: 12119140].
  45. He et al., 2001: He Y, Vemulapalli R, Zeytun A, Schurig GG. Induction of specific cytotoxic lymphocytes in mice vaccinated with Brucella abortus RB51. Infection and immunity. 2001 Sep; 69(9); 5502-8. [PubMed: 11500423 ].
  46. He et al., 2002: He Y, Vemulapalli R, Schurig GG. Recombinant Ochrobactrum anthropi expressing Brucella abortus Cu,Zn superoxide dismutase protects mice against B. abortus infection only after switching of immune responses to Th1 type. Infection and immunity. 2002 May; 70(5); 2535-43. [PubMed: 11953393].
  47. Hemmen et al., 1995: Hemmen F, Weynants V, Scarcez T, Letesson JJ, Saman E. Cloning and sequence analysis of a newly identified Brucella abortus gene and serological evaluation of the 17-kilodalton antigen that it encodes. Clinical and diagnostic laboratory immunology. 1995 May; 2(3); 263-7. [PubMed: 7664168 ].
  48. High et al., 2007: High KP, Prasad R, Marion CR, Schurig GG, Boyle SM, Sriranganathan N. Outcome and immune responses after Brucella abortus infection in young adult and aged mice. Biogerontology. 2007; 8(5); 583-593. [PubMed: 17653832].
  49. Hoover et al., 1999: Hoover DL, Crawford RM, Van De Verg LL, Izadjoo MJ, Bhattacharjee AK, Paranavitana CM, Warren RL, Nikolich MP, Hadfield TL. Protection of mice against brucellosis by vaccination with Brucella melitensis WR201(16MDeltapurEK). Infection and immunity. 1999; 67(11); 5877-5884. [PubMed: 10531243].
  50. Hu et al., 2010: Hu XD, Chen ST, Li JY, Yu DH, Yi-Zhang, Cai H. An IL-15 adjuvant enhances the efficacy of a combined DNA vaccine against Brucella by increasing the CD8+ cytotoxic T cell response. Vaccine. 2010; 28(12); 2408-2415. [PubMed: 20064480].
  51. Izadjoo et al., 2004: Izadjoo MJ, Bhattacharjee AK, Paranavitana CM, Hadfield TL, Hoover DL. Oral vaccination with Brucella melitensis WR201 protects mice against intranasal challenge with virulent Brucella melitensis 16M. Infection and immunity. 2004; 72(7); 4031-4039. [PubMed: 15213148].
  52. Jacques et al., 2007: Jacques I, Verger JM, Laroucau K, Grayon M, Vizcaino N, Peix A, Cortade F, Carreras F, Guilloteau LA. Immunological responses and protective efficacy against Brucella melitensis induced by bp26 and omp31 B. melitensis Rev.1 deletion mutants in sheep. Vaccine. 2007 Jan 15; 25(5); 794-805. [PubMed: 17070627].
  53. Januszewski et al., 2001: Januszewski MC, Olsen SC, McLean RG, Clark L, Rhyan JC. Experimental infection of nontarget species of rodents and birds with Brucella abortus strain RB51 vaccine. Journal of wildlife diseases. 2001; 37(3); 532-537. [PubMed: 11504226].
  54. Jensen and Halling, 2008: Jensen AE, Halling SM. Effect of polymyxin B and environmental conditions on isolation of Brucella species and the vaccine strain RB51. Comparative immunology, microbiology and infectious diseases. 2008; ; . [PubMed: 18814911].
  55. Jiménez et al., 1994: Jiménez de Bagüés MP, Elzer PH, Jones SM, Blasco JM, Enright FM, Schurig GG, Winter AJ. Vaccination with Brucella abortus rough mutant RB51 protects BALB/c mice against virulent strains of Brucella abortus, Brucella melitensis, and Brucella ovis. Infection and immunity. 1994; 62(11); 4990-4996. [PubMed: 7927779].
  56. Kahl-McDonagh and Ficht, 2006: Kahl-McDonagh MM, Ficht TA. Evaluation of protection afforded by Brucella abortus and Brucella melitensis unmarked deletion mutants exhibiting different rates of clearance in BALB/c mice. Infection and immunity. 2006; 74(7); 4048-4057. [PubMed: 16790778].
  57. Kahl-McDonagh et al., 2007: Kahl-McDonagh MM, Arenas-Gamboa AM, Ficht TA. Aerosol infection of BALB/c mice with Brucella melitensis and Brucella abortus and protective efficacy against aerosol challenge. Infection and immunity. 2007; 75(10); 4923-4932. [PubMed: 17664263].
  58. Ko et al., 2002: Ko J, Gendron-Fitzpatrick A, Ficht TA, Splitter GA. Virulence criteria for Brucella abortus strains as determined by interferon regulatory factor 1-deficient mice. Infection and immunity. 2002; 70(12); 7004-7012. [PubMed: 12438380].
  59. Kohler et al., 2002: Kohler S, Foulongne V, Ouahrani-Bettache S, Bourg G, Teyssier J, Ramuz M, Liautard JP. The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proceedings of the National Academy of Sciences of the United States of America. 2002 Nov 26; 99(24); 15711-6. [PubMed: 12438693 ].
  60. Kurar and Splitter, 1997: Kurar E, Splitter GA. Nucleic acid vaccination of Brucella abortus ribosomal L7/L12 gene elicits immune response. Vaccine. 1997; 15(17-18); 1851-1857. [PubMed: 9413093].
  61. Laplagne et al., 2004: Laplagne DA, Zylberman V, Ainciart N, Steward MW, Sciutto E, Fossati CA, Goldbaum FA. Engineering of a polymeric bacterial protein as a scaffold for the multiple display of peptides. Proteins. 2004 Dec 1; 57(4); 820-8. [PubMed: 15390265].
  62. Leclerq et al., 2002: Leclerq S, Harms JS, Rosinha GM, Azevedo V, Oliveira SC. Induction of a th1-type of immune response but not protective immunity by intramuscular DNA immunisation with Brucella abortus GroEL heat-shock gene. Journal of medical microbiology. 2002; 51(1); 20-26. [PubMed: 11803949].
  63. Lee et al., 1999: Lee IK, Olsen SC, Kehrli M, Bolin CA. The adjuvant effect of a single dose of interleukin-12 on murine immune responses to live or killed Brucella abortus strain RB51. Canadian journal of veterinary research = Revue canadienne de recherche veterinaire. 1999; 63(4); 284-287. [PubMed: 10534009].
  64. Lee et al., 2001: Lee IK, Olsen SC, Bolin CA. Effects of exogenous recombinant interleukin-12 on immune responses and protection against Brucella abortus in a murine model. Canadian journal of veterinary research = Revue canadienne de recherche veterinaire. 2001; 65(4); 223-228. [PubMed: 11768128].
  65. Letesson et al., 1997: Letesson JJ, Tibor A, van Eynde G, Wansard V, Weynants V, Denoel P, Saman E. Humoral immune responses of Brucella-infected cattle, sheep, and goats to eight purified recombinant Brucella proteins in an indirect enzyme-linked immunosorbent assay. Clinical and diagnostic laboratory immunology. 1997 Sep; 4(5); 556-64. [PubMed: 9302205].
  66. Li, 1991: Li HZ. [A pathohistological study on experimental brucellosis in inbred mice]. Zhonghua bing li xue za zhi Chinese journal of pathology. 1991 Jun; 20(2); 134-6. [PubMed: 1914022 ].
  67. Longo et al., 2009: Longo M, Mallardo K, Montagnaro S, De Martino L, Gallo S, Fusco G, Galiero G, Guarino A, Pagnini U, Iovane G. Shedding of Brucella abortus rough mutant strain RB51 in milk of water buffalo (Bubalus bubalis). Preventive veterinary medicine. 2009; 90(1-2); 113-118. [PubMed: 19362381].
  68. Luo et al., 2006a: Luo DY, Li P, Xing L, Zhao GY, Shi W, Zhang SL, Wang XL. DNA vaccine encoding L7/L12-P39 of Brucella abortus induces protective immunity in BALB/c mice. Chinese medical journal. 2006 Feb 20; 119(4); 331-4. [PubMed: 16537031].
  69. Luo et al., 2006b: Luo D, Ni B, Li P, Shi W, Zhang S, Han Y, Mao L, He Y, Wu Y, Wang X. Protective immunity elicited by a divalent DNA vaccine encoding both the L7/L12 and Omp16 genes of Brucella abortus in BALB/c mice. Infection and immunity. 2006; 74(5); 2734-2741. [PubMed: 16622210].
  70. Makar et al., 1975: Makar AB, McMartin KE, Palese M, Tephly TR. Formate assay in body fluids: application in methanol poisoning. Biochemical medicine. 1975; 13(2); 117-126. [PubMed: 1].
  71. Mallick et al., 2007: Mallick AI, Singha H, Khan S, Anwar T, Ansari MA, Khalid R, Chaudhuri P, Owais M. Escheriosome-mediated delivery of recombinant ribosomal L7/L12 protein confers protection against murine brucellosis. Vaccine. 2007; 25(46); 7873-7884. [PubMed: 17931756].
  72. Martins et al., 2009: Martins H, Garin-Bastuji B, Lima F, Flor L, Pina Fonseca A, Boinas F. Eradication of bovine brucellosis in the Azores, Portugal-Outcome of a 5-year programme (2002-2007) based on test-and-slaughter and RB51 vaccination. Preventive veterinary medicine. 2009; 90(1-2); 80-89. [PubMed: 19439382].
  73. Montaraz et al., 1986: Montaraz JA, Winter AJ. Comparison of living and nonliving vaccines for Brucella abortus in BALB/c mice. Infection and immunity. 1986 Aug; 53(2); 245-51. [PubMed: 3089933 ].
  74. Moriyon et al., 2004: Moriyon I, Grillo MJ, Monreal D, Gonzalez D, Marin C, Lopez-Goni I, Mainar-Jaime RC, Moreno E, Blasco JM. Rough vaccines in animal brucellosis: structural and genetic basis and present status. Veterinary research. 2004 Jan-Feb; 35(1); 1-38. [PubMed: 15099501].
  75. Munoz-Montesino et al., 2004: Munoz-Montesino C, Andrews E, Rivers R, Gonzalez-Smith A, Moraga-Cid G, Folch H, Cespedes S, Onate AA. Intraspleen delivery of a DNA vaccine coding for superoxide dismutase (SOD) of Brucella abortus induces SOD-specific CD4+ and CD8+ T cells. Infection and immunity. 2004 Apr; 72(4); 2081-7. [PubMed: 15039330].
  76. Nol et al., 2009: Nol P, Olsen SC, Rhyan JC. Experimental infection of Richardson's ground squirrels (Spermophilus richardsonii) with attenuated and virulent strains of Brucella abortus. Journal of wildlife diseases. 2009; 45(1); 189-195. [PubMed: 19204348].
  77. Oliveira et al., 1994: Oliveira SC, Zhu Y, Splitter G. Sequences of the rplJL operon containing the L10 and L7/L12 genes from Brucella abortus. Gene. 1994 Mar 11; 140(1); 137-8. [PubMed: 8125331 ].
  78. Oliveira et al., 1996: Oliveira SC, Splitter GA. Immunization of mice with recombinant L7/L12 ribosomal protein confers protection against Brucella abortus infection. Vaccine. 1996 Jul; 14(10); 959-62. [PubMed: 8873388 ].
  79. Olsen et al., 2004: Olsen SC, Rhyan J, Gidlewski T, Goff J, Stoffregen WC. Safety of Brucella abortus strain RB51 in black bears. Journal of wildlife diseases. 2004; 40(3); 429-433. [PubMed: 15465709].
  80. Olsen et al., 2007: Olsen SC, Waters WR, Stoffregen WS. An aerosolized Brucella spp. challenge model for laboratory animals. Zoonoses and public health. 2007; 54(8); 281-285. [PubMed: 17894637].
  81. Olsen et al., 2009: Olsen SC, Boyle SM, Schurig GG, Sriranganathan NN. Immune responses and protection against experimental challenge after vaccination of bison with Brucella abortus strain RB51 or RB51 overexpressing superoxide dismutase and glycosyltransferase genes. Clinical and vaccine immunology : CVI. 2009; 16(4); 535-540. [PubMed: 19176693].
  82. Onate et al., 2003: Onate AA, Cespedes S, Cabrera A, Rivers R, Gonzalez A, Munoz C, Folch H, Andrews E. A DNA vaccine encoding Cu,Zn superoxide dismutase of Brucella abortus induces protective immunity in BALB/c mice. Infection and immunity. 2003 Sep; 71(9); 4857-61. [PubMed: 12933826].
  83. Palmer et al., 1996: Palmer MV, Cheville NF, Tatum FM. Morphometric and histopathologic analysis of lymphoid depletion in murine spleens following infection with Brucella abortus strains 2308 or RB51 or an htrA deletion mutant. Veterinary pathology. 1996; 33(3); 282-289. [PubMed: 8740701].
  84. Paranavitana et al., 2005: Paranavitana C, Zelazowska E, Izadjoo M, Hoover D. Interferon-gamma associated cytokines and chemokines produced by spleen cells from Brucella-immune mice. Cytokine. 2005; 30(2); 86-92. [PubMed: 15804600].
  85. Parent et al., 2007: Parent MA, Goenka R, Murphy E, Levier K, Carreiro N, Golding B, Ferguson G, Roop RM 2nd, Walker GC, Baldwin CL. Brucella abortus bacA mutant induces greater pro-inflammatory cytokines than the wild-type parent strain. Microbes and infection / Institut Pasteur. 2007; 9(1); 55-62. [PubMed: 17196866].
  86. Pasquali et al., 2001: Pasquali P, Adone R, Gasbarre LC, Pistoia C, Ciuchini F. Mouse cytokine profiles associated with Brucella abortus RB51 vaccination or B. abortus 2308 infection. Infection and immunity. 2001; 69(10); 6541-6544. [PubMed: 11553603].
  87. Pasquali et al., 2003: Pasquali P, Rosanna A, Pistoia C, Petrucci P, Ciuchini F. Brucella abortus RB51 induces protection in mice orally infected with the virulent strain B. abortus 2308. Infection and immunity. 2003; 71(5); 2326-2330. [PubMed: 12704101].
  88. Pasquevich et al., 2009: Pasquevich KA, Estein SM, García Samartino C, Zwerdling A, Coria LM, Barrionuevo P, Fossati CA, Giambartolomei GH, Cassataro J. Immunization with recombinant Brucella species outer membrane protein Omp16 or Omp19 in adjuvant induces specific CD4+ and CD8+ T cells as well as systemic and oral protection against Brucella abortus infection. Infection and immunity. 2009; 77(1); 436-445. [PubMed: 18981242].
  89. Poester et al., 2006: Poester FP, Gonçalves VS, Paixão TA, Santos RL, Olsen SC, Schurig GG, Lage AP. Efficacy of strain RB51 vaccine in heifers against experimental brucellosis. Vaccine. 2006; 24(25); 5327-5334. [PubMed: 16713034].
  90. Rajasekaran et al., 2008: Rajasekaran P, Seleem MN, Contreras A, Purwantini E, Schurig GG, Sriranganathan N, Boyle SM. Brucella abortus strain RB51 leucine auxotroph as an environmentally safe vaccine for plasmid maintenance and antigen overexpression. Applied and environmental microbiology. 2008; 74(22); 7051-7055. [PubMed: 18836016].
  91. Ramamoorthy et al., 2007: Ramamoorthy S, Sanakkayala N, Vemulapalli R, Duncan RB, Lindsay DS, Schurig GS, Boyle SM, Kasimanickam R, Sriranganathan N. Prevention of lethal experimental infection of C57BL/6 mice by vaccination with Brucella abortus strain RB51 expressing Neospora caninum antigens. International journal for parasitology. 2007; 37(13); 1521-1529. [PubMed: 17568587].
  92. Roop et al., 2004: Roop RM 2nd, Bellaire BH, Valderas MW, Cardelli JA. Adaptation of the Brucellae to their intracellular niche. Molecular microbiology. 2004 May; 52(3); 621-30. [PubMed: 15101970 ].
  93. Rosinha et al., 2002a: Rosinha GM, Freitas DA, Miyoshi A, Azevedo V, Campos E, Cravero SL, Rossetti O, Splitter G, Oliveira SC. Identification and characterization of a Brucella abortus ATP-binding cassette transporter homolog to Rhizobium meliloti ExsA and its role in virulence and protection in mice. Infection and immunity. 2002; 70(9); 5036-5044. [PubMed: 12183550].
  94. Rosinha et al., 2002b: Rosinha GM, Myioshi A, Azevedo V, Splitter GA, Oliveira SC. Molecular and immunological characterisation of recombinant Brucella abortus glyceraldehyde-3-phosphate-dehydrogenase, a T- and B-cell reactive protein that induces partial protection when co-administered with an interleukin-12-expressing plasmid in a DNA vaccine formulation. Journal of medical microbiology. 2002; 51(8); 661-671. [PubMed: 12171297].
  95. Schurig et al., 1991: Schurig GG, Roop RM 2nd, Bagchi T, Boyle S, Buhrman D, Sriranganathan N. Biological properties of RB51; a stable rough strain of Brucella abortus. Veterinary microbiology. 1991 Jul; 28(2); 171-88. [PubMed: 1908158].
  96. Schurig et al., 2002: Schurig GG, Sriranganathan N, Corbel MJ. Brucellosis vaccines: past, present and future. Veterinary microbiology. 2002 Dec 20; 90(1-4); 479-96. [PubMed: 12414166].
  97. Sislema-Egas et al., 2012: Sislema-Egas F, Céspedes S, Fernández P, Retamal-Díaz A, Sáez D, Oñate A. Evaluation of protective effect of DNA vaccines encoding the BAB1_0263 and BAB1_0278 open reading frames of Brucella abortus in BALB/c mice. Vaccine. 2012; 30(50); 7286-7291. [PubMed: 23026687].
  98. Stevens et al., 1994a: Stevens MG, Olsen SC, Pugh GW Jr. Lymphocyte proliferation in response to Brucella abortus 2308 or RB51 antigens in mice infected with strain 2308, RB51, or 19. Infection and immunity. 1994; 62(10); 4659-4663. [PubMed: 7927736].
  99. Stevens et al., 1994b: Stevens MG, Olsen SC, Pugh GW Jr, Palmer MV. Immune and pathologic responses in mice infected with Brucella abortus 19, RB51, or 2308. Infection and immunity. 1994 Aug; 62(8); 3206-12. [PubMed: 8039890].
  100. Stevens et al., 1995a: Stevens MG, Olsen SC, Pugh GW Jr. Comparison of spleen cell proliferation in response to Brucella abortus 2308 lipopolysaccharide or proteins in mice vaccinated with strain 19 or RB51. Infection and immunity. 1995; 63(8); 3199-3205. [PubMed: 7622248].
  101. Stevens et al., 1995b: Stevens MG, Olsen SC, Pugh GW Jr, Brees D. Comparison of immune responses and resistance to brucellosis in mice vaccinated with Brucella abortus 19 or RB51. Infection and immunity. 1995; 63(1); 264-270. [PubMed: 7806364].
  102. Stevens et al., 1996: Stevens MG, Olsen SC, Palmer MV, Pugh GW Jr. Immune responses and resistance to brucellosis in mice vaccinated orally with Brucella abortus RB51. Infection and immunity. 1996; 64(11); 4534-4541. [PubMed: 8890203].
  103. Stoffregen et al., 2006: Stoffregen WC, Olsen SC, Bricker BJ. Parenteral vaccination of domestic pigs with Brucella abortus strain RB51. American journal of veterinary research. 2006; 67(10); 1802-1808. [PubMed: 17014337].
  104. Suryanarayana et al., 2016: Suryanarayana N, Verma M, Thavachelvam K, Saxena N, Mankere B, Tuteja U, Hmuaka V. Generation of a novel chimeric PALFn antigen of Bacillus anthracis and its immunological characterization in mouse model. Applied microbiology and biotechnology. 2016; 100(19); 8439-8451. [PubMed: 27364624].
  105. Tibor et al., 1998: Tibor A, Jacques I, Guilloteau L, Verger JM, Grayon M, Wansard V, Letesson JJ. Effect of P39 gene deletion in live Brucella vaccine strains on residual virulence and protective activity in mice. Infection and immunity. 1998; 66(11); 5561-5564. [PubMed: 9784574].
  106. Tobias et al., 1992: Tobias L, Schurig GG, Cordes DO. Comparative behaviour of Brucella abortus strains 19 and RB51 in the pregnant mouse. Research in veterinary science. 1992; 53(2); 179-183. [PubMed: 1439207].
  107. Trant et al., 2010: Trant CG, Lacerda TL, Carvalho NB, Azevedo V, Rosinha GM, Salcedo SP, Gorvel JP, Oliveira SC. The Brucella abortus phosphoglycerate kinase mutant is highly attenuated and induces protection superior to that of vaccine strain 19 in immunocompromised and immunocompetent mice. Infection and immunity. 2010; 78(5); 2283-2291. [PubMed: 20194591].
  108. Ugalde et al., 2003: Ugalde JE, Comerci DJ, Leguizamón MS, Ugalde RA. Evaluation of Brucella abortus phosphoglucomutase (pgm) mutant as a new live rough-phenotype vaccine. Infection and immunity. 2003; 71(11); 6264-6269. [PubMed: 14573645].
  109. Velikovsky et al., 2002: Velikovsky CA, Cassataro J, Giambartolomei GH, Goldbaum FA, Estein S, Bowden RA, Bruno L, Fossati CA, Spitz M. A DNA vaccine encoding lumazine synthase from Brucella abortus induces protective immunity in BALB/c mice. Infection and immunity. 2002 May; 70(5); 2507-11. [PubMed: 11953389 ].
  110. Vemulapalli et al., 2000a: Vemulapalli R, He Y, Cravero S, Sriranganathan N, Boyle SM, Schurig GG. Overexpression of protective antigen as a novel approach to enhance vaccine efficacy of Brucella abortus strain RB51. Infection and immunity. 2000 Jun; 68(6); 3286-9. [PubMed: 10816475].
  111. Vemulapalli et al., 2000b: Vemulapalli R, He Y, Buccolo LS, Boyle SM, Sriranganathan N, Schurig GG. Complementation of Brucella abortus RB51 with a functional wboA gene results in O-antigen synthesis and enhanced vaccine efficacy but no change in rough phenotype and attenuation. Infection and immunity. 2000 Jul; 68(7); 3927-32. [PubMed: 10858205].
  112. Vemulapalli et al., 2004: Vemulapalli R, Contreras A, Sanakkayala N, Sriranganathan N, Boyle SM, Schurig GG. Enhanced efficacy of recombinant Brucella abortus RB51 vaccines against B. melitensis infection in mice. Veterinary microbiology. 2004 Sep 8; 102(3-4); 237-45. [PubMed: 15327798].
  113. Wang et al., 2011: Wang Y, Bai Y, Qu Q, Xu J, Chen Y, Zhong Z, Qiu Y, Wang T, Du X, Wang Z, Yu S, Fu S, Yuan J, Zhen Q, Yu Y, Chen Z, Huang L. The 16MΔvjbR as an ideal live attenuated vaccine candidate for differentiation between Brucella vaccination and infection. Veterinary microbiology. 2011; ; . [PubMed: 21530111].
  114. Winter et al., 1988: Winter AJ, Rowe GE, Duncan JR, Eis MJ, Widom J, Ganem B, Morein B. Effectiveness of natural and synthetic complexes of porin and O polysaccharide as vaccines against Brucella abortus in mice. Infection and immunity. 1988; 56(11); 2808-2817. [PubMed: 2844673].
  115. Winter et al., 1996: Winter AJ, Schurig GG, Boyle SM, Sriranganathan N, Bevins JS, Enright FM, Elzer PH, Kopec JD. Protection of BALB/c mice against homologous and heterologous species of Brucella by rough strain vaccines derived from Brucella melitensis and Brucella suis biovar 4. American journal of veterinary research. 1996 May; 57(5); 677-83. [PubMed: 8723881].
  116. Xin, 1986: Xin X. Orally administrable brucellosis vaccine: Brucella suis strain 2 vaccine. Vaccine. 1986; 4(4); 212-216. [PubMed: 3541425].
  117. Yang et al., 2006: Yang X, Becker T, Walters N, Pascual DW. Deletion of znuA virulence factor attenuates Brucella abortus and confers protection against wild-type challenge. Infection and immunity. 2006; 74(7); 3874-3879. [PubMed: 16790759].
  118. Yang et al., 2007: Yang X, Walters N, Robison A, Trunkle T, Pascual DW. Nasal immunization with recombinant Brucella melitensis bp26 and trigger factor with cholera toxin reduces B. melitensis colonization. Vaccine. 2007; 25(12); 2261-2268. [PubMed: 17239499].
  119. Yu et al., 2007: Yu DH, Hu XD, Cai H. A combined DNA vaccine encoding BCSP31, SOD, and L7/L12 confers high protection against Brucella abortus 2308 by inducing specific CTL responses. DNA and cell biology. 2007 Jun; 26(6); 435-43. [PubMed: 17570767].
  120. Yu et al., 2007: Yu DH, Li M, Hu XD, Cai H. A combined DNA vaccine enhances protective immunity against Mycobacterium tuberculosis and Brucella abortus in the presence of an IL-12 expression vector. Vaccine. 2007; 25(37-38); 6744-6754. [PubMed: 17681650].

Burkholderia pseudomallei

  1. Breitbach et al., 2008: Breitbach K, Köhler J, Steinmetz I. Induction of protective immunity against Burkholderia pseudomallei using attenuated mutants with defects in the intracellular life cycle. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2008; 102 Suppl 1; S89-94. [PubMed: 19121696].
  2. Casey et al., 2016: Casey WT, Spink N, Cia F, Collins C, Romano M, Berisio R, Bancroft GJ, McClean S. Identification of an OmpW homologue in Burkholderia pseudomallei, a protective vaccine antigen against melioidosis. Vaccine. 2016; 34(23); 2616-2621. [PubMed: 27091689].
  3. Chen et al., 2006: Chen YS, Hsiao YS, Lin HH, Yen CM, Chen SC, Chen YL. Immunogenicity and anti-Burkholderia pseudomallei activity in Balb/c mice immunized with plasmid DNA encoding flagellin. Vaccine. 2006; 24(6); 750-758. [PubMed: 16169637].
  4. Druar et al., 2008: Druar C, Yu F, Barnes JL, Okinaka RT, Chantratita N, Beg S, Stratilo CW, Olive AJ, Soltes G, Russell ML, Limmathurotsakul D, Norton RE, Ni SX, Picking WD, Jackson PJ, Stewart DI, Tsvetnitsky V, Picking WL, Cherwonogrodzky JW, Ketheesan N, Peacock SJ, Wiersma EJ. Evaluating Burkholderia pseudomallei Bip proteins as vaccines and Bip antibodies as detection agents. FEMS immunology and medical microbiology. 2008; 52(1); 78-87. [PubMed: 17995960].
  5. Gourlay et al., 2015: Gourlay LJ, Thomas RJ, Peri C, Conchillo-Solé O, Ferrer-Navarro M, Nithichanon A, Vila J, Daura X, Lertmemongkolchai G, Titball R, Colombo G, Bolognesi M. From crystal structure to in silico epitope discovery in the Burkholderia pseudomallei flagellar hook-associated protein FlgK. The FEBS journal. 2015; 282(7); 1319-1333. [PubMed: 25645451].
  6. Haque et al., 2006: Haque A, Chu K, Easton A, Stevens MP, Galyov EE, Atkins T, Titball R, Bancroft GJ. A live experimental vaccine against Burkholderia pseudomallei elicits CD4+ T cell-mediated immunity, priming T cells specific for 2 type III secretion system proteins. The Journal of infectious diseases. 2006; 194(9); 1241-1248. [PubMed: 17041850].
  7. Harland et al., 2007: Harland DN, Chu K, Haque A, Nelson M, Walker NJ, Sarkar-Tyson M, Atkins TP, Moore B, Brown KA, Bancroft G, Titball RW, Atkins HS. Identification of a LolC homologue in Burkholderia pseudomallei, a novel protective antigen for melioidosis. Infection and immunity. 2007; 75(8); 4173-4180. [PubMed: 17517877].
  8. Harland et al., 2007: Harland DN, Chu K, Haque A, Nelson M, Walker NJ, Sarkar-Tyson M, Atkins TP, Moore B, Brown KA, Bancroft G, Titball RW, Atkins HS. Identification of a LolC homologue in Burkholderia pseudomallei, a novel protective antigen for melioidosis. Infection and immunity. 2007; 75(8); 4173-4180. [PubMed: 17517877].
  9. Nelson et al., 2004: Nelson M, Prior JL, Lever MS, Jones HE, Atkins TP, Titball RW. Evaluation of lipopolysaccharide and capsular polysaccharide as subunit vaccines against experimental melioidosis. Journal of medical microbiology. 2004; 53(Pt 12); 1177-1182. [PubMed: 15585494].
  10. Norris et al., 2011: Norris MH, Propst KL, Kang Y, Dow SW, Schweizer HP, Hoang TT. The Burkholderia pseudomallei {Delta}asd mutant exhibits attenuated intracellular infectivity and imparts protection against acute inhalation melioidosis in mice. Infection and immunity. 2011; ; . [PubMed: 21807903].
  11. Srilunchang et al., 2009: Srilunchang T, Proungvitaya T, Wongratanacheewin S, Strugnell R, Homchampa P. Construction and characterization of an unmarked aroC deletion mutant of Burkholderia pseudomallei strain A2. The Southeast Asian journal of tropical medicine and public health. 2009; 40(1); 123-130. [PubMed: 19323044].
  12. Tippayawat et al., 2009: Tippayawat P, Saenwongsa W, Mahawantung J, Suwannasaen D, Chetchotisakd P, Limmathurotsakul D, Peacock SJ, Felgner PL, Atkins HS, Titball RW, Bancroft GJ, Lertmemongkolchai G. Phenotypic and functional characterization of human memory T cell responses to Burkholderia pseudomallei. PLoS neglected tropical diseases. 2009; 3(4); e407. [PubMed: 19352426].
  13. Wiki: B. pseudomallei: Wiki: B. pseudomallei [http://en.wikipedia.org/wiki/Burkholderia_pseudomallei]
  14. Woo et al., 2001: Woo PC, Leung PK, Wong SS, Ho PL, Yuen KY. groEL encodes a highly antigenic protein in Burkholderia pseudomallei. Clinical and diagnostic laboratory immunology. 2001; 8(4); 832-836. [PubMed: 11427437].

Campylobacter fetus

  1. Thompson, 2002: Thompson SA. Campylobacter surface-layers (S-layers) and immune evasion. Annals of periodontology / the American Academy of Periodontology. 2002; 7(1); 43-53. [PubMed: 16013216].

Campylobacter jejuni

  1. Abimiku et al., 1989: Abimiku AG, Dolby JM, Borriello SP. Comparison of different vaccines and induced immune response against Campylobacter jejuni colonization in the infant mouse. Epidemiology and infection. 1989 Apr; 102(2); 271-80. [PubMed: 2703020 ].
  2. Abulreesh et al., 2006: Abulreesh HH, Paget TA, Goulder R. Campylobacter in waterfowl and aquatic environments: incidence and methods of detection. Environmental science & technology. 2006 Dec 1; 40(23); 7122-31. [PubMed: 17180958].
  3. Andrews, 1998: Andrews GP. The enteric Campylobacter: they are everywhere. Clinical laboratory science : journal of the American Society for Medical Technology. 1998 Sep-Oct; 11(5); 305-8. [PubMed: 10186956].
  4. Baqar et al., 1995a: Baqar S, Bourgeois AL, Schultheiss PJ, Walker RI, Rollins DM, Haberberger RL, Pavlovskis OR. Safety and immunogenicity of a prototype oral whole-cell killed Campylobacter vaccine administered with a mucosal adjuvant in non-human primates. Vaccine. 1995 Jan; 13(1); 22-8. [PubMed: 7539199].
  5. Baqar et al., 1995b: Baqar S, Applebee LA, Bourgeois AL. Immunogenicity and protective efficacy of a prototype Campylobacter killed whole-cell vaccine in mice. Infection and immunity. 1995 Sep; 63(9); 3731-5. [PubMed: 7642317].
  6. Baqar et al., 2008: Baqar S, Applebee LA, Gilliland TC Jr, Lee LH, Porter CK, Guerry P. Immunogenicity and protective efficacy of recombinant Campylobacter jejuni flagellum-secreted proteins in mice. Infection and immunity. 2008; 76(7); 3170-3175. [PubMed: 18426878].
  7. Buckley et al., 2010: Buckley AM, Wang J, Hudson DL, Grant AJ, Jones MA, Maskell DJ, Stevens MP. Evaluation of live-attenuated Salmonella vaccines expressing Campylobacter antigens for control of C. jejuni in poultry. Vaccine. 2010; 28(4); 1094-1105. [PubMed: 19853682].
  8. Burr et al., 2005: Burr DH, Rollins D, Lee LH, Pattarini DL, Walz SS, Tian JH, Pace JL, Bourgeois AL, Walker RI. Prevention of disease in ferrets fed an inactivated whole cell Campylobacter jejuni vaccine. Vaccine. 2005 Jul 29; 23(34); 4315-21. [PubMed: 16005742 ].
  9. Chintoan-Uta et al., 2015: Chintoan-Uta C, Cassady-Cain RL, Al-Haideri H, Watson E, Kelly DJ, Smith DG, Sparks NH, Kaiser P, Stevens MP. Superoxide dismutase SodB is a protective antigen against Campylobacter jejuni colonisation in chickens. Vaccine. 2015; 33(46); 6206-6211. [PubMed: 26458797].
  10. Dolby et al., 1986: Dolby JM, Newell DG. The protection of infant mice from colonization with Campylobacter jejuni by vaccination of the dams. The Journal of hygiene. 1986 Apr; 96(2); 143-51. [PubMed: 3701036 ].
  11. Engberg, 2006: Engberg J. Contributions to the epidemiology of Campylobacter infections. A review of clinical and microbiological studies. Danish medical bulletin. 2006 Nov; 53(4); 361-89. [PubMed: 17150145].
  12. Heimesaat et al., 2014: Heimesaat MM, Alutis M, Grundmann U, Fischer A, Tegtmeyer N, Böhm M, Kühl AA, Göbel UB, Backert S, Bereswill S. The role of serine protease HtrA in acute ulcerative enterocolitis and extra-intestinal immune responses during Campylobacter jejuni infection of gnotobiotic IL-10 deficient mice. Frontiers in cellular and infection microbiology. 2014; 4; 77. [PubMed: 24959425].
  13. Huang et al., 2007: Huang S, Sahin O, Zhang Q. Infection-induced antibodies against the major outer membrane protein of Campylobacter jejuni mainly recognize conformational epitopes. FEMS microbiology letters. 2007 Jul; 272(2); 137-43. [PubMed: 17521366].
  14. Huang et al., 2007: Huang S, Sahin O, Zhang Q. Infection-induced antibodies against the major outer membrane protein of Campylobacter jejuni mainly recognize conformational epitopes. FEMS microbiology letters. 2007; 272(2); 137-143. [PubMed: 17521366].
  15. Islam et al., 2010: Islam A, Raghupathy R, Albert MJ. Recombinant PorA, the major outer membrane protein of Campylobacter jejuni, provides heterologous protection in an adult mouse intestinal colonization model. Clinical and vaccine immunology : CVI. 2010; 17(11); 1666-1671. [PubMed: 20861330].
  16. Islam et al., 2010: Islam A, Raghupathy R, Albert MJ. Recombinant PorA, the major outer membrane protein of Campylobacter jejuni, provides heterologous protection in an adult mouse intestinal colonization model. Clinical and vaccine immunology : CVI. 2010; 17(11); 1666-1671. [PubMed: 20861330].
  17. Jagusztyn-Krynicka et al., 2004: Jagusztyn-Krynicka EK, Wyszynska A, Raczko A. New approaches to development of mucosal vaccine against enteric bacterial pathogens; preventing campylobacteriosis. Polish journal of microbiology / Polskie Towarzystwo Mikrobiologow = The Polish Society of Microbiologists. 2004; 53 Suppl; 7-15. [PubMed: 15787191].
  18. Khoury et al., 1995: Khoury CA, Meinersmann RJ. A genetic hybrid of the Campylobacter jejuni flaA gene with LT-B of Escherichia coli and assessment of the efficacy of the hybrid protein as an oral chicken vaccine. Avian diseases. 1995 Oct-Dec; 39(4); 812-20. [PubMed: 8719215 ].
  19. Kopecko, 1997: Kopecko DJ. Regulatory considerations for Campylobacter vaccine development. The Journal of infectious diseases. 1997 Dec; 176 Suppl 2; S189-91. [PubMed: 9396709].
  20. Lee et al., 1999: Lee LH, Burg E 3rd, Baqar S, Bourgeois AL, Burr DH, Ewing CP, Trust TJ, Guerry P. Evaluation of a truncated recombinant flagellin subunit vaccine against Campylobacter jejuni. Infection and immunity. 1999 Nov; 67(11); 5799-805. [PubMed: 10531231].
  21. Martin et al., 1999: Martin PR, Mulks MH. Cloning and characterization of a gene encoding an antigenic membrane protein from Actinobacillus pleuropneumoniae with homology to ABC transporters. FEMS immunology and medical microbiology. 1999 Aug 15; 25(3); 245-54. [PubMed: 10459579].
  22. Nelson et al., 2007: Nelson JM, Chiller TM, Powers JH, Angulo FJ. Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2007 Apr 1; 44(7); 977-80. [PubMed: 17342653].
  23. Pawelec et al., 1997: Pawelec D, Rozynek E, Popowski J, Jagusztyn-Krynicka EK. Cloning and characterization of a Campylobacter jejuni 72Dz/92 gene encoding a 30 kDa immunopositive protein, component of the ABC transport system; expression of the gene in avirulent Salmonella typhimurium. FEMS immunology and medical microbiology. 1997 Oct; 19(2); 137-50. [PubMed: 9395059].
  24. Pawelec et al., 2000: Pawelec DP, Korsak D, Wyszynska AK, Rozynek E, Popowski J, Jagusztyn-Krynicka EK. Genetic diversity of the Campylobacter genes coding immunodominant proteins. FEMS microbiology letters. 2000 Apr 1; 185(1); 43-9. [PubMed: 10731605].
  25. Prokhorova et al., 2006: Prokhorova TA, Nielsen PN, Petersen J, Kofoed T, Crawford JS, Morsczeck C, Boysen A, Schrotz-King P. Novel surface polypeptides of Campylobacter jejuni as traveller's diarrhoea vaccine candidates discovered by proteomics. Vaccine. 2006 Sep 29; 24(40-41); 6446-55. [PubMed: 16824653].
  26. Rice et al., 1997: Rice BE, Rollins DM, Mallinson ET, Carr L, Joseph SW. Campylobacter jejuni in broiler chickens: colonization and humoral immunity following oral vaccination and experimental infection. Vaccine. 1997 Dec; 15(17-18); 1922-32. [PubMed: 9413103 ].
  27. Scott, 1997: Scott DA. Vaccines against Campylobacter jejuni. The Journal of infectious diseases. 1997 Dec; 176 Suppl 2; S183-8. [PubMed: 9396708].
  28. Shoaf-Sweeney et al., 2008: Shoaf-Sweeney KD, Larson CL, Tang X, Konkel ME. Identification of Campylobacter jejuni proteins recognized by maternal antibodies of chickens. Applied and environmental microbiology. 2008; 74(22); 6867-6875. [PubMed: 18805999].
  29. Sizemore et al., 2006: Sizemore DR, Warner B, Lawrence J, Jones A, Killeen KP. Live, attenuated Salmonella typhimurium vectoring Campylobacter antigens. Vaccine. 2006 May 1; 24(18); 3793-803. [PubMed: 16135393].
  30. Smibert, 1978: Smibert RM. The genus Campylobacter. Annual review of microbiology. 1978; 32; 673-709. [PubMed: 360978].
  31. Theoret et al., 2012: Theoret JR, Cooper KK, Zekarias B, Roland KL, Law BF, Curtiss R 3rd, Joens LA. The Campylobacter jejuni Dps homologue is important for in vitro biofilm formation and cecal colonization of poultry and may serve as a protective antigen for vaccination. Clinical and vaccine immunology : CVI. 2012; 19(9); 1426-1431. [PubMed: 22787197].
  32. Walker, 2005: Walker RI. Considerations for development of whole cell bacterial vaccines to prevent diarrheal diseases in children in developing countries. Vaccine. 2005 May 16; 23(26); 3369-85. [PubMed: 15837361].
  33. Wallis, 2004: Wallis TS. Vaccination against salmonella, enterohaemorrhagic E. coli and Campylobacter in food-producing animals. Developments in biologicals. 2004; 119; 343-50. [PubMed: 15742645].
  34. White et al., 1997: White PL, Baker AR, James WO. Strategies to control Salmonella and Campylobacter in raw poultry products. Revue scientifique et technique (International Office of Epizootics). 1997 Aug; 16(2); 525-41. [PubMed: 9501366].
  35. Wilkinson et al., 2003: Wilkinson J, Rood D, Minior D, Guillard K, Darre M, Silbart LK. Immune response to a mucosally administered aflatoxin B1 vaccine. Poultry science. 2003 Oct; 82(10); 1565-72. [PubMed: 14601734].
  36. Wyszynska et al., 2004: Wyszynska A, Raczko A, Lis M, Jagusztyn-Krynicka EK. Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine. 2004 Mar 29; 22(11-12); 1379-89. [PubMed: 15063560 ].
  37. Yeh et al., 2015: Yeh HY, Hiett KL, Line JE. Reactions of chicken sera to recombinant Campylobacter jejuni flagellar proteins. Archives of microbiology. 2015; 197(2); 353-358. [PubMed: 25413671].
  38. Zeng et al., 2009: Zeng X, Xu F, Lin J. Molecular, antigenic, and functional characteristics of ferric enterobactin receptor CfrA in Campylobacter jejuni. Infection and immunity. 2009; 77(12); 5437-5448. [PubMed: 19737895].
  39. Zheng et al., 2007: Zheng H, Cai FC, Zhong M, Deng B, Li X, Zhang XP. [Experimental study on the chitosan-DNA vaccines against campylobacter jejuni invasion]. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine]. 2007; 41(5); 375-379. [PubMed: 18206008].

Canarypox virus

  1. Tulman et al., 2004: Tulman ER, Afonso CL, Lu Z, Zsak L, Kutish GF, Rock DL. The genome of canarypox virus. Journal of virology. 2004; 78(1); 353-366. [PubMed: 14671117].

Cancer

  1. Aarntzen et al., 2012: Aarntzen EH, Schreibelt G, Bol K, Lesterhuis WJ, Croockewit AJ, de Wilt JH, van Rossum MM, Blokx WA, Jacobs JF, Duiveman-de Boer T, Schuurhuis DH, Mus R, Thielemans K, de Vries IJ, Figdor CG, Punt CJ, Adema GJ. Vaccination with mRNA-electroporated dendritic cells induces robust tumor antigen-specific CD4+ and CD8+ T cells responses in stage III and IV melanoma patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2012; 18(19); 5460-5470. [PubMed: 22896657].
  2. Aarntzen et al., 2013: Aarntzen EH, Srinivas M, Bonetto F, Cruz LJ, Verdijk P, Schreibelt G, van de Rakt M, Lesterhuis WJ, van Riel M, Punt CJ, Adema GJ, Heerschap A, Figdor CG, Oyen WJ, de Vries IJ. Targeting of 111In-labeled dendritic cell human vaccines improved by reducing number of cells. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013; 19(6); 1525-1533. [PubMed: 23382117].
  3. Abate-Daga et al., 2013: Abate-Daga D, Hanada K, Davis JL, Yang JC, Rosenberg SA, Morgan RA. Expression profiling of TCR-engineered T cells demonstrates overexpression of multiple inhibitory receptors in persisting lymphocytes. Blood. 2013; 122(8); 1399-1410. [PubMed: 23861247].
  4. Abkin et al., 2013: Abkin SV, Pankratova KM, Komarova EY, Guzhova IV, Margulis BA. Hsp70 chaperone-based gel composition as a novel immunotherapeutic anti-tumor tool. Cell stress & chaperones. 2013; 18(3); 391-396. [PubMed: 23233202].
  5. Adamina et al., 2010: Adamina M, Rosenthal R, Weber WP, Frey DM, Viehl CT, Bolli M, Huegli RW, Jacob AL, Heberer M, Oertli D, Marti W, Spagnoli GC, Zajac P. Intranodal immunization with a vaccinia virus encoding multiple antigenic epitopes and costimulatory molecules in metastatic melanoma. Molecular therapy : the journal of the American Society of Gene Therapy. 2010; 18(3); 651-659. [PubMed: 19935776].
  6. Adams et al., 2008: Adams S, O'Neill DW, Nonaka D, Hardin E, Chiriboga L, Siu K, Cruz CM, Angiulli A, Angiulli F, Ritter E, Holman RM, Shapiro RL, Berman RS, Berner N, Shao Y, Manches O, Pan L, Venhaus RR, Hoffman EW, Jungbluth A, Gnjatic S, Old L, Pavlick AC, Bhardwaj N. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. Journal of immunology (Baltimore, Md. : 1950). 2008; 181(1); 776-784. [PubMed: 18566444].
  7. Agarwala et al., 2004: Agarwala SS, Neuberg D, Park Y, Kirkwood JM. Mature results of a phase III randomized trial of bacillus Calmette-Guerin (BCG) versus observation and BCG plus dacarbazine versus BCG in the adjuvant therapy of American Joint Committee on Cancer Stage I-III melanoma (E1673): a trial of the Eastern Oncology Group. Cancer. 2004; 100(8); 1692-1698. [PubMed: 15073858].
  8. Ahlers et al., 1993: Ahlers JD, Pendleton CD, Dunlop N, Minassian A, Nara PL, Berzofsky JA. Construction of an HIV-1 peptide vaccine containing a multideterminant helper peptide linked to a V3 loop peptide 18 inducing strong neutralizing antibody responses in mice of multiple MHC haplotypes after two immunizations. Journal of immunology (Baltimore, Md. : 1950). 1993; 150(12); 5647-5665. [PubMed: 8515081].
  9. Ahlers et al., 2006: Ahlers CM, Camphausen K, Citrin D, Arlen PM, Gulley JL. A pilot trial of a carcinoembryonic antigen/ TRICOM-based vaccine and radiation to liver metastases in patients with carcinoembryonic antigen-positive solid tumors. Clinical colorectal cancer. 2006; 6(1); 72-75. [PubMed: 16796796].
  10. Ahmad et al., 2009: Ahmad S, Casey G, Sweeney P, Tangney M, O'Sullivan GC. Prostate stem cell antigen DNA vaccination breaks tolerance to self-antigen and inhibits prostate cancer growth. Molecular therapy : the journal of the American Society of Gene Therapy. 2009; 17(6); 1101-1108. [PubMed: 19337234].
  11. Ahmad et al., 2010: Ahmad S, Casey G, Sweeney P, Tangney M, O'Sullivan GC. Optimised electroporation mediated DNA vaccination for treatment of prostate cancer. Genetic vaccines and therapy. 2010; 8(1); 1. [PubMed: 20181099].
  12. Akagi et al., 1997: Akagi J, Hodge JW, McLaughlin JP, Gritz L, Mazzara G, Kufe D, Schlom J, Kantor JA. Therapeutic antitumor response after immunization with an admixture of recombinant vaccinia viruses expressing a modified MUC1 gene and the murine T-cell costimulatory molecule B7. Journal of immunotherapy (Hagerstown, Md. : 1997). 1997; 20(1); 38-47. [PubMed: 9101412].
  13. Akbulut et al., 2010: Akbulut H, Tang Y, Akbulut KG, Maynard J, Deisseroth A. Addition of adenoviral vector targeting of chemotherapy to the MUC-1/ecdCD40L VPPP vector prime protein boost vaccine prolongs survival of mice carrying growing subcutaneous deposits of Lewis lung cancer cells. Gene therapy. 2010; 17(11); 1333-1340. [PubMed: 20596057].
  14. Alvarez et al., 2016: Alvarez RD, Huh WK, Bae S, Lamb LS Jr, Conner MG, Boyer J, Wang C, Hung CF, Sauter E, Paradis M, Adams EA, Hester S, Jackson BE, Wu TC, Trimble CL. A pilot study of pNGVL4a-CRT/E7(detox) for the treatment of patients with HPV16+ cervical intraepithelial neoplasia 2/3 (CIN2/3). Gynecologic oncology. 2016; 140(2); 245-252. [PubMed: 26616223].
  15. Alvarez-Salas, 2008: Alvarez-Salas LM. Amolimogene bepiplasmid, a DNA-based therapeutic encoding the E6 and E7 epitopes from HPV, for cervical and anal dysplasia. Current opinion in molecular therapeutics. 2008; 10(6); 622-628. [PubMed: 19051140].
  16. Alves et al., 2003: Alves PM, Faure O, Graff-Dubois S, Gross DA, Cornet S, Chouaib S, Miconnet I, Lemonnier FA, Kosmatopoulos K. EphA2 as target of anticancer immunotherapy: identification of HLA-A*0201-restricted epitopes. Cancer research. 2003; 63(23); 8476-8480. [PubMed: 14679012].
  17. Amin et al., 2015: Amin A, Dudek AZ, Logan TF, Lance RS, Holzbeierlein JM, Knox JJ, Master VA, Pal SK, Miller WH Jr, Karsh LI, Tcherepanova IY, DeBenedette MA, Williams WL, Plessinger DC, Nicolette CA, Figlin RA. Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): Phase 2 study results. Journal for immunotherapy of cancer. 2015; 3; 14. [PubMed: 25901286].
  18. Angsantikul et al., 2018: Angsantikul P, Fang RH, Zhang L. Toxoid Vaccination against Bacterial Infection Using Cell Membrane-Coated Nanoparticles. Bioconjugate chemistry. 2018; 29(3); 604-612. [PubMed: 29241006].
  19. Aragon-Ching et al., 2007: Aragon-Ching JB, Williams KM, Gulley JL. Impact of androgen-deprivation therapy on the immune system: implications for combination therapy of prostate cancer. Frontiers in bioscience : a journal and virtual library. 2007; 12; 4957-4971. [PubMed: 17569623].
  20. Archer, Gary: PEP-CMV in Recurrent MEdulloblastoma/Malignant Glioma (PRiME) [https://clinicaltrials.gov/ct2/show/NCT03299309]
  21. Ardon et al., 2010: Ardon H, Van Gool S, Lopes IS, Maes W, Sciot R, Wilms G, Demaerel P, Bijttebier P, Claes L, Goffin J, Van Calenbergh F, De Vleeschouwer S. Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. Journal of neuro-oncology. 2010; 99(2); 261-272. [PubMed: 20146084].
  22. Arlen et al., 2003: Arlen PM, Gulley JL, Palena C, Marshall J, Schlom J, Tsang KY. A novel ELISPOT assay to enhance detection of antigen-specific T cells employing antigen-presenting cells expressing vector-driven human B7-1. Journal of immunological methods. 2003; 279(1-2); 183-192. [PubMed: 12969559].
  23. Arlen et al., 2003: Arlen PM, Gulley JL, Tsang KY, Schlom J. Strategies for the development of PSA-based vaccines for the treatment of advanced prostate cancer. Expert review of vaccines. 2003; 2(4); 483-493. [PubMed: 14711334].
  24. Arlen et al., 2007: Arlen PM, Skarupa L, Pazdur M, Seetharam M, Tsang KY, Grosenbach DW, Feldman J, Poole DJ, Litzinger M, Steinberg SM, Jones E, Chen C, Marte J, Parnes H, Wright J, Dahut W, Schlom J, Gulley JL. Clinical safety of a viral vector based prostate cancer vaccine strategy. The Journal of urology. 2007; 178(4 Pt 1); 1515-1520. [PubMed: 17707059].
  25. Ascher et al., 1979: Ascher NL, Ahrenholz DH, Simmons RL, Weiblen B, Gomez L, Forstrom LA, Frick MP, Henke C, McCullough J. Indium 111 autologous tagged leukocytes in the diagnosis of intraperitoneal sepsis. Archives of surgery (Chicago, Ill. : 1960). 1979; 114(4); 386-392. [PubMed: 107925].
  26. Aspord et al., 2010: Aspord C, Charles J, Leccia MT, Laurin D, Richard MJ, Chaperot L, Plumas J. A novel cancer vaccine strategy based on HLA-A*0201 matched allogeneic plasmacytoid dendritic cells. PloS one. 2010; 5(5); e10458. [PubMed: 20454561].
  27. Aspord et al., 2012: Aspord C, Leccia MT, Salameire D, Laurin D, Chaperot L, Charles J, Plumas J. HLA-A(*)0201(+) plasmacytoid dendritic cells provide a cell-based immunotherapy for melanoma patients. The Journal of investigative dermatology. 2012; 132(10); 2395-2406. [PubMed: 22696054].
  28. Atencio et al., 2006: Atencio IA, Grace M, Bordens R, Fritz M, Horowitz JA, Hutchins B, Indelicato S, Jacobs S, Kolz K, Maneval D, Musco ML, Shinoda J, Venook A, Wen S, Warren R. Biological activities of a recombinant adenovirus p53 (SCH 58500) administered by hepatic arterial infusion in a Phase 1 colorectal cancer trial. Cancer gene therapy. 2006; 13(2); 169-181. [PubMed: 16082381].
  29. Avril et al., 2012: Avril T, Vauleon E, Hamlat A, Saikali S, Etcheverry A, Delmas C, Diabira S, Mosser J, Quillien V. Human glioblastoma stem-like cells are more sensitive to allogeneic NK and T cell-mediated killing compared with serum-cultured glioblastoma cells. Brain pathology (Zurich, Switzerland). 2012; 22(2); 159-174. [PubMed: 21790828].
  30. Ayyoub et al., 2001: Ayyoub M, Migliaccio M, Guillaume P, Liénard D, Cerottini JC, Romero P, Lévy F, Speiser DE, Valmori D. Lack of tumor recognition by hTERT peptide 540-548-specific CD8(+) T cells from melanoma patients reveals inefficient antigen processing. European journal of immunology. 2001; 31(9); 2642-2651. [PubMed: 11536162].
  31. Backlund et al., 2022: Backlund CM, Holden RL, Moynihan KD, Garafola D, Farquhar C, Mehta NK, Maiorino L, Pham S, Iorgulescu JB, Reardon DA, Wu CJ, Pentelute BL, Irvine DJ. Cell-penetrating peptides enhance peptide vaccine accumulation and persistence in lymph nodes to drive immunogenicity. Proceedings of the National Academy of Sciences of the United States of America. 2022; 119(32); e2204078119. [PubMed: 35914154].
  32. Bae et al., 2009: Bae MY, Cho NH, Seong SY. Protective anti-tumour immune responses by murine dendritic cells pulsed with recombinant Tat-carcinoembryonic antigen derived from Escherichia coli. Clinical and experimental immunology. 2009; 157(1); 128-138. [PubMed: 19659778].
  33. Bae et al., 2012: Bae J, Smith R, Daley J, Mimura N, Tai YT, Anderson KC, Munshi NC. Myeloma-specific multiple peptides able to generate cytotoxic T lymphocytes: a potential therapeutic application in multiple myeloma and other plasma cell disorders. Clinical cancer research : an official journal of the American Association for Cancer Research. 2012; 18(17); 4850-4860. [PubMed: 22753586].
  34. Baghdadi et al., 2013: Baghdadi M, Nagao H, Yoshiyama H, Akiba H, Yagita H, Dosaka-Akita H, Jinushi M. Combined blockade of TIM-3 and TIM-4 augments cancer vaccine efficacy against established melanomas. Cancer immunology, immunotherapy : CII. 2013; 62(4); 629-637. [PubMed: 23143694].
  35. Bahy et al., 2016: Bahy RH, Hamouda HM, Shahat AS, Yassin AS, Amin MA. Development and evaluation of a novel vaccine against prevalent invasive multi-drug resistant strains of Streptococcus pneumoniae. PeerJ. 2016; 4; e2737. [PubMed: 27917323].
  36. Baird et al., 2013: Baird JR, Byrne KT, Lizotte PH, Toraya-Brown S, Scarlett UK, Alexander MP, Sheen MR, Fox BA, Bzik DJ, Bosenberg M, Mullins DW, Turk MJ, Fiering S. Immune-mediated regression of established B16F10 melanoma by intratumoral injection of attenuated Toxoplasma gondii protects against rechallenge. Journal of immunology (Baltimore, Md. : 1950). 2013; 190(1); 469-478. [PubMed: 23225891].
  37. Baldueva et al., 2012: Baldueva IA, Novik AV, Moiseenko VM, Nekhaeva TL, Danilova AB, Danilov AO, Protsenko SA, Petrova TIu, UleÄ­skaia GI, Shchekina LA, Semenova AI, MikhaÄ­lichenko TD, Teletaeva GM, Zhabina AS, Volkov NV, Komarov IuI. [Phase II clinical trial of autologous dendritic cell vaccine with immunologic adjuvant in cutaneous melanoma patients]. Voprosy onkologii. 2012; 58(2); 212-221. [PubMed: 22774527].
  38. Balint et al., 2015: Balint JP, Gabitzsch ES, Rice A, Latchman Y, Xu Y, Messerschmidt GL, Chaudhry A, Morse MA, Jones FR. Extended evaluation of a phase 1/2 trial on dosing, safety, immunogenicity, and overall survival after immunizations with an advanced-generation Ad5 [E1-, E2b-]-CEA(6D) vaccine in late-stage colorectal cancer. Cancer immunology, immunotherapy : CII. 2015; 64(8); 977-987. [PubMed: 25956394].
  39. Bartal and Robinson, 1987: Bartal AH, Robinson E. Novel approach to MER/BCG administration in cancer patients. Cancer investigation. 1987; 5(1); 1-5. [PubMed: 3580942].
  40. Barth et al., 2010: Barth RJ Jr, Fisher DA, Wallace PK, Channon JY, Noelle RJ, Gui J, Ernstoff MS. A randomized trial of ex vivo CD40L activation of a dendritic cell vaccine in colorectal cancer patients: tumor-specific immune responses are associated with improved survival. Clinical cancer research : an official journal of the American Association for Cancer Research. 2010; 16(22); 5548-5556. [PubMed: 20884622].
  41. Bartholomew et al., 2002: Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental hematology. 2002; 30(1); 42-48. [PubMed: 11823036].
  42. Barton et al., 2021: Barton KN, Siddiqui F, Pompa R, Freytag SO, Khan G, Dobrosotskaya I, Ajlouni M, Zhang Y, Cheng J, Movsas B, Kwon D. Phase I trial of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy for the treatment of metastatic pancreatic cancer. Molecular therapy oncolytics. 2021; 20; 94-9104. [PubMed: 33575474].
  43. Basak et al., 2000: Basak S, Eck S, Gutzmer R, Smith AJ, Birebent B, Purev E, Staib L, Somasundaram R, Zaloudik J, Li W, Jacob L, Mitchell E, Speicher D, Herlyn D. Colorectal cancer vaccines: antiidiotypic antibody, recombinant protein, and viral vector. Annals of the New York Academy of Sciences. 2000; 910; 237-252. [PubMed: 10911917].
  44. Battiwalla and Hematti, 2009: Battiwalla M, Hematti P. Mesenchymal stem cells in hematopoietic stem cell transplantation. Cytotherapy. 2009; 11(5); 503-515. [PubMed: 19728189].
  45. Baudard et al., 2007: Baudard M, Comte F, Conge AM, Mariano-Goulart D, Klein B, Rossi JF. Importance of [18F]fluorodeoxyglucose-positron emission tomography scanning for the monitoring of responses to immunotherapy in follicular lymphoma. Leukemia & lymphoma. 2007; 48(2); 381-388. [PubMed: 17325900].
  46. Baxter et al., 2016: Baxter R, Hansen J, Timbol J, Pool V, Greenberg DP, Johnson DR, Decker MD. Post-licensure safety surveillance study of routine use of tetanus toxoid, reduced diphtheria toxoid and 5-component acellular pertussis vaccine. Human vaccines & immunotherapeutics. 2016; 12(11); 2742-2748. [PubMed: 27388557].
  47. Beachler et al., 2016: Beachler DC, Kreimer AR, Schiffman M, Herrero R, Wacholder S, Rodriguez AC, Lowy DR, Porras C, Schiller JT, Quint W, Jimenez S, Safaeian M, Struijk L, Schussler J, Hildesheim A, Gonzalez P. Multisite HPV16/18 Vaccine Efficacy Against Cervical, Anal, and Oral HPV Infection. Journal of the National Cancer Institute. 2016; 108(1); . [PubMed: 26467666].
  48. Becker et al., 2010: Becker JT, Olson BM, Johnson LE, Davies JG, Dunphy EJ, McNeel DG. DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer. Journal of immunotherapy (Hagerstown, Md. : 1997). 2010; 33(6); 639-647. [PubMed: 20551832].
  49. Bedke and Stenzl, 2013: Bedke J, Stenzl A. IMA901: a peptide vaccine in renal cell carcinoma. Expert opinion on investigational drugs. 2013; 22(10); 1329-1336. [PubMed: 23899354].
  50. Beebe et al., 2008: Beebe M, Qin M, Moi M, Wu S, Heiati H, Walker L, Newman M, Fikes J, Ishioka GY. Formulation and characterization of a ten-peptide single-vial vaccine, EP-2101, designed to induce cytotoxic T-lymphocyte responses for cancer immunotherapy. Human vaccines. 2008; 4(3); 210-218. [PubMed: 18382135].
  51. Benagiano et al., 1973: Benagiano A, Firu P, Zarnea L. [Old and new methods in the prevention of dental caries]. Stomatologia. 1973; 20(1); 1-18. [PubMed: 4510871].
  52. Benteyn et al., 2013: Benteyn D, Van Nuffel AM, Wilgenhof S, Corthals J, Heirman C, Neyns B, Thielemans K, Bonehill A. Characterization of CD8+ T-cell responses in the peripheral blood and skin injection sites of melanoma patients treated with mRNA electroporated autologous dendritic cells (TriMixDC-MEL). BioMed research international. 2013; 2013; 976383. [PubMed: 23509826].
  53. Benvenuti et al., 2000: Benvenuti F, Burrone OR, Efremov DG. Anti-idiotypic DNA vaccines for lymphoma immunotherapy require the presence of both variable region genes for tumor protection. Gene therapy. 2000; 7(7); 605-611. [PubMed: 10819576].
  54. Berd et al., 1997: Berd D, Maguire HC Jr, Schuchter LM, Hamilton R, Hauck WW, Sato T, Mastrangelo MJ. Autologous hapten-modified melanoma vaccine as postsurgical adjuvant treatment after resection of nodal metastases. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1997; 15(6); 2359-2370. [PubMed: 9196151].
  55. Berd et al., 2001: Berd D, Sato T, Cohn H, Maguire HC Jr, Mastrangelo MJ. Treatment of metastatic melanoma with autologous, hapten-modified melanoma vaccine: regression of pulmonary metastases. International journal of cancer. 2001; 94(4); 531-539. [PubMed: 11745440].
  56. Berd et al., 2004: Berd D, Sato T, Maguire HC Jr, Kairys J, Mastrangelo MJ. Immunopharmacologic analysis of an autologous, hapten-modified human melanoma vaccine. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2004; 22(3); 403-415. [PubMed: 14691123].
  57. Bergman et al., 2003: Bergman PJ, McKnight J, Novosad A, Charney S, Farrelly J, Craft D, Wulderk M, Jeffers Y, Sadelain M, Hohenhaus AE, Segal N, Gregor P, Engelhorn M, Riviere I, Houghton AN, Wolchok JD. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clinical cancer research : an official journal of the American Association for Cancer Research. 2003; 9(4); 1284-1290. [PubMed: 12684396].
  58. Berinstein et al., 2012: Berinstein NL, Karkada M, Morse MA, Nemunaitis JJ, Chatta G, Kaufman H, Odunsi K, Nigam R, Sammatur L, MacDonald LD, Weir GM, Stanford MM, Mansour M. First-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patients. Journal of translational medicine. 2012; 10; 156. [PubMed: 22862954].
  59. Berinstein et al., 2015: Berinstein NL, Karkada M, Oza AM, Odunsi K, Villella JA, Nemunaitis JJ, Morse MA, Pejovic T, Bentley J, Buyse M, Nigam R, Weir GM, MacDonald LD, Quinton T, Rajagopalan R, Sharp K, Penwell A, Sammatur L, Burzykowski T, Stanford MM, Mansour M. Survivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patients. Oncoimmunology. 2015; 4(8); e1026529. [PubMed: 26405584].
  60. Bernhardt et al., 2006: Bernhardt SL, Gjertsen MK, Trachsel S, Møller M, Eriksen JA, Meo M, Buanes T, Gaudernack G. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: A dose escalating phase I/II study. British journal of cancer. 2006; 95(11); 1474-1482. [PubMed: 17060934].
  61. Bernstein et al., 2008: Bernstein MB, Chakraborty M, Wansley EK, Guo Z, Franzusoff A, Mostböck S, Sabzevari H, Schlom J, Hodge JW. Recombinant Saccharomyces cerevisiae (yeast-CEA) as a potent activator of murine dendritic cells. Vaccine. 2008; 26(4); 509-521. [PubMed: 18155327].
  62. Bertino et al., 2013: Bertino P, Panigada M, Soprana E, Bianchi V, Bertilaccio S, Sanvito F, Rose AH, Yang H, Gaudino G, Hoffmann PR, Siccardi A, Carbone M. Fowlpox-based survivin vaccination for malignant mesothelioma therapy. International journal of cancer. 2013; 133(3); 612-623. [PubMed: 23335100].
  63. Berzofsky et al., 1991: Berzofsky JA, Pendleton CD, Clerici M, Ahlers J, Lucey DR, Putney SD, Shearer GM. Construction of peptides encompassing multideterminant clusters of human immunodeficiency virus envelope to induce in vitro T cell responses in mice and humans of multiple MHC types. The Journal of clinical investigation. 1991; 88(3); 876-884. [PubMed: 1715888].
  64. Berzofsky et al., 2001: Berzofsky JA, Ahlers JD, Belyakov IM. Strategies for designing and optimizing new generation vaccines. Nature reviews. Immunology. 2001; 1(3); 209-219. [PubMed: 11905830].
  65. Berzofsky et al., 2004: Berzofsky JA, Terabe M, Oh S, Belyakov IM, Ahlers JD, Janik JE, Morris JC. Progress on new vaccine strategies for the immunotherapy and prevention of cancer. The Journal of clinical investigation. 2004; 113(11); 1515-1525. [PubMed: 15173875].
  66. Bettinotti et al., 2003: Bettinotti MP, Panelli MC, Ruppe E, Mocellin S, Phan GQ, White DE, Marincola FM. Clinical and immunological evaluation of patients with metastatic melanoma undergoing immunization with the HLA-Cw*0702-associated epitope MAGE-A12:170-178. International journal of cancer. Journal international du cancer. 2003; 105(2); 210-216. [PubMed: 12673681].
  67. Bilgi et al., 1979: Bilgi C, Brown NE, McPherson TA, Lentle B. Pulmonary manifestations in patients with malignant melanoma during BCG immunotherapy. A preliminary report. Chest. 1979; 75(6); 685-687. [PubMed: 436519].
  68. Bjoern et al., 2016: Bjoern J, Iversen TZ, Nitschke NJ, Andersen MH, Svane IM. Safety, immune and clinical responses in metastatic melanoma patients vaccinated with a long peptide derived from indoleamine 2,3-dioxygenase in combination with ipilimumab. Cytotherapy. 2016; 18(8); 1043-1055. [PubMed: 27378345].
  69. Blalock et al., 2012: Blalock LT, Landsberg J, Messmer M, Shi J, Pardee AD, Haskell R, Vujanovic L, Kirkwood JM, Butterfield LH. Human dendritic cells adenovirally-engineered to express three defined tumor antigens promote broad adaptive and innate immunity. Oncoimmunology. 2012; 1(3); 287-357. [PubMed: 22737604].
  70. Boczkowski et al., 2009: Boczkowski D, Lee J, Pruitt S, Nair S. Dendritic cells engineered to secrete anti-GITR antibodies are effective adjuvants to dendritic cell-based immunotherapy. Cancer gene therapy. 2009; 16(12); 900-911. [PubMed: 19498460].
  71. Bol et al., 2015: Bol KF, Figdor CG, Aarntzen EH, Welzen ME, van Rossum MM, Blokx WA, van de Rakt MW, Scharenborg NM, de Boer AJ, Pots JM, Olde Nordkamp MA, van Oorschot TG, Mus RD, Croockewit SA, Jacobs JF, Schuler G, Neyns B, Austyn JM, Punt CJ, Schreibelt G, de Vries IJ. Intranodal vaccination with mRNA-optimized dendritic cells in metastatic melanoma patients. Oncoimmunology. 2015; 4(8); e1019197. [PubMed: 26405571].
  72. Bollard et al., 2011: Bollard CM, Gottschalk S, Helen Huls M, Leen AM, Gee AP, Rooney CM. Good manufacturing practice-grade cytotoxic T lymphocytes specific for latent membrane proteins (LMP)-1 and LMP2 for patients with Epstein-Barr virus-associated lymphoma. Cytotherapy. 2011; 13(5); 518-522. [PubMed: 21361747].
  73. Borch et al., 2016: Borch TH, Engell-Noerregaard L, Zeeberg Iversen T, Ellebaek E, Met Ö, Hansen M, Andersen MH, Thor Straten P, Svane IM. mRNA-transfected dendritic cell vaccine in combination with metronomic cyclophosphamide as treatment for patients with advanced malignant melanoma. Oncoimmunology. 2016; 5(9); e1207842. [PubMed: 27757300].
  74. Borrello et al., 2009: Borrello IM, Levitsky HI, Stock W, Sher D, Qin L, DeAngelo DJ, Alyea EP, Stone RM, Damon LE, Linker CA, Maslyar DJ, Hege KM. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting cellular immunotherapy in combination with autologous stem cell transplantation (ASCT) as postremission therapy for acute myeloid leukemia (AML). Blood. 2009; 114(9); 1736-1745. [PubMed: 19556425].
  75. Bowen et al., 2002: Bowen GP, Borgland SL, Lam M, Libermann TA, Wong NC, Muruve DA. Adenovirus vector-induced inflammation: capsid-dependent induction of the C-C chemokine RANTES requires NF-kappa B. Human gene therapy. 2002; 13(3); 367-379. [PubMed: 11860704].
  76. Braga et al., 2009: Braga CJ, Rittner GM, Muñoz Henao JE, Teixeira AF, Massis LM, Sbrogio-Almeida ME, Taborda CP, Travassos LR, Ferreira LC. Paracoccidioides brasiliensis vaccine formulations based on the gp43-derived P10 sequence and the Salmonella enterica FliC flagellin. Infection and immunity. 2009; 77(4); 1700-1707. [PubMed: 19204092].
  77. Bramante et al., 2014: Bramante S, Koski A, Kipar A, Diaconu I, Liikanen I, Hemminki O, Vassilev L, Parviainen S, Cerullo V, Pesonen SK, Oksanen M, Heiskanen R, Rouvinen-Lagerström N, Merisalo-Soikkeli M, Hakonen T, Joensuu T, Kanerva A, Pesonen S, Hemminki A. Serotype chimeric oncolytic adenovirus coding for GM-CSF for treatment of sarcoma in rodents and humans. International journal of cancer. 2014; 135(3); 720-730. [PubMed: 24374597].
  78. Braun et al., 2012: Braun M, Jandus C, Maurer P, Hammann-Haenni A, Schwarz K, Bachmann MF, Speiser DE, Romero P. Virus-like particles induce robust human T-helper cell responses. European journal of immunology. 2012; 42(2); 330-340. [PubMed: 22057679].
  79. Brayer et al., 2015: Brayer J, Lancet JE, Powers J, List A, Balducci L, Komrokji R, Pinilla-Ibarz J. WT1 vaccination in AML and MDS: A pilot trial with synthetic analog peptides. American journal of hematology. 2015; 90(7); 602-607. [PubMed: 25802083].
  80. Brockstedt et al., 2004: Brockstedt DG, Giedlin MA, Leong ML, Bahjat KS, Gao Y, Luckett W, Liu W, Cook DN, Portnoy DA, Dubensky TW Jr. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(38); 13832-13837. [PubMed: 15365184].
  81. Brockstedt et al., 2005: Brockstedt DG, Bahjat KS, Giedlin MA, Liu W, Leong M, Luckett W, Gao Y, Schnupf P, Kapadia D, Castro G, Lim JY, Sampson-Johannes A, Herskovits AA, Stassinopoulos A, Bouwer HG, Hearst JE, Portnoy DA, Cook DN, Dubensky TW Jr. Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity. Nature medicine. 2005; 11(8); 853-860. [PubMed: 16041382].
  82. Broder et al., 2000: Broder H, Anderson A, Odesa SK, Kremen TJ, Liau LM. Recombinant adenovirus-transduced dendritic cell immunization in a murine model of central nervous system tumor. Neurosurgical focus. 2000; 9(6); e6. [PubMed: 16817689].
  83. Brooks et al., 2015: Brooks SE, Bonney SA, Lee C, Publicover A, Khan G, Smits EL, Sigurdardottir D, Arno M, Li D, Mills KI, Pulford K, Banham AH, van Tendeloo V, Mufti GJ, Rammensee HG, Elliott TJ, Orchard KH, Guinn BA. Application of the pMHC Array to Characterise Tumour Antigen Specific T Cell Populations in Leukaemia Patients at Disease Diagnosis. PloS one. 2015; 10(10); e0140483. [PubMed: 26492414].
  84. Brown et al., 2020: Brown TA 2nd, Mittendorf EA, Hale DF, Myers JW 3rd, Peace KM, Jackson DO, Greene JM, Vreeland TJ, Clifton GT, Ardavanis A, Litton JK, Shumway NM, Symanowski J, Murray JL, Ponniah S, Anastasopoulou EA, Pistamaltzian NF, Baxevanis CN, Perez SA, Papamichail M, Peoples GE. Prospective, randomized, single-blinded, multi-center phase II trial of two HER2 peptide vaccines, GP2 and AE37, in breast cancer patients to prevent recurrence. Breast cancer research and treatment. 2020; 181(2); 391-401. [PubMed: 32323103].
  85. Brun et al., 2018: Brun JL, Rajaonarison J, Nocart N, Hoarau L, Brun S, Garrigue I. Targeted immunotherapy of high-grade cervical intra-epithelial neoplasia: Expectations from clinical trials. Molecular and clinical oncology. 2018; 8(2); 227-235. [PubMed: 29435283].
  86. Buchan et al., 2005: Buchan S, Grønevik E, Mathiesen I, King CA, Stevenson FK, Rice J. Electroporation as a "prime/boost" strategy for naked DNA vaccination against a tumor antigen. Journal of immunology (Baltimore, Md. : 1950). 2005; 174(10); 6292-6298. [PubMed: 15879128].
  87. Burke et al., 2012: Burke JM, Lamm DL, Meng MV, Nemunaitis JJ, Stephenson JJ, Arseneau JC, Aimi J, Lerner S, Yeung AW, Kazarian T, Maslyar DJ, McKiernan JM. A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. The Journal of urology. 2012; 188(6); 2391-2397. [PubMed: 23088985].
  88. Burkhardt and Wu, 2013: Burkhardt UE, Wu CJ. Boosting leukemia-specific T cell responses in patients following stem cell transplantation. Oncoimmunology. 2013; 2(11); e26587. [PubMed: 24482749].
  89. Burkhardt et al., 2013: Burkhardt UE, Hainz U, Stevenson K, Goldstein NR, Pasek M, Naito M, Wu D, Ho VT, Alonso A, Hammond NN, Wong J, Sievers QL, Brusic A, McDonough SM, Zeng W, Perrin A, Brown JR, Canning CM, Koreth J, Cutler C, Armand P, Neuberg D, Lee JS, Antin JH, Mulligan RC, Sasada T, Ritz J, Soiffer RJ, Dranoff G, Alyea EP, Wu CJ. Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells. The Journal of clinical investigation. 2013; 123(9); 3756-3765. [PubMed: 23912587].
  90. Butterfield et al., 2006: Butterfield LH, Ribas A, Dissette VB, Lee Y, Yang JQ, De la Rocha P, Duran SD, Hernandez J, Seja E, Potter DM, McBride WH, Finn R, Glaspy JA, Economou JS. A phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four alpha-fetoprotein peptides. Clinical cancer research : an official journal of the American Association for Cancer Research. 2006; 12(9); 2817-2825. [PubMed: 16675576].
  91. Butterfield et al., 2008: Butterfield LH, Comin-Anduix B, Vujanovic L, Lee Y, Dissette VB, Yang JQ, Vu HT, Seja E, Oseguera DK, Potter DM, Glaspy JA, Economou JS, Ribas A. Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma. Journal of immunotherapy (Hagerstown, Md. : 1997). 2008; 31(3); 294-309. [PubMed: 18317358].
  92. Butterfield et al., 2014: Butterfield LH, Economou JS, Gamblin TC, Geller DA. Alpha fetoprotein DNA prime and adenovirus boost immunization of two hepatocellular cancer patients. Journal of translational medicine. 2014; 12; 86. [PubMed: 24708667].
  93. Byrne et al., 1983: Byrne MJ, Van Hazel G, Reynolds PM, Lemish WM, Holman CD. Adjuvant immunotherapy with BCG in stage II malignant melanoma. Journal of surgical oncology. 1983; 23(2); 114-116. [PubMed: 6343725].
  94. Cacciavillano et al., 2015: Cacciavillano W, Sampor C, Venier C, Gabri MR, de Dávila MT, Galluzzo ML, Guthmann MD, Fainboim L, Alonso DF, Chantada GL. A Phase I Study of the Anti-Idiotype Vaccine Racotumomab in Neuroblastoma and Other Pediatric Refractory Malignancies. Pediatric blood & cancer. 2015; 62(12); 2120-2124. [PubMed: 26154941].
  95. Cafri et al., 2020: Cafri G, Gartner JJ, Zaks T, Hopson K, Levin N, Paria BC, Parkhurst MR, Yossef R, Lowery FJ, Jafferji MS, Prickett TD, Goff SL, McGowan CT, Seitter S, Shindorf ML, Parikh A, Chatani PD, Robbins PF, Rosenberg SA. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. The Journal of clinical investigation. 2020; 130(11); 5976-5988. [PubMed: 33016924].
  96. Campbell et al., 2000: Campbell I, Moyana T, Carlsen S, Zheng C, Xiang J. Adenoviral transfer of xenogeneic MHC class I gene results in loss of tumorigenicity and inhibition of tumor growth. Cancer gene therapy. 2000; 7(1); 37-44. [PubMed: 10678354].
  97. Campisano et al., 2013: Campisano S, Mac Keon S, Gazzaniga S, Ruiz MS, Traian MD, Mordoh J, Wainstok R. Anti-melanoma vaccinal capacity of CD11c-positive and -negative cell populations present in GM-CSF cultures derived from murine bone marrow precursors. Vaccine. 2013; 31(2); 354-361. [PubMed: 23146677].
  98. Carbone et al., 2005: Carbone DP, Ciernik IF, Kelley MJ, Smith MC, Nadaf S, Kavanaugh D, Maher VE, Stipanov M, Contois D, Johnson BE, Pendleton CD, Seifert B, Carter C, Read EJ, Greenblatt J, Top LE, Kelsey MI, Minna JD, Berzofsky JA. Immunization with mutant p53- and K-ras-derived peptides in cancer patients: immune response and clinical outcome. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005; 23(22); 5099-5107. [PubMed: 15983396].
  99. Carpentier et al., 1998: Carpentier AF, Rosenfeld MR, Delattre JY, Whalen RG, Posner JB, Dalmau J. DNA vaccination with HuD inhibits growth of a neuroblastoma in mice. Clinical cancer research : an official journal of the American Association for Cancer Research. 1998; 4(11); 2819-2824. [PubMed: 9829748].
  100. Carreno et al., 2013: Carreno BM, Becker-Hapak M, Huang A, Chan M, Alyasiry A, Lie WR, Aft RL, Cornelius LA, Trinkaus KM, Linette GP. IL-12p70-producing patient DC vaccine elicits Tc1-polarized immunity. The Journal of clinical investigation. 2013; 123(8); 3383-3394. [PubMed: 23867552].
  101. Carter and Plosker, 2008: Carter NJ, Plosker GL. Prepandemic influenza vaccine H5N1 (split virion, inactivated, adjuvanted) [Prepandrix]: a review of its use as an active immunization against influenza A subtype H5N1 virus. BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy. 2008; 22(5); 279-292. [PubMed: 18778110].
  102. Cassaday et al., 2007: Cassaday RD, Sondel PM, King DM, Macklin MD, Gan J, Warner TF, Zuleger CL, Bridges AJ, Schalch HG, Kim KM, Hank JA, Mahvi DM, Albertini MR. A phase I study of immunization using particle-mediated epidermal delivery of genes for gp100 and GM-CSF into uninvolved skin of melanoma patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007; 13(2 Pt 1); 540-549. [PubMed: 17255276].
  103. Cassel et al., 1983: Cassel WA, Murray DR, Phillips HS. A phase II study on the postsurgical management of Stage II malignant melanoma with a Newcastle disease virus oncolysate. Cancer. 1983; 52(5); 856-860. [PubMed: 6871827].
  104. Castel et al., 1991: Castel T, Estapé J, Viñolas N, Mascaró JM, Castro J, Vilalta A, Gratacós R, Daniels M, Palou J, Grau JJ. Adjuvant treatment in stage I and II malignant melanoma: a randomized trial between chemoimmunotherapy and immunotherapy. Dermatologica. 1991; 183(1); 25-30. [PubMed: 1769411].
  105. Chaise et al., 2008: Chaise C, Buchan SL, Rice J, Marquet J, Rouard H, Kuentz M, Vittes GE, Molinier-Frenkel V, Farcet JP, Stauss HJ, Delfau-Larue MH, Stevenson FK. DNA vaccination induces WT1-specific T-cell responses with potential clinical relevance. Blood. 2008; 112(7); 2956-2964. [PubMed: 18502835].
  106. Charoensit et al., 2008: Charoensit P, Kawakami S, Higuchi Y, Hashida M. Incorporation of all-trans retinoic acid into lipoplexes inhibits nuclear factor kappaB activation mediated liver injury induced by lipoplexes in mice. The journal of gene medicine. 2008; 10(1); 61-69. [PubMed: 18001002].
  107. Chen et al., 1994: Chen L, McGowan P, Ashe S, Johnston JV, Hellström I, Hellström KE. B7-1/CD80-transduced tumor cells elicit better systemic immunity than wild-type tumor cells admixed with Corynebacterium parvum. Cancer research. 1994; 54(20); 5420-5423. [PubMed: 7522958].
  108. Chen et al., 1997: Chen K, Braun S, Lyman S, Fan Y, Traycoff CM, Wiebke EA, Gaddy J, Sledge G, Broxmeyer HE, Cornetta K. Antitumor activity and immunotherapeutic properties of Flt3-ligand in a murine breast cancer model. Cancer research. 1997; 57(16); 3511-3516. [PubMed: 9270021].
  109. Chen et al., 2012: Chen J, Zhang L, Wen W, Hao J, Zeng P, Qian X, Zhang Y, Yin Y. Induction of HCA587-specific antitumor immunity with HCA587 protein formulated with CpG and ISCOM in mice. PloS one. 2012; 7(10); e47219. [PubMed: 23071764].
  110. Chen et al., 2014: Chen G, Gupta R, Petrik S, Laiko M, Leatherman JM, Asquith JM, Daphtary MM, Garrett-Mayer E, Davidson NE, Hirt K, Berg M, Uram JN, Dauses T, Fetting J, Duus EM, Atay-Rosenthal S, Ye X, Wolff AC, Stearns V, Jaffee EM, Emens LA. A feasibility study of cyclophosphamide, trastuzumab, and an allogeneic GM-CSF-secreting breast tumor vaccine for HER2+ metastatic breast cancer. Cancer immunology research. 2014; 2(10); 949-961. [PubMed: 25116755].
  111. Chen et al., 2015: Chen JL, Dawoodji A, Tarlton A, Gnjatic S, Tajar A, Karydis I, Browning J, Pratap S, Verfaille C, Venhaus RR, Pan L, Altman DG, Cebon JS, Old LL, Nathan P, Ottensmeier C, Middleton M, Cerundolo V. NY-ESO-1 specific antibody and cellular responses in melanoma patients primed with NY-ESO-1 protein in ISCOMATRIX and boosted with recombinant NY-ESO-1 fowlpox virus. International journal of cancer. 2015; 136(6); E590-601. [PubMed: 25081390].
  112. Chen et al., 2017: Chen J, Guo XZ, Li HY, Zhao JJ, Xu WD. Dendritic cells engineered to secrete anti-DcR3 antibody augment cytotoxic T lymphocyte response against pancreatic cancer in vitro. World journal of gastroenterology. 2017; 23(5); 817-829. [PubMed: 28223726].
  113. Chiappori et al., 2010: Chiappori AA, Soliman H, Janssen WE, Antonia SJ, Gabrilovich DI. INGN-225: a dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer: observed association between immune response and enhanced chemotherapy effect. Expert opinion on biological therapy. 2010; 10(6); 983-991. [PubMed: 20420527].
  114. Chick et al., 2021: Chick RC, Clifton GT, Hale DF, Vreeland TJ, Hickerson AT, Kemp Bohan PM, McCarthy PM, Litton JK, Alatrash G, Murthy RK, Qiao N, Philips A, Lukas J, Holmes JP, Mittendorf EA, Peoples GE. Subgroup analysis of nelipepimut-S plus GM-CSF combined with trastuzumab versus trastuzumab alone to prevent recurrences in patients with high-risk, HER2 low-expressing breast cancer. Clinical immunology (Orlando, Fla.). 2021; 225; 108679. [PubMed: 33485895].
  115. Chodon et al., 2014: Chodon T, Comin-Anduix B, Chmielowski B, Koya RC, Wu Z, Auerbach M, Ng C, Avramis E, Seja E, Villanueva A, McCannel TA, Ishiyama A, Czernin J, Radu CG, Wang X, Gjertson DW, Cochran AJ, Cornetta K, Wong DJ, Kaplan-Lefko P, Hamid O, Samlowski W, Cohen PA, Daniels GA, Mukherji B, Yang L, Zack JA, Kohn DB, Heath JR, Glaspy JA, Witte ON, Baltimore D, Economou JS, Ribas A. Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2014; 20(9); 2457-2465. [PubMed: 24634374].
  116. Choi et al., 2007: Choi Y, Jeon YH, Kang JH, Chung JK, Schmidt M, Kim AC. MIDGE/hNIS vaccination generates antigen-associated CD8+IFN-gamma+ T cells and enhances protective antitumor immunity. International journal of cancer. Journal international du cancer. 2007; 120(9); 1942-1950. [PubMed: 17266027].
  117. Chudley et al., 2012: Chudley L, McCann K, Mander A, Tjelle T, Campos-Perez J, Godeseth R, Creak A, Dobbyn J, Johnson B, Bass P, Heath C, Kerr P, Mathiesen I, Dearnaley D, Stevenson F, Ottensmeier C. DNA fusion-gene vaccination in patients with prostate cancer induces high-frequency CD8(+) T-cell responses and increases PSA doubling time. Cancer immunology, immunotherapy : CII. 2012; ; . [PubMed: 22729556].
  118. Chung et al., 2022: Chung DJ, Sharma S, Rangesa M, DeWolf S, Elhanati Y, Perica K, Young JW. Langerhans dendritic cell vaccine bearing mRNA-encoded tumor antigens induces antimyeloma immunity after autotransplant. Blood advances. 2022; 6(5); 1547-1558. [PubMed: 35100339].
  119. Clark et al., 2009: Clark TW, Pareek M, Hoschler K, Dillon H, Nicholson KG, Groth N, Stephenson I. Trial of 2009 influenza A (H1N1) monovalent MF59-adjuvanted vaccine. The New England journal of medicine. 2009; 361(25); 2424-2435. [PubMed: 19745215].
  120. Clarke et al., 1995: Clarke MF, Apel IJ, Benedict MA, Eipers PG, Sumantran V, González-García M, Doedens M, Fukunaga N, Davidson B, Dick JE, Minn AJ, Boise LH, Thompson CB, Wicha M, Núñez G. A recombinant bcl-x s adenovirus selectively induces apoptosis in cancer cells but not in normal bone marrow cells. Proceedings of the National Academy of Sciences of the United States of America. 1995; 92(24); 11024-11028. [PubMed: 7479929].
  121. Clerici et al., 1991: Clerici M, Lucey DR, Zajac RA, Boswell RN, Gebel HM, Takahashi H, Berzofsky JA, Shearer GM. Detection of cytotoxic T lymphocytes specific for synthetic peptides of gp160 in HIV-seropositive individuals. Journal of immunology (Baltimore, Md. : 1950). 1991; 146(7); 2214-2219. [PubMed: 1826020].
  122. Clinical trial NCT03544723: Safety and Efficacy of p53 Gene Therapy Combined With Immune Checkpoint Inhibitors in Solid Tumors [https://clinicaltrials.gov/ct2/show/NCT03544723]
  123. Clunie et al., 1980: Clunie GJ, Gough IR, Dury M, Furnival CM, Bolton PM. A trial of imidazole carboxamide and corynebacterium parvum in disseminated melanoma: clinical and immunologic results. Cancer. 1980; 46(3); 475-479. [PubMed: 6994866].
  124. Cochlovius et al., 1999: Cochlovius B, Linnebacher M, Zewe-Welschof M, Zöller M. Recombinant gp100 protein presented by dendritic cells elicits a T-helper-cell response in vitro and in vivo. International journal of cancer. 1999; 83(4); 547-554. [PubMed: 10508493].
  125. Cochlovius et al., 2002: Cochlovius B, Stassar MJ, Schreurs MW, Benner A, Adema GJ. Oral DNA vaccination: antigen uptake and presentation by dendritic cells elicits protective immunity. Immunology letters. 2002; 80(2); 89-96. [PubMed: 11750039].
  126. Cochran et al., 1981: Cochran AJ, Buyse ME, Lejeune FJ, Macher E, Revuz J, Rümke P. Adjuvant reactivity predicts survival in patients with "high-risk" primary malignant melanoma treated with systemic BCG. EORTC Malignant Melanoma Cooperative Group Writing Committee. International journal of cancer. Journal international du cancer. 1981; 28(5); 543-550. [PubMed: 7309294].
  127. Cohen and Rudin, 2001: Cohen EE, Rudin CM. ONYX-015. Onyx Pharmaceuticals. Current opinion in investigational drugs (London, England : 2000). 2001; 2(12); 1770-1775. [PubMed: 11892945].
  128. Cohen et al., 1978: Cohen MH, Jessup JM, Felix EL, Weese JL, Herberman RB. Intralesional treatment of recurrent metastatic cutaneous malignant melanoma: a randomized prospective study of intralesional Bacillus Calmette-Guerin versus intralesional dinitrochlorobenzene. Cancer. 1978; 41(6); 2456-2463. [PubMed: 657108].
  129. Cohen et al., 2005: Cohen CJ, Zheng Z, Bray R, Zhao Y, Sherman LA, Rosenberg SA, Morgan RA. Recognition of fresh human tumor by human peripheral blood lymphocytes transduced with a bicistronic retroviral vector encoding a murine anti-p53 TCR. Journal of immunology (Baltimore, Md. : 1950). 2005; 175(9); 5799-5808. [PubMed: 16237072].
  130. Cohen et al., 2006: Cohen AD, Diab A, Perales MA, Wolchok JD, Rizzuto G, Merghoub T, Huggins D, Liu C, Turk MJ, Restifo NP, Sakaguchi S, Houghton AN. Agonist anti-GITR antibody enhances vaccine-induced CD8(+) T-cell responses and tumor immunity. Cancer research. 2006; 66(9); 4904-4912. [PubMed: 16651447].
  131. Connerotte et al., 2008: Connerotte T, Van Pel A, Godelaine D, Tartour E, Schuler-Thurner B, Lucas S, Thielemans K, Schuler G, Coulie PG. Functions of Anti-MAGE T-cells induced in melanoma patients under different vaccination modalities. Cancer research. 2008; 68(10); 3931-3940. [PubMed: 18483279].
  132. Conry et al., 2002: Conry RM, Curiel DT, Strong TV, Moore SE, Allen KO, Barlow DL, Shaw DR, LoBuglio AF. Safety and immunogenicity of a DNA vaccine encoding carcinoembryonic antigen and hepatitis B surface antigen in colorectal carcinoma patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2002; 8(9); 2782-2787. [PubMed: 12231517].
  133. Cornelissen et al., 2016: Cornelissen R, Hegmans JP, Maat AP, Kaijen-Lambers ME, Bezemer K, Hendriks RW, Hoogsteden HC, Aerts JG. Extended Tumor Control after Dendritic Cell Vaccination with Low-Dose Cyclophosphamide as Adjuvant Treatment in Patients with Malignant Pleural Mesothelioma. American journal of respiratory and critical care medicine. 2016; 193(9); 1023-1031. [PubMed: 26652184].
  134. Corrales-Rodriguez et al., 2011: Corrales-Rodriguez L, Blais N, Soulières D. Emepepimut-S for non-small cell lung cancer. Expert opinion on biological therapy. 2011; 11(8); 1091-1097. [PubMed: 21689064].
  135. Correa, 1988: Correa A. [Impressions in relation to periodontal tissue]. Revista de la Federacion Odontologica Colombiana. 1988; 38(164); 55-63. [PubMed: 3077513].
  136. Correale et al., 1998: Correale P, Walmsley K, Zaremba S, Zhu M, Schlom J, Tsang KY. Generation of human cytolytic T lymphocyte lines directed against prostate-specific antigen (PSA) employing a PSA oligoepitope peptide. Journal of immunology (Baltimore, Md. : 1950). 1998; 161(6); 3186-3194. [PubMed: 9743387].
  137. Correale et al., 2005: Correale P, Cusi MG, Del Vecchio MT, Aquino A, Prete SP, Tsang KY, Micheli L, Nencini C, La Placa M, Montagnani F, Terrosi C, Caraglia M, Formica V, Giorgi G, Bonmassar E, Francini G. Dendritic cell-mediated cross-presentation of antigens derived from colon carcinoma cells exposed to a highly cytotoxic multidrug regimen with gemcitabine, oxaliplatin, 5-fluorouracil, and leucovorin, elicits a powerful human antigen-specific CTL response with antitumor activity in vitro. Journal of immunology (Baltimore, Md. : 1950). 2005; 175(2); 820-828. [PubMed: 16002679].
  138. Coveler et al., 2016: Coveler AL, Rossi GR, Vahanian NN, Link C, Chiorean EG. Algenpantucel-L immunotherapy in pancreatic adenocarcinoma. Immunotherapy. 2016; 8(2); 117-125. [PubMed: 26787078].
  139. Crum et al., 2004: Crum CP, Beach KJ, Hedley ML, Yuan L, Lee KR, Wright TC, Urban RG. Dynamics of human papillomavirus infection between biopsy and excision of cervical intraepithelial neoplasia: results from the ZYC101a protocol. The Journal of infectious diseases. 2004; 189(8); 1348-1354. [PubMed: 15073670].
  140. Culos and Cuellar, 2013: Culos KA, Cuellar S. Novel targets in the treatment of advanced melanoma: new first-line treatment options. The Annals of pharmacotherapy. 2013; 47(4); 519-526. [PubMed: 23548648].
  141. Curigliano et al., 2016: Curigliano G, Romieu G, Campone M, Dorval T, Duck L, Canon JL, Roemer-Becuwe C, Roselli M, Neciosup S, Burny W, Callegaro A, de Sousa Alves PM, Louahed J, Brichard V, Lehmann FF. A phase I/II trial of the safety and clinical activity of a HER2-protein based immunotherapeutic for treating women with HER2-positive metastatic breast cancer. Breast cancer research and treatment. 2016; 156(2); 301-310. [PubMed: 26975189].
  142. Currie and McElwain, 1975: Currie GA, McElwain TJ. Active immunotherapy as an adjunct to chemotherapy in the treatment of disseminated malignant melanoma: a pilot study. British journal of cancer. 1975; 31(2); 143-156. [PubMed: 1164466].
  143. Czerniecki et al., 2007: Czerniecki BJ, Roses RE, Koski GK. Development of vaccines for high-risk ductal carcinoma in situ of the breast. Cancer research. 2007; 67(14); 6531-6534. [PubMed: 17638860].
  144. Czerniecki et al., 2007: Czerniecki BJ, Koski GK, Koldovsky U, Xu S, Cohen PA, Mick R, Nisenbaum H, Pasha T, Xu M, Fox KR, Weinstein S, Orel SG, Vonderheide R, Coukos G, DeMichele A, Araujo L, Spitz FR, Rosen M, Levine BL, June C, Zhang PJ. Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer research. 2007; 67(4); 1842-1852. [PubMed: 17293384].
  145. Czerwinska et al., 2020: Czerwinska P, Rucinski M, Wlodarczyk N, Jaworska A, Grzadzielewska I, Gryska K, Galus L, Mackiewicz J, Mackiewicz A. Therapeutic melanoma vaccine with cancer stem cell phenotype represses exhaustion and maintains antigen-specific T cell stemness by up-regulating BCL6. Oncoimmunology. 2020; 9(1); 1710063. [PubMed: 32002306].
  146. D'Souza et al., 2016: D'Souza G, Westra WH, Wang SJ, van Zante A, Wentz A, Kluz N, Rettig E, Ryan WR, Ha PK, Kang H, Bishop J, Quon H, Kiess AP, Richmon JD, Eisele DW, Fakhry C. Differences in the Prevalence of Human Papillomavirus (HPV) in Head and Neck Squamous Cell Cancers by Sex, Race, Anatomic Tumor Site, and HPV Detection Method. JAMA oncology. 2016; ; . [PubMed: 27930766].
  147. Dalet et al., 2011: Dalet A, Stroobant V, Vigneron N, Van den Eynde BJ. Differences in the production of spliced antigenic peptides by the standard proteasome and the immunoproteasome. European journal of immunology. 2011; 41(1); 39-46. [PubMed: 21182075].
  148. Daley et al., 1978: Daley MJ, Gebel HM, Lynch RG. Idiotype-specific transplantation resistance to MOPC-315: abrogation by post-immunization thymectomy. Journal of immunology (Baltimore, Md. : 1950). 1978; 120(5); 1620-1624. [PubMed: 77876].
  149. Date et al., 1996: Date Y, Kimura A, Kato H, Sasazuki T. DNA typing of the HLA-A gene: population study and identification of four new alleles in Japanese. Tissue antigens. 1996; 47(2); 93-101. [PubMed: 8851721].
  150. Dauer et al., 2005: Dauer M, Herten J, Bauer C, Renner F, Schad K, Schnurr M, Endres S, Eigler A. Chemosensitization of pancreatic carcinoma cells to enhance T cell-mediated cytotoxicity induced by tumor lysate-pulsed dendritic cells. Journal of immunotherapy (Hagerstown, Md. : 1997). 2005; 28(4); 332-342. [PubMed: 16000951].
  151. de et al., 2004: de Bono JS, Rha SY, Stephenson J, Schultes BC, Monroe P, Eckhardt GS, Hammond LA, Whiteside TL, Nicodemus CF, Cermak JM, Rowinsky EK, Tolcher AW. Phase I trial of a murine antibody to MUC1 in patients with metastatic cancer: evidence for the activation of humoral and cellular antitumor immunity. Annals of oncology : official journal of the European Society for Medical Oncology. 2004; 15(12); 1825-1833. [PubMed: 15550589].
  152. de et al., 2014: de Rosa F, Ridolfi L, Ridolfi R, Gentili G, Valmorri L, Nanni O, Petrini M, Fiammenghi L, Granato AM, Ancarani V, Pancisi E, Soldati V, Cassan S, Riccobon A, Parisi E, Romeo A, Turci L, Guidoboni M. Vaccination with autologous dendritic cells loaded with autologous tumor lysate or homogenate combined with immunomodulating radiotherapy and/or preleukapheresis IFN-α in patients with metastatic melanoma: a randomised "proof-of-principle" phase II study. Journal of translational medicine. 2014; 12; 209. [PubMed: 25053129].
  153. Deacon et al., 1982: Deacon SP, Langford DT, Shepherd WM, Knight PA. A comparative clinical study of Adsorbed Tetanus Vaccine and Adult-type Tetanus-Diphtheria Vaccine. The Journal of hygiene. 1982; 89(3); 513-519. [PubMed: 7153515].
  154. Deans and Moseley, 2000: Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Experimental hematology. 2000; 28(8); 875-884. [PubMed: 10989188].
  155. Delhem et al., 1998: Delhem N, Hadida F, Gorochov G, Carpentier F, de Cavel JP, Andréani JF, Autran B, Cesbron JY. Primary Th1 cell immunization against HIVgp160 in SCID-hu mice coengrafted with peripheral blood lymphocytes and skin. Journal of immunology (Baltimore, Md. : 1950). 1998; 161(4); 2060-2069. [PubMed: 9712080].
  156. DeMeritt et al., 2004: DeMeritt IB, Milford LE, Yurochko AD. Activation of the NF-kappaB pathway in human cytomegalovirus-infected cells is necessary for efficient transactivation of the major immediate-early promoter. Journal of virology. 2004; 78(9); 4498-4507. [PubMed: 15078930].
  157. Deng et al., 2018: Deng W, Lira V, Hudson TE, Lemmens EE, Hanson WG, Flores R, Barajas G, Katibah GE, Desbien AL, Lauer P, Leong ML, Portnoy DA, Dubensky TW Jr. Recombinant Listeria promotes tumor rejection by CD8+ T cell-dependent remodeling of the tumor microenvironment. Proceedings of the National Academy of Sciences of the United States of America. 2018; 115(32); 8179-8184. [PubMed: 30038013].
  158. Derré et al., 2016: Derré L, Cesson V, Lucca I, Cerantola Y, Valerio M, Fritschi U, Vlamopoulos Y, Burruni R, Legris AS, Dartiguenave F, Gharbi D, Martin V, Vaucher L, Speiser DE, Romero P, Jichlinski P, Nardelli-Haefliger D. Intravesical Bacillus Calmette Guerin Combined with a Cancer Vaccine Increases Local T-Cell Responses in Non-muscle-Invasive Bladder Cancer Patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2016; ; . [PubMed: 27521445].
  159. Desai et al., 2018: Desai S, Rathi N, Kawade A, Venkatramanan P, Kundu R, Lalwani SK, Dubey AP, Venkateswara Rao J, Narayanappa D, Ghildiyal R, Gogtay NJ, Venugopal P, Palkar S, Munshi R, Bavdekar A, Juvekar S, Ganguly N, Niyogi P, Uttam KG, Kondekar A, Kumbhar D, Mohanlal S, Agarwal MC, Shetty P, Antony K, Gunale B, Dharmadhikari A, Deshpande J, Nalavade U, Sharma D, Bansal A, Tang Y, Flores J, Kulkarni PS. Non-interference of Bovine-Human reassortant pentavalent rotavirus vaccine ROTASIIL® with the immunogenicity of infant vaccines in comparison with a licensed rotavirus vaccine. Vaccine. 2018; 36(37); 5519-5523. [PubMed: 30104114].
  160. Dessy et al., 2008: Dessy FJ, Giannini SL, Bougelet CA, Kemp TJ, David MP, Poncelet SM, Pinto LA, Wettendorff MA. Correlation between direct ELISA, single epitope-based inhibition ELISA and pseudovirion-based neutralization assay for measuring anti-HPV-16 and anti-HPV-18 antibody response after vaccination with the AS04-adjuvanted HPV-16/18 cervical cancer vaccine. Human vaccines. 2008; 4(6); 425-434. [PubMed: 18948732].
  161. Dharmasena et al., 2016: Dharmasena MN, Feuille CM, Starke CE, Bhagwat AA, Stibitz S, Kopecko DJ. Development of an Acid-Resistant Salmonella Typhi Ty21a Attenuated Vector For Improved Oral Vaccine Delivery. PloS one. 2016; 11(9); e0163511. [PubMed: 27673328].
  162. Di et al., 2006: Di Pucchio T, Pilla L, Capone I, Ferrantini M, Montefiore E, Urbani F, Patuzzo R, Pennacchioli E, Santinami M, Cova A, Sovena G, Arienti F, Lombardo C, Lombardi A, Caporaso P, D'Atri S, Marchetti P, Bonmassar E, Parmiani G, Belardelli F, Rivoltini L. Immunization of stage IV melanoma patients with Melan-A/MART-1 and gp100 peptides plus IFN-alpha results in the activation of specific CD8(+) T cells and monocyte/dendritic cell precursors. Cancer research. 2006; 66(9); 4943-4951. [PubMed: 16651452].
  163. Di et al., 2014: Di Y, Seymour L, Fisher K. Activity of a group B oncolytic adenovirus (ColoAd1) in whole human blood. Gene therapy. 2014; 21(4); 440-443. [PubMed: 24553347].
  164. Dijkgraaf et al., 2015: Dijkgraaf EM, Santegoets SJ, Reyners AK, Goedemans R, Nijman HW, van Poelgeest MI, van Erkel AR, Smit VT, Daemen TA, van der Hoeven JJ, Melief CJ, Welters MJ, Kroep JR, van der Burg SH. A phase 1/2 study combining gemcitabine, Pegintron and p53 SLP vaccine in patients with platinum-resistant ovarian cancer. Oncotarget. 2015; 6(31); 32228-32243. [PubMed: 26334096].
  165. DiPaola et al., 2006: DiPaola RS, Plante M, Kaufman H, Petrylak DP, Israeli R, Lattime E, Manson K, Schuetz T. A phase I trial of pox PSA vaccines (PROSTVAC-VF) with B7-1, ICAM-1, and LFA-3 co-stimulatory molecules (TRICOM) in patients with prostate cancer. Journal of translational medicine. 2006; 4; 1. [PubMed: 16390546].
  166. Downs-Canner et al., 2016: Downs-Canner S, Guo ZS, Ravindranathan R, Breitbach CJ, O'Malley ME, Jones HL, Moon A, McCart JA, Shuai Y, Zeh HJ, Bartlett DL. Phase 1 Study of Intravenous Oncolytic Poxvirus (vvDD) in Patients With Advanced Solid Cancers. Molecular therapy : the journal of the American Society of Gene Therapy. 2016; 24(8); 1492-1501. [PubMed: 27203445].
  167. Drake, 2011: Drake CG. Update on prostate cancer vaccines. Cancer journal (Sudbury, Mass.). 2011; 17(5); 294-299. [PubMed: 21952278].
  168. Drugs R D, 2007: . INGN 201: Ad-p53, Ad5CMV-p53, adenoviral p53, p53 gene therapy--introgen, RPR/INGN 201. Drugs in R&D. 2007; 8(3); 176-187. [PubMed: 17472413].
  169. Duan et al., 2007: Duan HF, Hu XW, Chen JL, Gao LH, Xi YY, Lu Y, Li JF, Zhao SR, Xu JJ, Chen HP, Chen W, Wu CT. Antitumor activities of TEM8-Fc: an engineered antibody-like molecule targeting tumor endothelial marker 8. Journal of the National Cancer Institute. 2007; 99(20); 1551-1555. [PubMed: 17925540].
  170. Duggan et al., 2016: Duggan MC, Jochems C, Donahue RN, Richards J, Karpa V, Foust E, Paul B, Brooks T, Tridandapani S, Olencki T, Pan X, Lesinski GB, Schlom J, Carson Iii WE. A phase I study of recombinant (r) vaccinia-CEA(6D)-TRICOM and rFowlpox-CEA(6D)-TRICOM vaccines with GM-CSF and IFN-?-2b in patients with CEA-expressing carcinomas. Cancer immunology, immunotherapy : CII. 2016; 65(11); 1353-1364. [PubMed: 27581603].
  171. Durán-Aniotz et al., 2013: Durán-Aniotz C, Segal G, Salazar L, Pereda C, Falcón C, Tempio F, Aguilera R, González R, Pérez C, Tittarelli A, Catalán D, Nervi B, Larrondo M, Salazar-Onfray F, López MN. The immunological response and post-treatment survival of DC-vaccinated melanoma patients are associated with increased Th1/Th17 and reduced Th3 cytokine responses. Cancer immunology, immunotherapy : CII. 2013; 62(4); 761-772. [PubMed: 23242374].
  172. Eder et al., 2000: Eder JP, Kantoff PW, Roper K, Xu GX, Bubley GJ, Boyden J, Gritz L, Mazzara G, Oh WK, Arlen P, Tsang KY, Panicali D, Schlom J, Kufe DW. A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2000; 6(5); 1632-1638. [PubMed: 10815880].
  173. Eger et al., 2016: Eger C, Siebert N, Seidel D, Zumpe M, Jüttner M, Brandt S, Müller HP, Lode HN. Generation and Characterization of a Human/Mouse Chimeric GD2-Mimicking Anti-Idiotype Antibody Ganglidiximab for Active Immunotherapy against Neuroblastoma. PloS one. 2016; 11(3); e0150479. [PubMed: 26967324].
  174. El-Domeiri et al., 1978: El-Domeiri AA, Das Gupta TK, Trippon M, Simo C, Sabet TY, Crispen R. Adjuvant chemotherapy and immunotherapy in high risk patients with melanoma. Surgery, gynecology & obstetrics. 1978; 146(2); 230-232. [PubMed: 622668].
  175. Elias et al., 1997: Elias EG, Suter CM, Fabian DS. Adjuvant immunotherapy in melanoma with irradiated autologous tumor cells and low dose cyclophosphamide. Journal of surgical oncology. 1997; 64(1); 17-22. [PubMed: 9040795].
  176. Elster et al., 2016: Elster JD, Krishnadas DK, Lucas KG. Dendritic cell vaccines: A review of recent developments and their potential pediatric application. Human vaccines & immunotherapeutics. 2016; 12(9); 2232-2239. [PubMed: 27245943].
  177. Embree et al., 2015: Embree J, Law B, Voloshen T, Tomovici A. Immunogenicity, safety, and antibody persistence at 3, 5, and 10 years postvaccination in adolescents randomized to booster immunization with a combined tetanus, diphtheria, 5-component acellular pertussis, and inactivated poliomyelitis vaccine administered with a hepatitis B virus vaccine concurrently or 1 month apart. Clinical and vaccine immunology : CVI. 2015; 22(3); 282-290. [PubMed: 25540274].
  178. Erbs et al., 2008: Erbs P, Findeli A, Kintz J, Cordier P, Hoffmann C, Geist M, Balloul JM. Modified vaccinia virus Ankara as a vector for suicide gene therapy. Cancer gene therapy. 2008; 15(1); 18-28. [PubMed: 17992203].
  179. Eschenburg et al., 2010: Eschenburg G, Stermann A, Preissner R, Meyer HA, Lode HN. DNA vaccination: using the patient's immune system to overcome cancer. Clinical & developmental immunology. 2010; 2010; 169484. [PubMed: 21197271].
  180. Escribà-Garcia et al., 2017: Escribà-Garcia L, Alvarez-Fernández C, Tellez-Gabriel M, Sierra J, Briones J. Dendritic cells combined with tumor cells and α-galactosylceramide induce a potent, therapeutic and NK-cell dependent antitumor immunity in B cell lymphoma. Journal of translational medicine. 2017; 15(1); 115. [PubMed: 28549432].
  181. Eton et al., 2010: Eton O, Ross MI, East MJ, Mansfield PF, Papadopoulos N, Ellerhorst JA, Bedikian AY, Lee JE. Autologous tumor-derived heat-shock protein peptide complex-96 (HSPPC-96) in patients with metastatic melanoma. Journal of translational medicine. 2010; 8; 9. [PubMed: 20109236].
  182. Fagerberg et al., 2014: Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjöstedt E, Lundberg E, Szigyarto CA, Skogs M, Takanen JO, Berling H, Tegel H, Mulder J, Nilsson P, Schwenk JM, Lindskog C, Danielsson F, Mardinoglu A, Sivertsson A, von Feilitzen K, Forsberg M, Zwahlen M, Olsson I, Navani S, Huss M, Nielsen J, Ponten F, Uhlén M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular & cellular proteomics : MCP. 2014; 13(2); 397-406. [PubMed: 24309898].
  183. Fakhrai et al., 2006: Fakhrai H, Mantil JC, Liu L, Nicholson GL, Murphy-Satter CS, Ruppert J, Shawler DL. Phase I clinical trial of a TGF-beta antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer gene therapy. 2006; 13(12); 1052-1060. [PubMed: 16826191].
  184. Fang et al., 2009: Fang J, Lu Y, Ouyang K, Wu G, Zhang H, Liu Y, Chen Y, Lin M, Wang H, Jin L, Cao R, Roque RS, Zong L, Liu J, Li T. Specific antibodies elicited by a novel DNA vaccine targeting gastrin-releasing peptide inhibit murine melanoma growth in vivo. Clinical and vaccine immunology : CVI. 2009; 16(7); 1033-1039. [PubMed: 19458203].
  185. Faries et al., 2009: Faries MB, Hsueh EC, Ye X, Hoban M, Morton DL. Effect of granulocyte/macrophage colony-stimulating factor on vaccination with an allogeneic whole-cell melanoma vaccine. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009; 15(22); 7029-7035. [PubMed: 19903777].
  186. FDA: TICE BCG: FDA TICE BCG information [http://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM163039.pdf]
  187. Felder et al., 2014: Felder M, Kapur A, Gonzalez-Bosquet J, Horibata S, Heintz J, Albrecht R, Fass L, Kaur J, Hu K, Shojaei H, Whelan RJ, Patankar MS. MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Molecular cancer. 2014; 13; 129. [PubMed: 24886523].
  188. Felizardo et al., 2011: Felizardo TC, Wang JC, McGray RA, Evelegh C, Spaner DE, Fowler DH, Bramson JL, Medin JA. Differential immune responses mediated by adenovirus- and lentivirus-transduced DCs in a HER-2/neu overexpressing tumor model. Gene therapy. 2011; 18(10); 986-995. [PubMed: 21490686].
  189. Fenoglio et al., 2013: Fenoglio D, Traverso P, Parodi A, Tomasello L, Negrini S, Kalli F, Battaglia F, Ferrera F, Sciallero S, Murdaca G, Setti M, Sobrero A, Boccardo F, Cittadini G, Puppo F, Criscuolo D, Carmignani G, Indiveri F, Filaci G. A multi-peptide, dual-adjuvant telomerase vaccine (GX301) is highly immunogenic in patients with prostate and renal cancer. Cancer immunology, immunotherapy : CII. 2013; 62(6); 1041-1052. [PubMed: 23591981].
  190. Fenstermaker et al., 2016: Fenstermaker RA, Ciesielski MJ, Qiu J, Yang N, Frank CL, Lee KP, Mechtler LR, Belal A, Ahluwalia MS, Hutson AD. Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer immunology, immunotherapy : CII. 2016; 65(11); 1339-1352. [PubMed: 27576783].
  191. Fenton et al., 1993: Fenton RG, Taub DD, Kwak LW, Smith MR, Longo DL. Cytotoxic T-cell response and in vivo protection against tumor cells harboring activated ras proto-oncogenes. Journal of the National Cancer Institute. 1993; 85(16); 1294-1302. [PubMed: 8340941].
  192. Ferguson et al., 2016: Ferguson PJ, Sykelyk A, Figueredo R, Koropatnick J. Synergistic cytotoxicity against human tumor cell lines by oncolytic adenovirus dl1520 (ONYX-015) and melphalan. Tumori. 2016; 102(1); 31-39. [PubMed: 26429639].
  193. Fernando et al., 1998: Fernando GJ, Stewart TJ, Tindle RW, Frazer IH. Th2-type CD4+ cells neither enhance nor suppress antitumor CTL activity in a mouse tumor model. Journal of immunology (Baltimore, Md. : 1950). 1998; 161(5); 2421-2427. [PubMed: 9725239].
  194. Fernando et al., 2010: Fernando RI, Litzinger M, Trono P, Hamilton DH, Schlom J, Palena C. The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells. The Journal of clinical investigation. 2010; 120(2); 533-544. [PubMed: 20071775].
  195. Ferrara et al., 2009: Ferrara TA, Hodge JW, Gulley JL. Combining radiation and immunotherapy for synergistic antitumor therapy. Current opinion in molecular therapeutics. 2009; 11(1); 37-42. [PubMed: 19169958].
  196. Feyen et al., 2020: Feyen DAM, McKeithan WL, Bruyneel AAN, Spiering S, Hörmann L, Ulmer B, Zhang H, Briganti F, Schweizer M, Hegyi B, Liao Z, Pölönen RP, Ginsburg KS, Lam CK, Serrano R, Wahlquist C, Kreymerman A, Vu M, Amatya PL, Behrens CS, Ranjbarvaziri S, Maas RGC, Greenhaw M, Bernstein D, Wu JC, Bers DM, Eschenhagen T, Metallo CM, Mercola M. Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes. Cell reports. 2020; 32(3); 107925. [PubMed: 32697997].
  197. Filipazzi et al., 2012: Filipazzi P, Pilla L, Mariani L, Patuzzo R, Castelli C, Camisaschi C, Maurichi A, Cova A, Rigamonti G, Giardino F, Di Florio A, Asioli M, Frati P, Sovena G, Squarcina P, Maio M, Danielli R, Chiarion-Sileni V, Villa A, Lombardo C, Tragni G, Santinami M, Parmiani G, Rivoltini L. Limited induction of tumor cross-reactive T cells without a measurable clinical benefit in early melanoma patients vaccinated with human leukocyte antigen class I-modified peptides. Clinical cancer research : an official journal of the American Association for Cancer Research. 2012; 18(23); 6485-6496. [PubMed: 23032742].
  198. Finocchiaro and Glikin, 2012: Finocchiaro LM, Glikin GC. Cytokine-enhanced vaccine and suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma: 9 years of follow-up. Cancer gene therapy. 2012; 19(12); 852-861. [PubMed: 23059870].
  199. Fishman et al., 2008: Fishman M, Hunter TB, Soliman H, Thompson P, Dunn M, Smilee R, Farmelo MJ, Noyes DR, Mahany JJ, Lee JH, Cantor A, Messina J, Seigne J, Pow-Sang J, Janssen W, Antonia SJ. Phase II trial of B7-1 (CD-86) transduced, cultured autologous tumor cell vaccine plus subcutaneous interleukin-2 for treatment of stage IV renal cell carcinoma. Journal of immunotherapy (Hagerstown, Md. : 1997). 2008; 31(1); 72-80. [PubMed: 18157014].
  200. Flickinger et al., 2018: Flickinger JC Jr, Rodeck U, Snook AE. Listeria monocytogenes as a Vector for Cancer Immunotherapy: Current Understanding and Progress. Vaccines. 2018; 6(3); . [PubMed: 30044426].
  201. Flores et al., 2007: Flores RM, Zakowski M, Venkatraman E, Krug L, Rosenzweig K, Dycoco J, Lee C, Yeoh C, Bains M, Rusch V. Prognostic factors in the treatment of malignant pleural mesothelioma at a large tertiary referral center. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2007; 2(10); 957-965. [PubMed: 17909360].
  202. Fontana et al., 2009: Fontana R, Bregni M, Cipponi A, Raccosta L, Rainelli C, Maggioni D, Lunghi F, Ciceri F, Mukenge S, Doglioni C, Colau D, Coulie PG, Bordignon C, Traversari C, Russo V. Peripheral blood lymphocytes genetically modified to express the self/tumor antigen MAGE-A3 induce antitumor immune responses in cancer patients. Blood. 2009; 113(8); 1651-1660. [PubMed: 19074732].
  203. Fotin-Mleczek et al., 2011: Fotin-Mleczek M, Duchardt KM, Lorenz C, Pfeiffer R, Ojki?-Zrna S, Probst J, Kallen KJ. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. Journal of immunotherapy (Hagerstown, Md. : 1997). 2011; 34(1); 1-15. [PubMed: 21150709].
  204. Fourcade et al., 2008: Fourcade J, Kudela P, Andrade Filho PA, Janjic B, Land SR, Sander C, Krieg A, Donnenberg A, Shen H, Kirkwood JM, Zarour HM. Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients. Journal of immunotherapy (Hagerstown, Md. : 1997). 2008; 31(8); 781-791. [PubMed: 18779741].
  205. Frank et al., 2020: Frank MJ, Khodadoust MS, Czerwinski DK, Haabeth OAW, Chu MP, Miklos DB, Advani RH, Alizadeh AA, Gupta NK, Maeda LS, Reddy SA, Laport GG, Meyer EH, Negrin RS, Rezvani AR, Weng WK, Sheehan K, Faham M, Okada A, Moore AH, Phillips DL, Wapnir IL, Brody JD, Levy R. Autologous tumor cell vaccine induces antitumor T cell immune responses in patients with mantle cell lymphoma: A phase I/II trial. The Journal of experimental medicine. 2020; 217(9); . [PubMed: 32558897].
  206. Frankowski et al., 2004: Frankowski DJ, Raez J, Manners I, Winnik MA, Khan SA, Spontak RJ. Formation of dispersed nanostructures from poly(ferrocenyldimethylsilane-b-dimethylsiloxane) nanotubes upon exposure to supercritical carbon dioxide. Langmuir : the ACS journal of surfaces and colloids. 2004; 20(21); 9304-9314. [PubMed: 15461522].
  207. Freeman et al., 1995: Freeman SM, McCune C, Robinson W, Abboud CN, Abraham GN, Angel C, Marrogi A. The treatment of ovarian cancer with a gene modified cancer vaccine: a phase I study. Human gene therapy. 1995; 6(7); 927-939. [PubMed: 7578411].
  208. Freytag et al., 2013: Freytag SO, Barton KN, Zhang Y. Efficacy of oncolytic adenovirus expressing suicide genes and interleukin-12 in preclinical model of prostate cancer. Gene therapy. 2013; 20(12); 1131-1139. [PubMed: 23842593].
  209. Freytag et al., 2015: Freytag SO, Zhang Y, Siddiqui F. Preclinical toxicology of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy for prostate cancer. Molecular therapy oncolytics. 2015; 2; . [PubMed: 26767191].
  210. Fritsch et al., 2014: Fritsch EF, Hacohen N, Wu CJ. Personal neoantigen cancer vaccines: The momentum builds. Oncoimmunology. 2014; 3; e29311. [PubMed: 25101225].
  211. Fromm et al., 2016: Fromm G, de Silva S, Giffin L, Xu X, Rose J, Schreiber TH. Gp96-Ig/Costimulator (OX40L, ICOSL, or 4-1BBL) Combination Vaccine Improves T-cell Priming and Enhances Immunity, Memory, and Tumor Elimination. Cancer immunology research. 2016; 4(9); 766-778. [PubMed: 27364122].
  212. Fujio et al., 2015: Fujio K, Watanabe M, Ueki H, Li SA, Kinoshita R, Ochiai K, Futami J, Watanabe T, Nasu Y, Kumon H. A vaccine strategy with multiple prostatic acid phosphatase-fused cytokines for prostate cancer treatment. Oncology reports. 2015; 33(4); 1585-1592. [PubMed: 25632844].
  213. Fulco et al., 2013: Fulco I, Largo RD, Miot S, Wixmerten A, Martin I, Schaefer DJ, Haug MD. Toward clinical application of tissue-engineered cartilage. Facial plastic surgery : FPS. 2013; 29(2); 99-105. [PubMed: 23564241].
  214. Fulco et al., 2014: Fulco I, Miot S, Haug MD, Barbero A, Wixmerten A, Feliciano S, Wolf F, Jundt G, Marsano A, Farhadi J, Heberer M, Jakob M, Schaefer DJ, Martin I. Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet (London, England). 2014; 384(9940); 337-346. [PubMed: 24726477].
  215. FUTURE II Study Group., 2007: . Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. The New England journal of medicine. 2007; 356(19); 1915-1927. [PubMed: 17494925].
  216. Gabri et al., 2016: Gabri MR, Cacciavillano W, Chantada GL, Alonso DF. Racotumomab for treating lung cancer and pediatric refractory malignancies. Expert opinion on biological therapy. 2016; 16(4); 573-578. [PubMed: 26903265].
  217. Gahéry-Ségard et al., 2003: Gahéry-Ségard H, Pialoux G, Figueiredo S, Igéa C, Surenaud M, Gaston J, Gras-Masse H, Lévy JP, Guillet JG. Long-term specific immune responses induced in humans by a human immunodeficiency virus type 1 lipopeptide vaccine: characterization of CD8+-T-cell epitopes recognized. Journal of virology. 2003; 77(20); 11220-11231. [PubMed: 14512570].
  218. Gajdosik, 2014: Gajdosik Z. Racotumomab - a novel anti-idiotype monoclonal antibody vaccine for the treatment of cancer. Drugs of today (Barcelona, Spain : 1998). 2014; 50(4); 301-307. [PubMed: 24918647].
  219. Gall et al., 2005: Gall JM, Davol PA, Grabert RC, Deaver M, Lum LG. T cells armed with anti-CD3 x anti-CD20 bispecific antibody enhance killing of CD20+ malignant B cells and bypass complement-mediated rituximab resistance in vitro. Experimental hematology. 2005; 33(4); 452-459. [PubMed: 15781336].
  220. Gao et al., 2014: Gao D, Li C, Xie X, Zhao P, Wei X, Sun W, Liu HC, Alexandrou AT, Jones J, Zhao R, Li JJ. Autologous tumor lysate-pulsed dendritic cell immunotherapy with cytokine-induced killer cells improves survival in gastric and colorectal cancer patients. PloS one. 2014; 9(4); e93886. [PubMed: 24699863].
  221. Gao et al., 2016: Gao S, Zeng L, Zhang X, Wu Y, Cui J, Song Z, Sun X, Wang H, Yin Y, Xu W. Attenuated Streptococcus pneumoniae vaccine candidate SPY1 promotes dendritic cell activation and drives a Th1/Th17 response. Immunology letters. 2016; 179; 47-55. [PubMed: 27609353].
  222. Garcia et al., 2004: Garcia F, Petry KU, Muderspach L, Gold MA, Braly P, Crum CP, Magill M, Silverman M, Urban RG, Hedley ML, Beach KJ. ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstetrics and gynecology. 2004; 103(2); 317-326. [PubMed: 14754702].
  223. Garcia-Hernandez et al., 2007: Garcia-Hernandez Mde L, Gray A, Hubby B, Kast WM. In vivo effects of vaccination with six-transmembrane epithelial antigen of the prostate: a candidate antigen for treating prostate cancer. Cancer research. 2007; 67(3); 1344-1351. [PubMed: 17283172].
  224. Garcia-Hernandez et al., 2008: Garcia-Hernandez Mde L, Gray A, Hubby B, Klinger OJ, Kast WM. Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer research. 2008; 68(3); 861-869. [PubMed: 18245488].
  225. Garfall and Stadtmauer, 2016: Garfall AL, Stadtmauer EA. Cellular and vaccine immunotherapy for multiple myeloma. Hematology. American Society of Hematology. Education Program. 2016; 2016(1); 521-527. [PubMed: 27913524].
  226. Garland et al., 2015: Garland SM, Cheung TH, McNeill S, Petersen LK, Romaguera J, Vazquez-Narvaez J, Bautista O, Shields C, Vuocolo S, Luxembourg A. Safety and immunogenicity of a 9-valent HPV vaccine in females 12-26 years of age who previously received the quadrivalent HPV vaccine. Vaccine. 2015; 33(48); 6855-6864. [PubMed: 26411885].
  227. Garland et al., 2022: Garland SM, Anagani M, Bhatla N, Chatterjee S, Lalwani S, Ross C, Group T, Lin J, Luxembourg A, Walia A, Tu Y. Immunogenicity and safety of quadrivalent and 9-valent human papillomavirus vaccines in Indian clinical trial participants. Human vaccines & immunotherapeutics. 2022; 18(6); 2105067. [PubMed: 35997582].
  228. Gathuru et al., 2005: Gathuru JK, Koide F, Ragupathi G, Adams JL, Kerns RT, Coleman TP, Livingston PO. Identification of DHBcAg as a potent carrier protein comparable to KLH for augmenting MUC1 antigenicity. Vaccine. 2005; 23(39); 4727-4733. [PubMed: 15978705].
  229. Gatson et al., 2016: Gatson NT, Weathers SP, de Groot JF. ReACT Phase II trial: a critical evaluation of the use of rindopepimut plus bevacizumab to treat EGFRvIII-positive recurrent glioblastoma. CNS oncology. 2016; 5(1); 11-26. [PubMed: 26670466].
  230. Germain and Margulies, 1993: Germain RN, Margulies DH. The biochemistry and cell biology of antigen processing and presentation. Annual review of immunology. 1993; 11; 403-450. [PubMed: 8476568].
  231. Geynisman et al., 2013: Geynisman DM, Zha Y, Kunnavakkam R, Aklilu M, Catenacci DV, Polite BN, Rosenbaum C, Namakydoust A, Karrison T, Gajewski TF, Kindler HL. A randomized pilot phase I study of modified carcinoembryonic antigen (CEA) peptide (CAP1-6D)/montanide/GM-CSF-vaccine in patients with pancreatic adenocarcinoma. Journal for immunotherapy of cancer. 2013; 1; 8. [PubMed: 24829746].
  232. Giaccone et al., 2005: Giaccone G, Debruyne C, Felip E, Chapman PB, Grant SC, Millward M, Thiberville L, D'addario G, Coens C, Rome LS, Zatloukal P, Masso O, Legrand C. Phase III study of adjuvant vaccination with Bec2/bacille Calmette-Guerin in responding patients with limited-disease small-cell lung cancer (European Organisation for Research and Treatment of Cancer 08971-08971B; Silva Study). Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005; 23(28); 6854-6864. [PubMed: 16192577].
  233. Gomez et al., 2013: Gomez B, He L, Tsai YC, Wu TC, Viscidi RP, Hung CF. Creation of a Merkel cell polyomavirus small T antigen-expressing murine tumor model and a DNA vaccine targeting small T antigen. Cell & bioscience. 2013; 3(1); 29. [PubMed: 23856459].
  234. Gosavi et al., 2022: Gosavi D, Wower I, Beckmann IK, Hofacker IL, Wower J, Wolfinger MT, Sztuba-Solinska J. Insights into the secondary and tertiary structure of the Bovine Viral Diarrhea Virus Internal Ribosome Entry Site. RNA biology. 2022; 19(1); 496-506. [PubMed: 35380920].
  235. Greenberg et al., 2009: Greenberg ME, Lai MH, Hartel GF, Wichems CH, Gittleson C, Bennet J, Dawson G, Hu W, Leggio C, Washington D, Basser RL. Response to a monovalent 2009 influenza A (H1N1) vaccine. The New England journal of medicine. 2009; 361(25); 2405-2413. [PubMed: 19745216].
  236. Gribben et al., 2005: Gribben JG, Ryan DP, Boyajian R, Urban RG, Hedley ML, Beach K, Nealon P, Matulonis U, Campos S, Gilligan TD, Richardson PG, Marshall B, Neuberg D, Nadler LM. Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clinical cancer research : an official journal of the American Association for Cancer Research. 2005; 11(12); 4430-4436. [PubMed: 15958627].
  237. Griguolo et al., 2019: Griguolo G, Pascual T, Dieci MV, Guarneri V, Prat A. Interaction of host immunity with HER2-targeted treatment and tumor heterogeneity in HER2-positive breast cancer. Journal for immunotherapy of cancer. 2019; 7(1); 90. [PubMed: 30922362].
  238. Grossmann et al., 1997: Grossmann ME, Brown MP, Brenner MK. Antitumor responses induced by transgenic expression of CD40 ligand. Human gene therapy. 1997; 8(16); 1935-1943. [PubMed: 9382959].
  239. Gruslova et al., 2015: Gruslova A, Cavazos DA, Miller JR, Breitbart E, Cohen YC, Bangio L, Yakov N, Soundararajan A, Floyd JR, Brenner AJ. VB-111: a novel anti-vascular therapeutic for glioblastoma multiforme. Journal of neuro-oncology. 2015; 124(3); 365-372. [PubMed: 26108658].
  240. Gu et al., 2010: Gu R, Shampang A, Nashar T, Patil M, Fuller DH, Ramsingh AI. Oral immunization with a live coxsackievirus/HIV recombinant induces gag p24-specific T cell responses. PloS one. 2010; 5(9); . [PubMed: 20824074].
  241. Guinn et al., 2001: Guinn BA, Bertram EM, DeBenedette MA, Berinstein NL, Watts TH. 4-1BBL enhances anti-tumor responses in the presence or absence of CD28 but CD28 is required for protective immunity against parental tumors. Cellular immunology. 2001; 210(1); 56-65. [PubMed: 11485353].
  242. Gulley et al., 2002: Gulley J, Chen AP, Dahut W, Arlen PM, Bastian A, Steinberg SM, Tsang K, Panicali D, Poole D, Schlom J, Michael Hamilton J. Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgen-independent prostate cancer. The Prostate. 2002; 53(2); 109-117. [PubMed: 12242725].
  243. Gulley et al., 2008: Gulley JL, Arlen PM, Tsang KY, Yokokawa J, Palena C, Poole DJ, Remondo C, Cereda V, Jones JL, Pazdur MP, Higgins JP, Hodge JW, Steinberg SM, Kotz H, Dahut WL, Schlom J. Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008; 14(10); 3060-3069. [PubMed: 18483372].
  244. Guo et al., 2019: Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, Liu W, Storkus WJ, He Y, Liu Z, Bartlett DL. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. Journal for immunotherapy of cancer. 2019; 7(1); 6. [PubMed: 30626434].
  245. Gupta and Emens, 2010: Gupta R, Emens LA. GM-CSF-secreting vaccines for solid tumors: moving forward. Discovery medicine. 2010; 10(50); 52-60. [PubMed: 20670599].
  246. Gupta et al., 2006: Gupta V, Wang W, Sosnowski BA, Hofman FM, Chen TC. Fibroblast growth factor-2-retargeted adenoviral vector for selective transduction of primary glioblastoma multiforme endothelial cells. Neurosurgical focus. 2006; 20(4); E26. [PubMed: 16709032].
  247. Gupta et al., 2015: Gupta S, Termini JM, Rivas Y, Otero M, Raffa FN, Bhat V, Farooq A, Stone GW. A multi-trimeric fusion of CD40L and gp100 tumor antigen activates dendritic cells and enhances survival in a B16-F10 melanoma DNA vaccine model. Vaccine. 2015; 33(38); 4798-4806. [PubMed: 26241951].
  248. Gyurkocza et al., 2017: Gyurkocza B, Lazarus HM, Giralt S. Allogeneic hematopoietic cell transplantation in patients with AML not achieving remission: potentially curative therapy. Bone marrow transplantation. 2017; 52(8); 1083-1090. [PubMed: 28244979].
  249. Haight et al., 2000: Haight AE, Bowman LC, Ng CY, Vanin EF, Davidoff AM. Humoral response to vaccination with interleukin-2-expressing allogeneic neuroblastoma cells after primary therapy. Medical and pediatric oncology. 2000; 35(6); 712-715. [PubMed: 11107153].
  250. Hailemichael et al., 2013: Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang XF, Dorta-Estremera SM, Greeley NR, Nitti G, Peng W, Liu C, Lou Y, Wang Z, Ma W, Rabinovich B, Sowell RT, Schluns KS, Davis RE, Hwu P, Overwijk WW. Persistent antigen at vaccination sites induces tumor-specific CD8⺠T cell sequestration, dysfunction and deletion. Nature medicine. 2013; 19(4); 465-472. [PubMed: 23455713].
  251. Halin et al., 2003: Halin C, Gafner V, Villani ME, Borsi L, Berndt A, Kosmehl H, Zardi L, Neri D. Synergistic therapeutic effects of a tumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor alpha. Cancer research. 2003; 63(12); 3202-3210. [PubMed: 12810649].
  252. Halperin et al., 2011: Halperin SA, McNeil S, Langley J, Blatter M, Dionne M, Embree J, Johnson R, Latiolais T, Meekison W, Noya F, Senders S, Zickler P, Johnson DR. Tolerability and antibody response in adolescents and adults revaccinated with tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccine adsorbed (Tdap) 4-5 years after a previous dose. Vaccine. 2011; 29(46); 8459-8465. [PubMed: 21803091].
  253. Halpern et al., 1992: Halpern SE, Dillman RO, Amox D, Hagan PL, Burks R, Dillman J, Perdikakis B, Merchant B, Frincke J, Schweighardt S. Detection of occult tumor using indium 111-labeled anticarcinoembryonic antigen antibodies. Archives of surgery (Chicago, Ill. : 1960). 1992; 127(9); 1094-1100. [PubMed: 1514913].
  254. Hanna, 2012: Hanna MG Jr. Immunotherapy with autologous tumor cell vaccines for treatment of occult disease in early stage colon cancer. Human vaccines & immunotherapeutics. 2012; 8(8); 1156-1160. [PubMed: 22854664].
  255. Hannu et al., 2014: Hannu K, Johanna M, Ulf-HÃ¥kan S. KLK-targeted Therapies for Prostate Cancer. EJIFCC. 2014; 25(2); 207-218. [PubMed: 27683469].
  256. Hanwell et al., 2013: Hanwell DG, McNeil B, Visan L, Rodrigues L, Dunn P, Shewen PE, Macallum GE, Turner PV, Vogel TU. Murine responses to recombinant MVA versus ALVAC vaccines against tumor-associated antigens, gp100 and 5T4. Journal of immunotherapy (Hagerstown, Md. : 1997). 2013; 36(4); 238-247. [PubMed: 23603858].
  257. Hardwick et al., 2018: Hardwick NR, Frankel P, Ruel C, Kilpatrick J, Tsai W, Kos F, Kaltcheva T, Leong L, Morgan R, Chung V, Tinsley R, Eng M, Wilczynski S, Ellenhorn JDI, Diamond DJ, Cristea M. p53-Reactive T Cells Are Associated with Clinical Benefit in Patients with Platinum-Resistant Epithelial Ovarian Cancer After Treatment with a p53 Vaccine and Gemcitabine Chemotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research. 2018; 24(6); 1315-1325. [PubMed: 29301826].
  258. Harrop et al., 2006: Harrop R, Ryan MG, Myers KA, Redchenko I, Kingsman SM, Carroll MW. Active treatment of murine tumors with a highly attenuated vaccinia virus expressing the tumor associated antigen 5T4 (TroVax) is CD4+ T cell dependent and antibody mediated. Cancer immunology, immunotherapy : CII. 2006; 55(9); 1081-1090. [PubMed: 16311730].
  259. Harzstark and Small, 2007: Harzstark AL, Small EJ. Immunotherapy for prostate cancer using antigen-loaded antigen-presenting cells: APC8015 (Provenge). Expert opinion on biological therapy. 2007; 7(8); 1275-1280. [PubMed: 17696825].
  260. Hawkins et al., 2002: Hawkins WG, Gold JS, Blachere NE, Bowne WB, Hoos A, Lewis JJ, Houghton AN. Xenogeneic DNA immunization in melanoma models for minimal residual disease. The Journal of surgical research. 2002; 102(2); 137-143. [PubMed: 11796010].
  261. He et al., 1997: He Z, He YS, Kim Y, Chu L, Ohmstede C, Biron KK, Coen DM. The human cytomegalovirus UL97 protein is a protein kinase that autophosphorylates on serines and threonines. Journal of virology. 1997; 71(1); 405-411. [PubMed: 8985364].
  262. He et al., 2013: He X, Wang J, Zhao F, Chen D, Chen J, Zhang H, Yang C, Liu Y, Dou J. ESAT-6-gpi DNA vaccine augmented the specific antitumour efficacy induced by the tumour vaccine B16F10-ESAT-6-gpi/IL-21 in a mouse model. Scandinavian journal of immunology. 2013; 78(1); 69-78. [PubMed: 23679337].
  263. He et al., 2014: He Y, Hong Y, Mizejewski GJ. Engineering α-fetoprotein-based gene vaccines to prevent and treat hepatocellular carcinoma: review and future prospects. Immunotherapy. 2014; 6(6); 725-736. [PubMed: 25041030].
  264. Hegmans et al., 2005: Hegmans JP, Hemmes A, Aerts JG, Hoogsteden HC, Lambrecht BN. Immunotherapy of murine malignant mesothelioma using tumor lysate-pulsed dendritic cells. American journal of respiratory and critical care medicine. 2005; 171(10); 1168-1177. [PubMed: 15764728].
  265. Hegmans et al., 2010: Hegmans JP, Veltman JD, Lambers ME, de Vries IJ, Figdor CG, Hendriks RW, Hoogsteden HC, Lambrecht BN, Aerts JG. Consolidative dendritic cell-based immunotherapy elicits cytotoxicity against malignant mesothelioma. American journal of respiratory and critical care medicine. 2010; 181(12); 1383-1390. [PubMed: 20167848].
  266. Heimberger et al., 2003: Heimberger AB, Crotty LE, Archer GE, Hess KR, Wikstrand CJ, Friedman AH, Friedman HS, Bigner DD, Sampson JH. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clinical cancer research : an official journal of the American Association for Cancer Research. 2003; 9(11); 4247-4254. [PubMed: 14519652].
  267. Heiser et al., 2002: Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD, Dahm P, Niedzwiecki D, Gilboa E, Vieweg J. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. The Journal of clinical investigation. 2002; 109(3); 409-417. [PubMed: 11828001].
  268. Henz et al., 1996: Henz BM, Macher E, Bröcker EB, Suciu S, Steerenberg PA, Jung E, Rümke P. Prognostic value of tuberculin and BCG immunoreactivity in stage I high-risk malignant melanoma (EORTC protocol 18781). Dermatology (Basel, Switzerland). 1996; 193(2); 105-109. [PubMed: 8884144].
  269. Herbert et al., 2010: Herbert N, Haferkamp A, Schmitz-Winnenthal HF, Zöller M. Concomitant tumor and autoantigen vaccination supports renal cell carcinoma rejection. Journal of immunology (Baltimore, Md. : 1950). 2010; 185(2); 902-916. [PubMed: 20548033].
  270. Hersey et al., 1986: Hersey P, Edwards A, D'Alessandro G, MacDonald M. Phase II study of vaccinia melanoma cell lysates (VMCL) as adjuvant to surgical treatment of stage II melanoma. II. Effects on cell mediated cytotoxicity and leucocyte dependent antibody activity: immunological effects of VMCL in melanoma patients. Cancer immunology, immunotherapy : CII. 1986; 22(3); 221-231. [PubMed: 3460702].
  271. Hersey et al., 2002: Hersey P, Coates AS, McCarthy WH, Thompson JF, Sillar RW, McLeod R, Gill PG, Coventry BJ, McMullen A, Dillon H, Simes RJ. Adjuvant immunotherapy of patients with high-risk melanoma using vaccinia viral lysates of melanoma: results of a randomized trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2002; 20(20); 4181-4190. [PubMed: 12377961].
  272. Hersey et al., 2005: Hersey P, Menzies SW, Coventry B, Nguyen T, Farrelly M, Collins S, Hirst D, Johnson H. Phase I/II study of immunotherapy with T-cell peptide epitopes in patients with stage IV melanoma. Cancer immunology, immunotherapy : CII. 2005; 54(3); 208-218. [PubMed: 15449035].
  273. Hersey, 1992: Hersey P. Active immunotherapy with viral lysates of micrometastases following surgical removal of high risk melanoma. World journal of surgery. 1992; 16(2); 251-260. [PubMed: 1561807].
  274. Higashihara et al., 2014: Higashihara Y, Kato J, Nagahara A, Izumi K, Konishi M, Kodani T, Serizawa N, Osada T, Watanabe S. Phase I clinical trial of peptide vaccination with URLC10 and VEGFR1 epitope peptides in patients with advanced gastric cancer. International journal of oncology. 2014; 44(3); 662-668. [PubMed: 24398900].
  275. Hillman et al., 2017: Hillman GG, Reich LA, Rothstein SE, Abernathy LM, Fountain MD, Hankerd K, Yunker CK, Rakowski JT, Quemeneur E, Slos P. Radiotherapy and MVA-MUC1-IL-2 vaccine act synergistically for inducing specific immunity to MUC-1 tumor antigen. Journal for immunotherapy of cancer. 2017; 5; 4. [PubMed: 28116088].
  276. Hirschowitz et al., 1998: Hirschowitz EA, Leonard S, Song W, Ferris B, Leopold PL, Lewis JJ, Bowne WB, Wang S, Houghton AN, Crystal RG. Adenovirus-mediated expression of melanoma antigen gp75 as immunotherapy for metastatic melanoma. Gene therapy. 1998; 5(7); 975-983. [PubMed: 9813669].
  277. Hirschowitz et al., 2004: Hirschowitz EA, Foody T, Kryscio R, Dickson L, Sturgill J, Yannelli J. Autologous dendritic cell vaccines for non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2004; 22(14); 2808-2815. [PubMed: 15254048].
  278. Hirschowitz et al., 2006: Hirschowitz EA, Hiestand DM, Yannelli JR. Vaccines for lung cancer. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2006; 1(1); 93-104. [PubMed: 17409835].
  279. Hirschowitz et al., 2011: Hirschowitz EA, Mullins A, Prajapati D, Baeker T, Kloecker G, Foody T, Damron K, Love C, Yannelli JR. Pilot study of 1650-G: a simplified cellular vaccine for lung cancer. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2011; 6(1); 169-173. [PubMed: 21150468].
  280. Ho et al., 2022: Ho VT, Kim HT, Brock J, Galinsky I, Daley H, Reynolds C, Weber A, Pozdnyakova O, Severgnini M, Nikiforow S, Cutler C, Koreth J, Alyea EP, Antin JH, Gooptu M, Romee R, Shapiro R, Chen YB, Rosenblatt J, Avigan D, Hodi FS, Dranoff G, Wu CJ, Ritz J, Soiffer RJ. GM-CSF secreting leukemia cell vaccination for MDS/AML after allogeneic HSCT: a randomized, double-blinded, phase 2 trial. Blood advances. 2022; 6(7); 2183-2194. [PubMed: 34807983].
  281. Hodge et al., 1999: Hodge JW, Sabzevari H, Yafal AG, Gritz L, Lorenz MG, Schlom J. A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer research. 1999; 59(22); 5800-5807. [PubMed: 10582702].
  282. Hodge et al., 2003: Hodge JW, Grosenbach DW, Aarts WM, Poole DJ, Schlom J. Vaccine therapy of established tumors in the absence of autoimmunity. Clinical cancer research : an official journal of the American Association for Cancer Research. 2003; 9(5); 1837-1849. [PubMed: 12738742].
  283. Hodge et al., 2008: Hodge JW, Guha C, Neefjes J, Gulley JL. Synergizing radiation therapy and immunotherapy for curing incurable cancers. Opportunities and challenges. Oncology (Williston Park, N.Y.). 2008; 22(9); 1064-1070. [PubMed: 18777956].
  284. Hodi, 2010: Hodi FS. Overcoming immunological tolerance to melanoma: Targeting CTLA-4. Asia-Pacific journal of clinical oncology. 2010; 6 Suppl 1; S16-23. [PubMed: 20482528].
  285. Hofman et al., 2010: Hofman FM, Stathopoulos A, Kruse CA, Chen TC, Schijns VE. Immunotherapy of malignant gliomas using autologous and allogeneic tissue cells. Anti-cancer agents in medicinal chemistry. 2010; 10(6); 462-470. [PubMed: 20879986].
  286. Holmberg and Sandmaier, 2001: Holmberg LA, Sandmaier BM. Theratope vaccine (STn-KLH). Expert opinion on biological therapy. 2001; 1(5); 881-891. [PubMed: 11728222].
  287. Holt et al., 2011: Holt GE, Podack ER, Raez LE. Immunotherapy as a strategy for the treatment of non-small-cell lung cancer. Therapy (London, England : 2004). 2011; 8(1); 43-54. [PubMed: 21359153].
  288. Hong et al., 1993: Hong WK, Lippman SM, Wolf GT. Recent advances in head and neck cancer--larynx preservation and cancer chemoprevention: the Seventeenth Annual Richard and Hinda Rosenthal Foundation Award Lecture. Cancer research. 1993; 53(21); 5113-5120. [PubMed: 8221647].
  289. Hoogsteder et al., 2014: Hoogsteder PH, Kotz D, van Spiegel PI, Viechtbauer W, van Schayck OC. Efficacy of the nicotine vaccine 3'-AmNic-rEPA (NicVAX) co-administered with varenicline and counselling for smoking cessation: a randomized placebo-controlled trial. Addiction (Abingdon, England). 2014; 109(8); 1252-1259. [PubMed: 24894625].
  290. Hossain et al., 2019: Hossain MK, Vartak A, Sucheck SJ, Wall KA. Liposomal Fc Domain Conjugated to a Cancer Vaccine Enhances Both Humoral and Cellular Immunity. ACS omega. 2019; 4(3); 5204-5208. [PubMed: 30949616].
  291. Hsueh and Morton, 2003: Hsueh EC, Morton DL. Antigen-based immunotherapy of melanoma: Canvaxin therapeutic polyvalent cancer vaccine. Seminars in cancer biology. 2003; 13(6); 401-407. [PubMed: 15001158].
  292. Hsueh et al., 2002: Hsueh EC, Essner R, Foshag LJ, Ollila DW, Gammon G, O'Day SJ, Boasberg PD, Stern SL, Ye X, Morton DL. Prolonged survival after complete resection of disseminated melanoma and active immunotherapy with a therapeutic cancer vaccine. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2002; 20(23); 4549-4554. [PubMed: 12454111].
  293. https://clinicaltrials.gov/study/NCT00134082: Rituximab and Cyclophosphamide Followed by Vaccine Therapy in Treating Patients With Relapsed Hodgkin Lymphoma [https://clinicaltrials.gov/study/NCT00134082]
  294. Hu et al., 2021: Hu Z, Leet DE, Allesøe RL, Oliveira G, Li S, Luoma AM, Liu J, Forman J, Huang T, Iorgulescu JB, Holden R, Sarkizova S, Gohil SH, Redd RA, Sun J, Elagina L, Giobbie-Hurder A, Zhang W, Peter L, Ciantra Z, Rodig S, Olive O, Shetty K, Pyrdol J, Uduman M, Lee PC, Bachireddy P, Buchbinder EI, Yoon CH, Neuberg D, Pentelute BL, Hacohen N, Livak KJ, Shukla SA, Olsen LR, Barouch DH, Wucherpfennig KW, Fritsch EF, Keskin DB, Wu CJ, Ott PA. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nature medicine. 2021; 27(3); 515-525. [PubMed: 33479501].
  295. Hu et al., 2022: Hu JL, Omofoye OA, Rudnick JD, Kim S, Tighiouart M, Phuphanich S, Wang H, Mazer M, Ganaway T, Chu RM, Patil CG, Black KL, Shiao SL, Wang R, Yu JS. A Phase I Study of Autologous Dendritic Cell Vaccine Pulsed with Allogeneic Stem-like Cell Line Lysate in Patients with Newly Diagnosed or Recurrent Glioblastoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2022; 28(4); 689-696. [PubMed: 34862245].
  296. Huang et al., 2012: Huang J, Jochems C, Talaie T, Anderson A, Jales A, Tsang KY, Madan RA, Gulley JL, Schlom J. Elevated serum soluble CD40 ligand in cancer patients may play an immunosuppressive role. Blood. 2012; 120(15); 3030-3038. [PubMed: 22932804].
  297. Huebener et al., 2008: Huebener N, Fest S, Strandsby A, Michalsky E, Preissner R, Zeng Y, Gaedicke G, Lode HN. A rationally designed tyrosine hydroxylase DNA vaccine induces specific antineuroblastoma immunity. Molecular cancer therapeutics. 2008; 7(7); 2241-2251. [PubMed: 18645033].
  298. Hui et al., 2013: Hui EP, Taylor GS, Jia H, Ma BB, Chan SL, Ho R, Wong WL, Wilson S, Johnson BF, Edwards C, Stocken DD, Rickinson AB, Steven NM, Chan AT. Phase I trial of recombinant modified vaccinia ankara encoding Epstein-Barr viral tumor antigens in nasopharyngeal carcinoma patients. Cancer research. 2013; 73(6); 1676-1688. [PubMed: 23348421].
  299. Hung et al., 2008: Hung CF, Wu TC, Monie A, Roden R. Antigen-specific immunotherapy of cervical and ovarian cancer. Immunological reviews. 2008; 222; 43-69. [PubMed: 18363994].
  300. Hunter-Craig et al., 1970: Hunter-Craig I, Newton KA, Westbury G, Lacey BW. Use of vaccinia virus in the treatment of metastatic malignant melanoma. British medical journal. 1970; 2(5708); 512-515. [PubMed: 4913781].
  301. Hutchins et al., 2017: Hutchins LF, Makhoul I, Emanuel PD, Pennisi A, Siegel ER, Jousheghany F, Guo X, Pashov AD, Monzavi-Karbassi B, Kieber-Emmons T. Targeting tumor-associated carbohydrate antigens: a phase I study of a carbohydrate mimetic-peptide vaccine in stage IV breast cancer subjects. Oncotarget. 2017; 8(58); 99161-99178. [PubMed: 29228761].
  302. Hutson et al., 2008: Hutson TE, Figlin RA, Kuhn JG, Motzer RJ. Targeted therapies for metastatic renal cell carcinoma: an overview of toxicity and dosing strategies. The oncologist. 2008; 13(10); 1084-1096. [PubMed: 18838439].
  303. Ibrahim et al., 2013: Ibrahim NK, Murray JL, Zhou D, Mittendorf EA, Sample D, Tautchin M, Miles D. Survival Advantage in Patients with Metastatic Breast Cancer Receiving Endocrine Therapy plus Sialyl Tn-KLH Vaccine: Post Hoc Analysis of a Large Randomized Trial. Journal of Cancer. 2013; 4(7); 577-584. [PubMed: 23983823].
  304. Iinuma et al., 2014: Iinuma H, Fukushima R, Inaba T, Tamura J, Inoue T, Ogawa E, Horikawa M, Ikeda Y, Matsutani N, Takeda K, Yoshida K, Tsunoda T, Ikeda T, Nakamura Y, Okinaga K. Phase I clinical study of multiple epitope peptide vaccine combined with chemoradiation therapy in esophageal cancer patients. Journal of translational medicine. 2014; 12; 84. [PubMed: 24708624].
  305. Illiano et al., 2016: Illiano E, Bissa M, Paolini F, Zanotto C, De Giuli Morghen C, Franconi R, Radaelli A, Venuti A. Prime-boost therapeutic vaccination in mice with DNA/DNA or DNA/Fowlpox virus recombinants expressing the Human Papilloma Virus type 16 E6 and E7 mutated proteins fused to the coat protein of Potato virus X. Virus research. 2016; 225; 82-90. [PubMed: 27664839].
  306. Insaidoo et al., 2011: Insaidoo FK, Borbulevych OY, Hossain M, Santhanagopolan SM, Baxter TK, Baker BM. Loss of T cell antigen recognition arising from changes in peptide and major histocompatibility complex protein flexibility: implications for vaccine design. The Journal of biological chemistry. 2011; 286(46); 40163-40173. [PubMed: 21937447].
  307. Irie et al., 2004: Irie RF, Ollila DW, O'Day S, Morton DL. Phase I pilot clinical trial of human IgM monoclonal antibody to ganglioside GM3 in patients with metastatic melanoma. Cancer immunology, immunotherapy : CII. 2004; 53(2); 110-117. [PubMed: 14564483].
  308. Ishizaki et al., 2006: Ishizaki H, Tsunoda T, Wada S, Yamauchi M, Shibuya M, Tahara H. Inhibition of tumor growth with antiangiogenic cancer vaccine using epitope peptides derived from human vascular endothelial growth factor receptor 1. Clinical cancer research : an official journal of the American Association for Cancer Research. 2006; 12(19); 5841-5849. [PubMed: 17020992].
  309. James et al., 2014: James BR, Anderson KG, Brincks EL, Kucaba TA, Norian LA, Masopust D, Griffith TS. CpG-mediated modulation of MDSC contributes to the efficacy of Ad5-TRAIL therapy against renal cell carcinoma. Cancer immunology, immunotherapy : CII. 2014; 63(11); 1213-1227. [PubMed: 25143233].
  310. Jamshed et al., 2016: Jamshed S, Walsh EE, Dimitroff LJ, Santelli JS, Falsey AR. Improved immunogenicity of high-dose influenza vaccine compared to standard-dose influenza vaccine in adult oncology patients younger than 65 years receiving chemotherapy: A pilot randomized clinical trial. Vaccine. 2016; 34(5); 630-635. [PubMed: 26721330].
  311. Jha et al., 2012: Jha G, Miller JS, Curtsinger JM, Zhang Y, Mescher MF, Dudek AZ. Randomized Phase II Study of IL-2 With or Without an Allogeneic Large Multivalent Immunogen Vaccine for the Treatment of Stage IV Melanoma. American journal of clinical oncology. 2012; ; . [PubMed: 23241505].
  312. Jia et al., 2017: Jia YY, Tan WJ, Duan FF, Pan ZM, Chen X, Yin YL, Jiao XA. A Genetically Modified attenuated Listeria Vaccine Expressing HPV16 E7 Kill Tumor Cells in Direct and Antigen-Specific Manner. Frontiers in cellular and infection microbiology. 2017; 7; 279. [PubMed: 28706878].
  313. Jiménez-Cervantes et al., 1994: Jiménez-Cervantes C, Solano F, Kobayashi T, Urabe K, Hearing VJ, Lozano JA, García-Borrón JC. A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). The Journal of biological chemistry. 1994; 269(27); 17993-18000. [PubMed: 8027058].
  314. Johnson et al., 2006: Johnson LE, Frye TP, Arnot AR, Marquette C, Couture LA, Gendron-Fitzpatrick A, McNeel DG. Safety and immunological efficacy of a prostate cancer plasmid DNA vaccine encoding prostatic acid phosphatase (PAP). Vaccine. 2006; 24(3); 293-303. [PubMed: 16115700].
  315. Johnson et al., 2007: Johnson LE, Frye TP, Chinnasamy N, Chinnasamy D, McNeel DG. Plasmid DNA vaccine encoding prostatic acid phosphatase is effective in eliciting autologous antigen-specific CD8+ T cells. Cancer immunology, immunotherapy : CII. 2007; 56(6); 885-895. [PubMed: 17102977].
  316. Johnson et al., 2009: Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich JR, Lee CC, Restifo NP, Schwarz SL, Cogdill AP, Bishop RJ, Kim H, Brewer CC, Rudy SF, VanWaes C, Davis JL, Mathur A, Ripley RT, Nathan DA, Laurencot CM, Rosenberg SA. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009; 114(3); 535-546. [PubMed: 19451549].
  317. Jones et al., 1996: Jones RC, Kelley M, Gupta RK, Nizze JA, Yee R, Leopoldo Z, Qi K, Stern S, Morton DL. Immune response to polyvalent melanoma cell vaccine in AJCC stage III melanoma: an immunologic survival model. Annals of surgical oncology. 1996; 3(5); 437-445. [PubMed: 8876885].
  318. Ju et al., 2022: Ju M, Fan J, Zou Y, Yu M, Jiang L, Wei Q, Bi J, Hu B, Guan Q, Song X, Dong M, Wang L, Yu L, Wang Y, Kang H, Xin W, Zhao L. Computational Recognition of a Regulatory T-cell-specific Signature With Potential Implications in Prognosis, Immunotherapy, and Therapeutic Resistance of Prostate Cancer. Frontiers in immunology. 2022; 13; 807840. [PubMed: 35812443].
  319. Juric et al., 2010: Juric D, Mahovli? V, Rajhvajn S, Ovanin-Raki? A, Skopljanac-Macina L, Barisi? A, Proji? IS, Babi? D, Susa M, Corusi? A, Oreskovi? S. Liquid-based cytology--new possibilities in the diagnosis of cervical lesions. Collegium antropologicum. 2010; 34(1); 19-24. [PubMed: 20432728].
  320. Juszczyk et al., 1987: Juszczyk Z, Szydlo W, Jakubów H, Ziecik S. [Ultrasonographic control of the positioning of the catheter and intracardiac electrode]. Polski tygodnik lekarski (Warsaw, Poland : 1960). 1987; 42(10); 309-311. [PubMed: 03299309].
  321. Kaczanowska et al., 2024: Kaczanowska S, Murty T, Alimadadi A, Contreras CF, Duault C, Subrahmanyam PB, Reynolds W, Gutierrez NA, Baskar R, Wu CJ, Michor F, Altreuter J, Liu Y, Jhaveri A, Duong V, Anbunathan H, Ong C, Zhang H, Moravec R, Yu J, Biswas R, Van Nostrand S, Lindsay J, Pichavant M, Sotillo E, Bernstein D, Carbonell A, Derdak J, Klicka-Skeels J, Segal JE, Dombi E, Harmon SA, Turkbey B, Sahaf B, Bendall S, Maecker H, Highfill SL, Stroncek D, Glod J, Merchant M, Hedrick CC, Mackall CL, Ramakrishna S, Kaplan RN. Immune determinants of CAR-T cell expansion in solid tumor patients receiving GD2 CAR-T cell therapy. Cancer cell. 2024; 42(1); 35-51.e8. [PubMed: 38134936].
  322. Kafi et al., 2009: Kafi K, Betting DJ, Yamada RE, Bacica M, Steward KK, Timmerman JM. Maleimide conjugation markedly enhances the immunogenicity of both human and murine idiotype-KLH vaccines. Molecular immunology. 2009; 46(3); 448-456. [PubMed: 19046770].
  323. Kakudo et al., 2013: Kakudo N, Tanaka Y, Morimoto N, Ogawa T, Kushida S, Hara T, Kusumoto K. Adipose-derived regenerative cell (ADRC)-enriched fat grafting: optimal cell concentration and effects on grafted fat characteristics. Journal of translational medicine. 2013; 11; 254. [PubMed: 24107489].
  324. Kalli et al., 2013: Kalli F, Machiorlatti R, Battaglia F, Parodi A, Conteduca G, Ferrera F, Proietti M, Tardito S, Sanguineti M, Millo E, Fenoglio D, De Palma R, Inghirami G, Filaci G. Comparative analysis of cancer vaccine settings for the selection of an effective protocol in mice. Journal of translational medicine. 2013; 11; 120. [PubMed: 23663506].
  325. Kalli et al., 2018: Kalli KR, Block MS, Kasi PM, Erskine CL, Hobday TJ, Dietz A, Padley D, Gustafson MP, Shreeder B, Puglisi-Knutson D, Visscher DW, Mangskau TK, Wilson G, Knutson KL. Folate Receptor Alpha Peptide Vaccine Generates Immunity in Breast and Ovarian Cancer Patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2018; 24(13); 3014-3025. [PubMed: 29545464].
  326. Kamata et al., 2002: Kamata M, Denda-Nagai K, Kubota N, Aida S, Takeda K, Irimura T. Vaccination of mice with MUC1 cDNA suppresses the development of lung metastases. Clinical & experimental metastasis. 2002; 19(8); 689-696. [PubMed: 12553374].
  327. Kampf et al., 2007: Kampf G, Steinmann J, Rabenau H. Suitability of vaccinia virus and bovine viral diarrhea virus (BVDV) for determining activities of three commonly-used alcohol-based hand rubs against enveloped viruses. BMC infectious diseases. 2007; 7; 5. [PubMed: 17291338].
  328. Kamran et al., 2016: Kamran N, Calinescu A, Candolfi M, Chandran M, Mineharu Y, Asad AS, Koschmann C, Nunez FJ, Lowenstein PR, Castro MG. Recent advances and future of immunotherapy for glioblastoma. Expert opinion on biological therapy. 2016; 16(10); 1245-1264. [PubMed: 27411023].
  329. Kandalaft et al., 2013: Kandalaft LE, Powell DJ Jr, Chiang CL, Tanyi J, Kim S, Bosch M, Montone K, Mick R, Levine BL, Torigian DA, June CH, Coukos G. Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer. Oncoimmunology. 2013; 2(1); e22664. [PubMed: 23482679].
  330. Kanehira et al., 2007: Kanehira M, Harada Y, Takata R, Shuin T, Miki T, Fujioka T, Nakamura Y, Katagiri T. Involvement of upregulation of DEPDC1 (DEP domain containing 1) in bladder carcinogenesis. Oncogene. 2007; 26(44); 6448-6455. [PubMed: 17452976].
  331. Kantoff et al., 2010: Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. The New England journal of medicine. 2010; 363(5); 411-422. [PubMed: 20818862].
  332. Kaplan et al., 2006: Kaplan CD, Krüger JA, Zhou H, Luo Y, Xiang R, Reisfeld RA. A novel DNA vaccine encoding PDGFRbeta suppresses growth and dissemination of murine colon, lung and breast carcinoma. Vaccine. 2006; 24(47-48); 6994-7002. [PubMed: 17050049].
  333. Karamitros et al., 2018: Karamitros D, Stoilova B, Aboukhalil Z, Hamey F, Reinisch A, Samitsch M, Quek L, Otto G, Repapi E, Doondeea J, Usukhbayar B, Calvo J, Taylor S, Goardon N, Six E, Pflumio F, Porcher C, Majeti R, Göttgens B, Vyas P. Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells. Nature immunology. 2018; 19(1); 85-97. [PubMed: 29167569].
  334. Karkada et al., 2010: Karkada M, Weir GM, Quinton T, Sammatur L, MacDonald LD, Grant A, Liwski R, Juskevicius R, Sinnathamby G, Philip R, Mansour M. A novel breast/ovarian cancer peptide vaccine platform that promotes specific type-1 but not Treg/Tr1-type responses. Journal of immunotherapy (Hagerstown, Md. : 1997). 2010; 33(3); 250-261. [PubMed: 20445345].
  335. Karyampudi and Ghosh, 2008: Karyampudi L, Ghosh SK. Mycobacterial HSP70 as an adjuvant in the design of an idiotype vaccine against a murine lymphoma. Cellular immunology. 2008; 254(1); 74-80. [PubMed: 18715553].
  336. Kass et al., 2001: Kass E, Panicali DL, Mazzara G, Schlom J, Greiner JW. Granulocyte/macrophage-colony stimulating factor produced by recombinant avian poxviruses enriches the regional lymph nodes with antigen-presenting cells and acts as an immunoadjuvant. Cancer research. 2001; 61(1); 206-214. [PubMed: 11196163].
  337. Kato, 2014: Kato Y. [Efficacy of WT1 peptide-/MUC-1 peptide-pulsed dendritic cell therapy in 313 patients with a wide range of cancers]. Gan to kagaku ryoho. Cancer & chemotherapy. 2014; 41(10); 1280-1282. [PubMed: 25335717].
  338. Kaufman et al., 2008: Kaufman HL, Lenz HJ, Marshall J, Singh D, Garett C, Cripps C, Moore M, von Mehren M, Dalfen R, Heim WJ, Conry RM, Urba WJ, Benson AB 3rd, Yu M, Caterini J, Kim-Schulze S, Debenedette M, Salha D, Vogel T, Elias I, Berinstein NL. Combination chemotherapy and ALVAC-CEA/B7.1 vaccine in patients with metastatic colorectal cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008; 14(15); 4843-4849. [PubMed: 18676757].
  339. Kawakami et al., 1994: Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Rivoltini L, Topalian SL, Miki T, Rosenberg SA. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proceedings of the National Academy of Sciences of the United States of America. 1994; 91(9); 3515-3519. [PubMed: 8170938].
  340. Kawakami et al., 1994: Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E, Yannelli JR, Adema GJ, Miki T, Rosenberg SA. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proceedings of the National Academy of Sciences of the United States of America. 1994; 91(14); 6458-6462. [PubMed: 8022805].
  341. Kawakami et al., 1994: Kawakami Y, Eliyahu S, Sakaguchi K, Robbins PF, Rivoltini L, Yannelli JR, Appella E, Rosenberg SA. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. The Journal of experimental medicine. 1994; 180(1); 347-352. [PubMed: 7516411].
  342. Keehn et al., 2016: Keehn A, Gartrell B, Schoenberg MP. Vesigenurtacel-L (HS-410) in the management of high-grade nonmuscle invasive bladder cancer. Future oncology (London, England). 2016; 12(23); 2673-2682. [PubMed: 27609194].
  343. Keller et al., 2015: Keller M, Ebstein F, Bürger E, Textoris-Taube K, Gorny X, Urban S, Zhao F, Dannenberg T, Sucker A, Keller C, Saveanu L, Krüger E, Rothkötter HJ, Dahlmann B, Henklein P, Voigt A, Kuckelkorn U, Paschen A, Kloetzel PM, Seifert U. The proteasome immunosubunits, PA28 and ER-aminopeptidase 1 protect melanoma cells from efficient MART-126-35 -specific T-cell recognition. European journal of immunology. 2015; 45(12); 3257-3268. [PubMed: 26399368].
  344. Kelsen et al., 2007: Kelsen DP, Winter KA, Gunderson LL, Mortimer J, Estes NC, Haller DG, Ajani JA, Kocha W, Minsky BD, Roth JA, Willett CG. Long-term results of RTOG trial 8911 (USA Intergroup 113): a random assignment trial comparison of chemotherapy followed by surgery compared with surgery alone for esophageal cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2007; 25(24); 3719-3725. [PubMed: 17704421].
  345. Kemp et al., 2011: Kemp TJ, Hildesheim A, Safaeian M, Dauner JG, Pan Y, Porras C, Schiller JT, Lowy DR, Herrero R, Pinto LA. HPV16/18 L1 VLP vaccine induces cross-neutralizing antibodies that may mediate cross-protection. Vaccine. 2011; 29(11); 2011-2014. [PubMed: 21241731].
  346. Keskin et al., 2019: Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, Shukla SA, Hu Z, Li L, Le PM, Allesøe RL, Richman AR, Kowalczyk MS, Abdelrahman S, Geduldig JE, Charbonneau S, Pelton K, Iorgulescu JB, Elagina L, Zhang W, Olive O, McCluskey C, Olsen LR, Stevens J, Lane WJ, Salazar AM, Daley H, Wen PY, Chiocca EA, Harden M, Lennon NJ, Gabriel S, Getz G, Lander ES, Regev A, Ritz J, Neuberg D, Rodig SJ, Ligon KL, Suvà ML, Wucherpfennig KW, Hacohen N, Fritsch EF, Livak KJ, Ott PA, Wu CJ, Reardon DA. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019; 565(7738); 234-239. [PubMed: 30568305].
  347. Khan et al., 2015: Khan MI, Pach A 3rd, Khan GM, Bajracharya D, Sahastrabuddhe S, Bhutta W, Tahir R, Soofi S, Thapa CB, Joshi N, Puri MK, Shrestha P, Upreti SR, Clemens JD, Bhutta Z, Ochiai RL. Typhoid vaccine introduction: An evidence-based pilot implementation project in Nepal and Pakistan. Vaccine. 2015; 33 Suppl 3; C62-67. [PubMed: 25937612].
  348. Kharfan-Dabaja et al., 2012: Kharfan-Dabaja MA, Boeckh M, Wilck MB, Langston AA, Chu AH, Wloch MK, Guterwill DF, Smith LR, Rolland AP, Kenney RT. A novel therapeutic cytomegalovirus DNA vaccine in allogeneic haemopoietic stem-cell transplantation: a randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet. Infectious diseases. 2012; 12(4); 290-299. [PubMed: 22237175].
  349. Khong et al., 2004: Khong HT, Yang JC, Topalian SL, Sherry RM, Mavroukakis SA, White DE, Rosenberg SA. Immunization of HLA-A*0201 and/or HLA-DPbeta1*04 patients with metastatic melanoma using epitopes from the NY-ESO-1 antigen. Journal of immunotherapy (Hagerstown, Md. : 1997). 2004; 27(6); 472-477. [PubMed: 15534491].
  350. Kim and Liau, 2010: Kim W, Liau LM. Dendritic cell vaccines for brain tumors. Neurosurgery clinics of North America. 2010; 21(1); 139-157. [PubMed: 19944973].
  351. Kim and Sin, 2005: Kim MS, Sin JI. Both antigen optimization and lysosomal targeting are required for enhanced anti-tumour protective immunity in a human papillomavirus E7-expressing animal tumour model. Immunology. 2005; 116(2); 255-266. [PubMed: 16162274].
  352. Kim et al., 2000: Kim SK, Ragupathi G, Cappello S, Kagan E, Livingston PO. Effect of immunological adjuvant combinations on the antibody and T-cell response to vaccination with MUC1-KLH and GD3-KLH conjugates. Vaccine. 2000; 19(4-5); 530-537. [PubMed: 11027818].
  353. Kim et al., 2001: Kim JJ, Yang JS, Nottingham LK, Tang W, Dang K, Manson KH, Wyand MS, Wilson DM, Weiner DB. Induction of immune responses and safety profiles in rhesus macaques immunized with a DNA vaccine expressing human prostate specific antigen. Oncogene. 2001; 20(33); 4497-4506. [PubMed: 11494145].
  354. Kim et al., 2001: Kim JJ, Yang JS, Dang K, Manson KH, Weiner DB. Engineering enhancement of immune responses to DNA-based vaccines in a prostate cancer model in rhesus macaques through the use of cytokine gene adjuvants. Clinical cancer research : an official journal of the American Association for Cancer Research. 2001; 7(3 Suppl); 882s-889s. [PubMed: 11300487].
  355. Kim et al., 2008: Kim SG, Park MY, Kim CH, Sohn HJ, Kim HS, Park JS, Kim HJ, Oh ST, Kim TG. Modification of CEA with both CRT and TAT PTD induces potent anti-tumor immune responses in RNA-pulsed DC vaccination. Vaccine. 2008; 26(50); 6433-6440. [PubMed: 18812201].
  356. Kim et al., 2014: Kim TJ, Jin HT, Hur SY, Yang HG, Seo YB, Hong SR, Lee CW, Kim S, Woo JW, Park KS, Hwang YY, Park J, Lee IH, Lim KT, Lee KH, Jeong MS, Surh CD, Suh YS, Park JS, Sung YC. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nature communications. 2014; 5; 5317. [PubMed: 25354725].
  357. Kim et al., 2015: Kim JH, Lee JO, Kim N, Lee HJ, Lee YW, Kim HI, Kim SJ, Park SH, Kim HS. Paclitaxel suppresses the viability of breast tumor MCF7 cells through the regulation of EF1α and FOXO3a by AMPK signaling. International journal of oncology. 2015; 47(5); 1874-1880. [PubMed: 26397839].
  358. Kim et al., 2016: Kim SW, Goedegebuure P, Gillanders WE. Mammaglobin-A is a target for breast cancer vaccination. Oncoimmunology. 2016; 5(2); e1069940. [PubMed: 27057470].
  359. Kim et al., 2016: Kim H, Seo EH, Lee SH, Kim BJ. The Telomerase-Derived Anticancer Peptide Vaccine GV1001 as an Extracellular Heat Shock Protein-Mediated Cell-Penetrating Peptide. International journal of molecular sciences. 2016; 17(12); . [PubMed: 27941629].
  360. Kim et al., 2019: Kim KH, Kim CS, Kim HM, Kim JD, Ma SH, Kim DH, Hwang PH, Han JW, Lee TJ, Kim JH, Karkada N, Mesaros N, Sohn WY, Kim JH. Immunogenicity and safety of a combined DTPa-IPV/Hib vaccine administered as a three-dose primary vaccination course in healthy Korean infants: phase III, randomized study. Human vaccines & immunotherapeutics. 2019; 15(2); 317-326. [PubMed: 30431387].
  361. Kitawaki et al., 2011: Kitawaki T, Kadowaki N, Fukunaga K, Kasai Y, Maekawa T, Ohmori K, Itoh T, Shimizu A, Kuzushima K, Kondo T, Ishikawa T, Uchiyama T. Cross-priming of CD8(+) T cells in vivo by dendritic cells pulsed with autologous apoptotic leukemic cells in immunotherapy for elderly patients with acute myeloid leukemia. Experimental hematology. 2011; 39(4); 424-433.e2. [PubMed: 21216276].
  362. Ko et al., 2009: Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009; 15(6); 2148-2157. [PubMed: 19276286].
  363. Kobayashi et al., 2006: Kobayashi H, Nagato T, Aoki N, Sato K, Kimura S, Tateno M, Celis E. Defining MHC class II T helper epitopes for WT1 tumor antigen. Cancer immunology, immunotherapy : CII. 2006; 55(7); 850-860. [PubMed: 16220325].
  364. Kobayashi et al., 2017: Kobayashi Y, Sakura T, Miyawaki S, Toga K, Sogo S, Heike Y. A new peptide vaccine OCV-501: in vitro pharmacology and phase 1 study in patients with acute myeloid leukemia. Cancer immunology, immunotherapy : CII. 2017; 66(7); 851-863. [PubMed: 28321480].
  365. Koido et al., 2000: Koido S, Kashiwaba M, Chen D, Gendler S, Kufe D, Gong J. Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. Journal of immunology (Baltimore, Md. : 1950). 2000; 165(10); 5713-5719. [PubMed: 11067929].
  366. Kolarić et al., 1979: Kolarić K, Malenica B, Roth A. A preliminary report of a pilot trial in adjuvant chemotherapy of primary melanoma. Tumori. 1979; 65(2); 229-236. [PubMed: 462575].
  367. Komatsu et al., 2013: Komatsu N, Jackson HM, Chan KF, Oveissi S, Cebon J, Itoh K, Chen W. Fine-mapping naturally occurring NY-ESO-1 antibody epitopes in melanoma patients' sera using short overlapping peptides and full-length recombinant protein. Molecular immunology. 2013; 54(3-4); 465-471. [PubMed: 23454162].
  368. Kong et al., 2018: Kong Z, Wang Y, Ma W. Vaccination in the immunotherapy of glioblastoma. Human vaccines & immunotherapeutics. 2018; 14(2); 255-268. [PubMed: 29087782].
  369. Koski et al., 2012: Koski GK, Koldovsky U, Xu S, Mick R, Sharma A, Fitzpatrick E, Weinstein S, Nisenbaum H, Levine BL, Fox K, Zhang P, Czerniecki BJ. A novel dendritic cell-based immunization approach for the induction of durable Th1-polarized anti-HER-2/neu responses in women with early breast cancer. Journal of immunotherapy (Hagerstown, Md. : 1997). 2012; 35(1); 54-65. [PubMed: 22130160].
  370. Kouiavskaia et al., 2009: Kouiavskaia DV, Berard CA, Datena E, Hussain A, Dawson N, Klyushnenkova EN, Alexander RB. Vaccination with agonist peptide PSA: 154-163 (155L) derived from prostate specific antigen induced CD8 T-cell response to the native peptide PSA: 154-163 but failed to induce the reactivity against tumor targets expressing PSA: a phase 2 study in patients with recurrent prostate cancer. Journal of immunotherapy (Hagerstown, Md. : 1997). 2009; 32(6); 655-666. [PubMed: 19483644].
  371. Kozłowska et al., 2013: Kozłowska A, Mackiewicz J, Mackiewicz A. Therapeutic gene modified cell based cancer vaccines. Gene. 2013; 525(2); 200-207. [PubMed: 23566846].
  372. Krishnadas et al., 2015: Krishnadas DK, Shusterman S, Bai F, Diller L, Sullivan JE, Cheerva AC, George RE, Lucas KG. A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma. Cancer immunology, immunotherapy : CII. 2015; 64(10); 1251-1260. [PubMed: 26105625].
  373. Krown et al., 1978: Krown SE, Hilal EY, Pinsky CM, Hirshaut Y, Wanebo HJ, Hansen JA, Huvos AG, Oettgen HF. Intralesional injection of the methanol extraction residue of Bacillus Calmette-Guerin (MER) into cutaneous metastases of malignant melanoma. Cancer. 1978; 42(6); 2648-2660. [PubMed: 728866].
  374. Kruit et al., 2013: Kruit WH, Suciu S, Dreno B, Mortier L, Robert C, Chiarion-Sileni V, Maio M, Testori A, Dorval T, Grob JJ, Becker JC, Spatz A, Eggermont AM, Louahed J, Lehmann FF, Brichard VG, Keilholz U. Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: results of a randomized phase II study of the European Organisation for Research and Treatment of Cancer Melanoma Group in Metastatic Melanoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013; 31(19); 2413-2420. [PubMed: 23715572].
  375. Kuai et al., 2020: Kuai R, Singh PB, Sun X, Xu C, Najafabadi AH, Scheetz L, Yuan W, Xu Y, Hong H, Keskin DB, Wu CJ, Jain R, Schwendeman A, Moon JJ. Robust anti-tumor T cell response with efficient intratumoral infiltration by nanodisc cancer immunotherapy. Advanced therapeutics. 2020; 3(9); . [PubMed: 38317797].
  376. Kubuschok et al., 2000: Kubuschok B, Cochlovius C, Jung W, Schmits R, Trümper L, Hartmann F, Renner C, Pfreundschuh M. Gene-modified spontaneous Epstein-Barr virus-transformed lymphoblastoid cell lines as autologous cancer vaccines: mutated p21 ras oncogene as a model. Cancer gene therapy. 2000; 7(9); 1231-1240. [PubMed: 11023195].
  377. Kudela et al., 2011: Kudela P, Sun Z, Fourcade J, Janjic B, Kirkwood JM, Maillere B, Zarour HM. Epitope hierarchy of spontaneous CD4+ T cell responses to LAGE-1. Journal of immunology (Baltimore, Md. : 1950). 2011; 186(1); 312-322. [PubMed: 21131422].
  378. Kurtzberg et al., 2020: Kurtzberg J, Abdel-Azim H, Carpenter P, Chaudhury S, Horn B, Mahadeo K, Nemecek E, Neudorf S, Prasad V, Prockop S, Quigg T, Satwani P, Cheng A, Burke E, Hayes J, Skerrett D. A Phase 3, Single-Arm, Prospective Study of Remestemcel-L, Ex Vivo Culture-Expanded Adult Human Mesenchymal Stromal Cells for the Treatment of Pediatric Patients Who Failed to Respond to Steroid Treatment for Acute Graft-versus-Host Disease. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 2020; 26(5); 845-854. [PubMed: 32018062].
  379. Kwiatkowska-Borowczyk et al., 2018: Kwiatkowska-Borowczyk E, CzerwiÅ„ska P, Mackiewicz J, Gryska K, Kazimierczak U, Tomela K, PrzybyÅ‚a A, KozÅ‚owska AK, Galus Å, Kwinta Å, Dondajewska E, GÄ…bka-Buszek A, Å»akowska M, Mackiewicz A. Whole cell melanoma vaccine genetically modified to stem cells like phenotype generates specific immune responses to ALDH1A1 and long-term survival in advanced melanoma patients. Oncoimmunology. 2018; 7(11); e1509821. [PubMed: 30377573].
  380. Kyriakopoulos et al., 2020: Kyriakopoulos CE, Eickhoff JC, Ferrari AC, Schweizer MT, Wargowski E, Olson BM, McNeel DG. Multicenter Phase I Trial of a DNA Vaccine Encoding the Androgen Receptor Ligand-binding Domain (pTVG-AR, MVI-118) in Patients with Metastatic Prostate Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2020; 26(19); 5162-5171. [PubMed: 32513836].
  381. Kyte et al., 2016: Kyte JA, Aamdal S, Dueland S, Sæbøe-Larsen S, Inderberg EM, Madsbu UE, Skovlund E, Gaudernack G, Kvalheim G. Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells. Oncoimmunology. 2016; 5(11); e1232237. [PubMed: 27999747].
  382. La et al., 2012: La Rosa C, Longmate J, Lacey SF, Kaltcheva T, Sharan R, Marsano D, Kwon P, Drake J, Williams B, Denison S, Broyer S, Couture L, Nakamura R, Dadwal S, Kelsey MI, Krieg AM, Diamond DJ, Zaia JA. Clinical evaluation of safety and immunogenicity of PADRE-cytomegalovirus (CMV) and tetanus-CMV fusion peptide vaccines with or without PF03512676 adjuvant. The Journal of infectious diseases. 2012; 205(8); 1294-1304. [PubMed: 22402037].
  383. La et al., 2017: La Rosa C, Longmate J, Martinez J, Zhou Q, Kaltcheva TI, Tsai W, Drake J, Carroll M, Wussow F, Chiuppesi F, Hardwick N, Dadwal S, Aldoss I, Nakamura R, Zaia JA, Diamond DJ. MVA vaccine encoding CMV antigens safely induces durable expansion of CMV-specific T cells in healthy adults. Blood. 2017; 129(1); 114-125. [PubMed: 27760761].
  384. Lacy et al., 2009: Lacy MQ, Mandrekar S, Dispenzieri A, Hayman S, Kumar S, Buadi F, Dingli D, Litzow M, Wettstein P, Padley D, Kabat B, Gastineau D, Rajkumar SV, Gertz MA. Idiotype-pulsed antigen-presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival. American journal of hematology. 2009; 84(12); 799-802. [PubMed: 19899131].
  385. Lange et al., 2013: Lange S, Lampe J, Bossow S, Zimmermann M, Neubert W, Bitzer M, Lauer UM. A novel armed oncolytic measles vaccine virus for the treatment of cholangiocarcinoma. Human gene therapy. 2013; 24(5); 554-564. [PubMed: 23550539].
  386. Lattanzi et al., 2018: Lattanzi M, Han J, Moran U, Utter K, Tchack J, Sabado RL, Berman R, Shapiro R, Huang HH, Osman I, Bhardwaj N, Pavlick AC. Adjuvant NY-ESO-1 vaccine immunotherapy in high-risk resected melanoma: a retrospective cohort analysis. Journal for immunotherapy of cancer. 2018; 6(1); 38. [PubMed: 29773080].
  387. Lauer et al., 2018: Lauer UM, Schell M, Beil J, Berchtold S, Koppenhöfer U, Glatzle J, Königsrainer A, Möhle R, Nann D, Fend F, Pfannenberg C, Bitzer M, Malek NP. Phase I Study of Oncolytic Vaccinia Virus GL-ONC1 in Patients with Peritoneal Carcinomatosis. Clinical cancer research : an official journal of the American Association for Cancer Research. 2018; 24(18); 4388-4398. [PubMed: 29773661].
  388. Lawatscheck et al., 2007: Lawatscheck R, Aleksaite E, Schenk JA, Micheel B, Jandrig B, Holland G, Sasnauskas K, Gedvilaite A, Ulrich RG. Chimeric polyomavirus-derived virus-like particles: the immunogenicity of an inserted peptide applied without adjuvant to mice depends on its insertion site and its flanking linker sequence. Viral immunology. 2007; 20(3); 453-460. [PubMed: 17931115].
  389. Lazarus et al., 2005: Lazarus HM, Koc ON, Devine SM, Curtin P, Maziarz RT, Holland HK, Shpall EJ, McCarthy P, Atkinson K, Cooper BW, Gerson SL, Laughlin MJ, Loberiza FR Jr, Moseley AB, Bacigalupo A. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 2005; 11(5); 389-398. [PubMed: 15846293].
  390. Le et al., 2012: Le DT, Dubenksy TW Jr, Brockstedt DG. Clinical development of Listeria monocytogenes-based immunotherapies. Seminars in oncology. 2012; 39(3); 311-322. [PubMed: 22595054].
  391. Le et al., 2013: Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S, Zheng L, Diaz LA Jr, Donehower RC, Jaffee EM, Laheru DA. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. Journal of immunotherapy (Hagerstown, Md. : 1997). 2013; 36(7); 382-389. [PubMed: 23924790].
  392. Lee et al., 2005: Lee J, Fassnacht M, Nair S, Boczkowski D, Gilboa E. Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumor-associated fibroblasts. Cancer research. 2005; 65(23); 11156-11163. [PubMed: 16322266].
  393. Lee et al., 2007: Lee ST, Neelapu SS, Kwak LW. Therapeutic vaccine for lymphoma. Yonsei medical journal. 2007; 48(1); 1-10. [PubMed: 17326239].
  394. Lee et al., 2017: Lee JM, Lee MH, Garon E, Goldman JW, Salehi-Rad R, Baratelli FE, Schaue D, Wang G, Rosen F, Yanagawa J, Walser TC, Lin Y, Park SJ, Adams S, Marincola FM, Tumeh PC, Abtin F, Suh R, Reckamp KL, Lee G, Wallace WD, Lee S, Zeng G, Elashoff DA, Sharma S, Dubinett SM. Phase I Trial of Intratumoral Injection of CCL21 Gene-Modified Dendritic Cells in Lung Cancer Elicits Tumor-Specific Immune Responses and CD8+ T-cell Infiltration. Clinical cancer research : an official journal of the American Association for Cancer Research. 2017; 23(16); 4556-4568. [PubMed: 28468947].
  395. Lee et al., 2018: Lee SJ, Kim HJ, Huh YM, Kim IW, Jeong JH, Kim JC, Kim JD. Functionalized Magnetic PLGA Nanospheres for Targeting and Bioimaging of Breast Cancer. Journal of nanoscience and nanotechnology. 2018; 18(3); 1542-1547. [PubMed: 29448628].
  396. Leitner et al., 2003: Leitner WW, Hwang LN, deVeer MJ, Zhou A, Silverman RH, Williams BR, Dubensky TW, Ying H, Restifo NP. Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nature medicine. 2003; 9(1); 33-39. [PubMed: 12496961].
  397. Leitner et al., 2004: Leitner WW, Hwang LN, Bergmann-Leitner ES, Finkelstein SE, Frank S, Restifo NP. Apoptosis is essential for the increased efficacy of alphaviral replicase-based DNA vaccines. Vaccine. 2004; 22(11-12); 1537-1544. [PubMed: 15063579].
  398. Leslie et al., 2007: Leslie MC, Zhao YJ, Lachman LB, Hwu P, Wu GJ, Bar-Eli M. Immunization against MUC18/MCAM, a novel antigen that drives melanoma invasion and metastasis. Gene therapy. 2007; 14(4); 316-323. [PubMed: 17024104].
  399. Lesterhuis et al., 2006: Lesterhuis WJ, de Vries IJ, Schuurhuis DH, Boullart AC, Jacobs JF, de Boer AJ, Scharenborg NM, Brouwer HM, van de Rakt MW, Figdor CG, Ruers TJ, Adema GJ, Punt CJ. Vaccination of colorectal cancer patients with CEA-loaded dendritic cells: antigen-specific T cell responses in DTH skin tests. Annals of oncology : official journal of the European Society for Medical Oncology. 2006; 17(6); 974-980. [PubMed: 16600979].
  400. Li et al., 2013: Li L, Yang G, Ren C, Tanimoto R, Hirayama T, Wang J, Hawke D, Kim SM, Lee JS, Goltsov AA, Park S, Ittmann MM, Troncoso P, Thompson TC. Glioma pathogenesis-related protein 1 induces prostate cancer cell death through Hsc70-mediated suppression of AURKA and TPX2. Molecular oncology. 2013; 7(3); 484-496. [PubMed: 23333597].
  401. Li et al., 2016: Li Y, Li RC, Ye Q, Li C, Liu YP, Ma X, Li Y, Zhao H, Chen X, Assudani D, Karkada N, Han HH, Van Der Meeren O, Mesaros N. Safety, immunogenicity and persistence of immune response to the combined diphtheria, tetanus, acellular pertussis, poliovirus and Haemophilus influenzae type b conjugate vaccine (DTPa-IPV/Hib) administered in Chinese infants. Human vaccines & immunotherapeutics. 2016; ; 1-11. [PubMed: 27768515].
  402. Li et al., 2017: Li J, Chen J, Li X, Qian Y. Vaccination efficacy with marrow mesenchymal stem cell against cancer was enhanced under simulated microgravity. Biochemical and biophysical research communications. 2017; 485(3); 606-613. [PubMed: 28238782].
  403. Li et al., 2021: Li T, Zhao L, Yang Y, Wang Y, Zhang Y, Guo J, Chen G, Qin P, Xu B, Ma B, Zhang F, Shang Y, Li Q, Zhang K, Yuan D, Feng C, Ma Y, Liu Z, Tian Z, Li H, Wang S, Gao Q. T Cells Expanded from PD-1(+) Peripheral Blood Lymphocytes Share More Clones with Paired Tumor-Infiltrating Lymphocytes. Cancer research. 2021; 81(8); 2184-2194. [PubMed: 33408117].
  404. Liao et al., 2006: Liao JC, Gregor P, Wolchok JD, Orlandi F, Craft D, Leung C, Houghton AN, Bergman PJ. Vaccination with human tyrosinase DNA induces antibody responses in dogs with advanced melanoma. Cancer immunity. 2006; 6; 8. [PubMed: 16626110].
  405. Lieberman et al., 1975: Lieberman R, Wybran J, Epstein W. The immunologic and histopathologic changes of BCG-mediated tumor regression in patients with malignant melanoma. Cancer. 1975; 35(3); 756-777. [PubMed: 234295].
  406. Lienard et al., 2009: Lienard D, Avril MF, Le Gal FA, Baumgaertner P, Vermeulen W, Blom A, Geldhof C, Rimoldi D, Pagliusi S, Romero P, Dietrich PY, Corvaia N, Speiser DE. Vaccination of melanoma patients with Melan-A/Mart-1 peptide and Klebsiella outer membrane protein p40 as an adjuvant. Journal of immunotherapy (Hagerstown, Md. : 1997). 2009; 32(8); 875-883. [PubMed: 19752746].
  407. Lilleby et al., 2017: Lilleby W, Gaudernack G, Brunsvig PF, Vlatkovic L, Schulz M, Mills K, Hole KH, Inderberg EM. Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer immunology, immunotherapy : CII. 2017; 66(7); 891-901. [PubMed: 28391357].
  408. Lin et al., 2016: Lin HC, Chao YH, Wu KH, Yen TY, Hsu YL, Hsieh TH, Wei HM, Wu JL, Muo CH, Hwang KP, Peng CT, Lin CC, Li TC. Increased risk of herpes zoster in children with cancer: A nationwide population-based cohort study. Medicine. 2016; 95(30); e4037. [PubMed: 27472677].
  409. Lindencrona et al., 2004: Lindencrona JA, Preiss S, Kammertoens T, Schüler T, Piechocki M, Wei WZ, Seliger B, Blankenstein T, Kiessling R. CD4+ T cell-mediated HER-2/neu-specific tumor rejection in the absence of B cells. International journal of cancer. Journal international du cancer. 2004; 109(2); 259-264. [PubMed: 14750178].
  410. Lindsey et al., 2006: Lindsey KR, Gritz L, Sherry R, Abati A, Fetsch PA, Goldfeder LC, Gonzales MI, Zinnack KA, Rogers-Freezer L, Haworth L, Mavroukakis SA, White DE, Steinberg SM, Restifo NP, Panicali DL, Rosenberg SA, Topalian SL. Evaluation of prime/boost regimens using recombinant poxvirus/tyrosinase vaccines for the treatment of patients with metastatic melanoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2006; 12(8); 2526-2537. [PubMed: 16638862].
  411. Lipton et al., 1983: Lipton A, Harvey HA, Lawrence B, Gottlieb R, Kukrika M, Dixon R, Graham W, Miller S, Heckard R, Schelzel D, White DS. Corynebacterium parvum versus BCG adjuvant immunotherapy in human malignant melanoma. Cancer. 1983; 51(1); 57-60. [PubMed: 6821809].
  412. Lipton et al., 1991: Lipton A, Harvey HA, Balch CM, Antle CE, Heckard R, Bartolucci AA. Corynebacterium parvum versus bacille Calmette-Guérin adjuvant immunotherapy of stage II malignant melanoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1991; 9(7); 1151-1156. [PubMed: 2045856].
  413. Liu et al., 2011: Liu Y, Tian X, Leitner WW, Aldridge ME, Zheng J, Yu Z, Restifo NP, Weiss R, Scheiblhofer S, Xie C, Sun R, Cheng G, Zeng G. Polymeric structure and host Toll-like receptor 4 dictate immunogenicity of NY-ESO-1 antigen in vivo. The Journal of biological chemistry. 2011; 286(43); 37077-37084. [PubMed: 21900253].
  414. Liu et al., 2013: Liu H, Geng S, Feng C, Xie X, Wu B, Chen X, Zou Q, Wang S, Cui J, Xing R, Li W, Lu Y, Wang B. A DNA vaccine targeting p42.3 induces protective antitumor immunity via eliciting cytotoxic CD8+T lymphocytes in a murine melanoma model. Human vaccines & immunotherapeutics. 2013; 9(10); 2196-2202. [PubMed: 24051432].
  415. Liu et al., 2017: Liu Z, Yang Y, Zhang X, Wang H, Xu W, Wang H, Xiao F, Bai Z, Yao H, Ma X, Jin L, Wu C, Seth P, Zhang Z, Wang L. An Oncolytic Adenovirus Encoding Decorin and Granulocyte Macrophage Colony Stimulating Factor Inhibits Tumor Growth in a Colorectal Tumor Model by Targeting Pro-Tumorigenic Signals and via Immune Activation. Human gene therapy. 2017; 28(8); 667-680. [PubMed: 28530155].
  416. Lladser et al., 2010: Lladser A, Ljungberg K, Tufvesson H, Tazzari M, Roos AK, Quest AF, Kiessling R. Intradermal DNA electroporation induces survivin-specific CTLs, suppresses angiogenesis and confers protection against mouse melanoma. Cancer immunology, immunotherapy : CII. 2010; 59(1); 81-92. [PubMed: 19526360].
  417. Lo et al., 2005: Lo HW, Day CP, Hung MC. Cancer-specific gene therapy. Advances in genetics. 2005; 54; 235-255. [PubMed: 16096014].
  418. Lode et al., 2000: Lode HN, Pertl U, Xiang R, Gaedicke G, Reisfeld RA. Tyrosine hydroxylase-based DNA-vaccination is effective against murine neuroblastoma. Medical and pediatric oncology. 2000; 35(6); 641-646. [PubMed: 11107137].
  419. LoGuidice et al., 2016: LoGuidice A, Houlihan A, Deans R. Multipotent adult progenitor cells on an allograft scaffold facilitate the bone repair process. Journal of tissue engineering. 2016; 7; 2041731416656148. [PubMed: 27493716].
  420. Lohmueller et al., 2016: Lohmueller JJ, Sato S, Popova L, Chu IM, Tucker MA, Barberena R, Innocenti GM, Cudic M, Ham JD, Cheung WC, Polakiewicz RD, Finn OJ. Antibodies elicited by the first non-viral prophylactic cancer vaccine show tumor-specificity and immunotherapeutic potential. Scientific reports. 2016; 6; 31740. [PubMed: 27545199].
  421. Longenecker et al., 1993: Longenecker BM, Reddish M, Koganty R, MacLean GD. Immune responses of mice and human breast cancer patients following immunization with synthetic sialyl-Tn conjugated to KLH plus detox adjuvant. Annals of the New York Academy of Sciences. 1993; 690; 276-291. [PubMed: 7690215].
  422. Lopes et al., 2006: Lopes L, Fletcher K, Ikeda Y, Collins M. Lentiviral vector expression of tumour antigens in dendritic cells as an immunotherapeutic strategy. Cancer immunology, immunotherapy : CII. 2006; 55(8); 1011-1016. [PubMed: 16311731].
  423. Loskog et al., 2004: Loskog A, Dzojic H, Vikman S, Ninalga C, Essand M, Korsgren O, Totterman TH. Adenovirus CD40 ligand gene therapy counteracts immune escape mechanisms in the tumor Microenvironment. Journal of immunology (Baltimore, Md. : 1950). 2004; 172(11); 7200-7205. [PubMed: 15153545].
  424. Lotem et al., 2004: Lotem M, Shiloni E, Pappo I, Drize O, Hamburger T, Weitzen R, Isacson R, Kaduri L, Merims S, Frankenburg S, Peretz T. Interleukin-2 improves tumour response to DNP-modified autologous vaccine for the treatment of metastatic malignant melanoma. British journal of cancer. 2004; 90(4); 773-780. [PubMed: 14970852].
  425. Lotem et al., 2009: Lotem M, Machlenkin A, Hamburger T, Nissan A, Kadouri L, Frankenburg S, Gimmon Z, Elias O, David IB, Kuznetz A, Shiloni E, Peretz T. Autologous melanoma vaccine induces antitumor and self-reactive immune responses that affect patient survival and depend on MHC class II expression on vaccine cells. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009; 15(15); 4968-4977. [PubMed: 19602547].
  426. Lu et al., 2006: Lu Y, Xu LC, Parker N, Westrick E, Reddy JA, Vetzel M, Low PS, Leamon CP. Preclinical pharmacokinetics, tissue distribution, and antitumor activity of a folate-hapten conjugate-targeted immunotherapy in hapten-immunized mice. Molecular cancer therapeutics. 2006; 5(12); 3258-3267. [PubMed: 17172429].
  427. Lu et al., 2009: Lu Y, Klein PJ, Westrick E, Xu LC, Santhapuram HK, Bloomfield A, Howard SJ, Vlahov IR, Ellis PR, Low PS, Leamon CP. Strategy to prevent drug-related hypersensitivity in folate-targeted hapten immunotherapy of cancer. The AAPS journal. 2009; 11(3); 628-638. [PubMed: 19728104].
  428. Lu et al., 2016: Lu S, Ren J, Li Q, Jiang Z, Chen Y, Xu K, Ruan B, Yang S, Xie T, Yang L, Li J, Yao J. Effects of hepatitis B vaccine boosters on anti-HBs-negative children after primary immunization. Human vaccines & immunotherapeutics. 2016; ; 0. [PubMed: 27905821].
  429. Lubaroff et al., 2009: Lubaroff DM, Konety BR, Link B, Gerstbrein J, Madsen T, Shannon M, Howard J, Paisley J, Boeglin D, Ratliff TL, Williams RD. Phase I clinical trial of an adenovirus/prostate-specific antigen vaccine for prostate cancer: safety and immunologic results. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009; 15(23); 7375-7380. [PubMed: 19920098].
  430. Lutz et al., 2011: Lutz E, Yeo CJ, Lillemoe KD, Biedrzycki B, Kobrin B, Herman J, Sugar E, Piantadosi S, Cameron JL, Solt S, Onners B, Tartakovsky I, Choi M, Sharma R, Illei PB, Hruban RH, Abrams RA, Le D, Jaffee E, Laheru D. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A Phase II trial of safety, efficacy, and immune activation. Annals of surgery. 2011; 253(2); 328-335. [PubMed: 21217520].
  431. Luxembourg et al., 2015: Luxembourg A, Moreira ED Jr, Samakoses R, Kim KH, Sun X, Maansson R, Moeller E, Christiano S, Chen J. Phase III, randomized controlled trial in girls 9-15 years old to evaluate lot consistency of a novel nine-valent human papillomavirus L1 virus-like particle vaccine. Human vaccines & immunotherapeutics. 2015; 11(6); 1306-1312. [PubMed: 26086587].
  432. Luxembourg et al., 2015: Luxembourg A, Brown D, Bouchard C, Giuliano AR, Iversen OE, Joura EA, Penny ME, Restrepo JA, Romaguera J, Maansson R, Moeller E, Ritter M, Chen J. Phase II studies to select the formulation of a multivalent HPV L1 virus-like particle (VLP) vaccine. Human vaccines & immunotherapeutics. 2015; 11(6); 1313-1322. [PubMed: 25912208].
  433. Ly et al., 2013: Ly LV, Sluijter M, van der Burg SH, Jager MJ, van Hall T. Effective cooperation of monoclonal antibody and peptide vaccine for the treatment of mouse melanoma. Journal of immunology (Baltimore, Md. : 1950). 2013; 190(1); 489-496. [PubMed: 23203930].
  434. Ma et al., 2012: Ma Y, Xu YC, Tang L, Zhang Z, Wang J, Wang HX. Cytokine-induced killer (CIK) cell therapy for patients with hepatocellular carcinoma: efficacy and safety. Experimental hematology & oncology. 2012; 1(1); 11. [PubMed: 23210562].
  435. MacGregor et al., 1977: MacGregor AB, Falk RE, Landi S, Ambus U, Samuel ES, Langer B. Adjuvant immunostimulation in malignant melanoma with oral Bacille Calmette-Guérin. Canadian journal of surgery. Journal canadien de chirurgie. 1977; 20(1); 25-30. [PubMed: 832200].
  436. Mahipal et al., 2019: Mahipal A, Ejadi S, Gnjatic S, Kim-Schulze S, Lu H, Ter Meulen JH, Kenney R, Odunsi K. First-in-human phase 1 dose-escalating trial of G305 in patients with advanced solid tumors expressing NY-ESO-1. Cancer immunology, immunotherapy : CII. 2019; 68(7); 1211-1222. [PubMed: 31069460].
  437. Mahmud et al., 2018: Mahmud SM, Bozat-Emre S, Mostaço-Guidolin LC, Marrie RA. Registry Cohort Study to Determine Risk for Multiple Sclerosis after Vaccination for Pandemic Influenza A(H1N1) with Arepanrix, Manitoba, Canada. Emerging infectious diseases. 2018; 24(7); 1267-1274. [PubMed: 29912696].
  438. Mahoney et al., 2019: Mahoney KM, Shukla SA, Patsoukis N, Chaudhri A, Browne EP, Arazi A, Eisenhaure TM, Pendergraft WF 3rd, Hua P, Pham HC, Bu X, Zhu B, Hacohen N, Fritsch EF, Boussiotis VA, Wu CJ, Freeman GJ. A secreted PD-L1 splice variant that covalently dimerizes and mediates immunosuppression. Cancer immunology, immunotherapy : CII. 2019; 68(3); 421-432. [PubMed: 30564891].
  439. Mailliard et al., 2004: Mailliard RB, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens CM, Kapsenberg ML, Kirkwood JM, Storkus WJ, Kalinski P. alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer research. 2004; 64(17); 5934-5937. [PubMed: 15342370].
  440. Mandl et al., 1998: Mandl S, Sigal LJ, Rock KL, Andino R. Poliovirus vaccine vectors elicit antigen-specific cytotoxic T cells and protect mice against lethal challenge with malignant melanoma cells expressing a model antigen. Proceedings of the National Academy of Sciences of the United States of America. 1998; 95(14); 8216-8221. [PubMed: 9653167].
  441. Manegold and Thatcher, 2007: Manegold C, Thatcher N. Survival improvement in thoracic cancer: progress from the last decade and beyond. Lung cancer (Amsterdam, Netherlands). 2007; 57 Suppl 2; S3-5. [PubMed: 17686443].
  442. Manley et al., 2011: Manley CA, Leibman NF, Wolchok JD, Rivière IC, Bartido S, Craft DM, Bergman PJ. Xenogeneic murine tyrosinase DNA vaccine for malignant melanoma of the digit of dogs. Journal of veterinary internal medicine / American College of Veterinary Internal Medicine. 2011; 25(1); 94-99. [PubMed: 21143299].
  443. Maraskovsky et al., 2004: Maraskovsky E, Sjölander S, Drane DP, Schnurr M, Le TT, Mateo L, Luft T, Masterman KA, Tai TY, Chen Q, Green S, Sjölander A, Pearse MJ, Lemonnier FA, Chen W, Cebon J, Suhrbier A. NY-ESO-1 protein formulated in ISCOMATRIX adjuvant is a potent anticancer vaccine inducing both humoral and CD8+ t-cell-mediated immunity and protection against NY-ESO-1+ tumors. Clinical cancer research : an official journal of the American Association for Cancer Research. 2004; 10(8); 2879-2890. [PubMed: 15102697].
  444. Marshall et al., 2005: Marshall JL, Gulley JL, Arlen PM, Beetham PK, Tsang KY, Slack R, Hodge JW, Doren S, Grosenbach DW, Hwang J, Fox E, Odogwu L, Park S, Panicali D, Schlom J. Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005; 23(4); 720-731. [PubMed: 15613691].
  445. Marshall, 2003: Marshall J. Carcinoembryonic antigen-based vaccines. Seminars in oncology. 2003; 30(3 Suppl 8); 30-36. [PubMed: 12881810].
  446. Maruyama et al., 2000: Maruyama H, Zaloudik J, Li W, Sperlagh M, Koido T, Somasundaram R, Scheck S, Prewett M, Herlyn D. Cancer vaccines: single-epitope anti-idiotype vaccine versus multiple-epitope antigen vaccine. Cancer immunology, immunotherapy : CII. 2000; 49(3); 123-132. [PubMed: 10881691].
  447. Mastelic-Gavillet et al., 2019: Mastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO, Kandalaft LE. Personalized Dendritic Cell Vaccines-Recent Breakthroughs and Encouraging Clinical Results. Frontiers in immunology. 2019; 10; 766. [PubMed: 31031762].
  448. Matheson and Goa, 2000: Matheson AJ, Goa KL. Diphtheria-tetanus-acellular pertussis vaccine adsorbed (Triacelluvax; DTaP3-CB): a review of its use in the prevention of Bordetella pertussis infection. Paediatric drugs. 2000; 2(2); 139-159. [PubMed: 10937466].
  449. Mattarollo et al., 2013: Mattarollo SR, Steegh K, Li M, Duret H, Foong Ngiow S, Smyth MJ. Transient Foxp3(+) regulatory T-cell depletion enhances therapeutic anticancer vaccination targeting the immune-stimulatory properties of NKT cells. Immunology and cell biology. 2013; 91(1); 105-114. [PubMed: 23090488].
  450. Mazumder et al., 2017: Mazumder S, Johnson JM, Swank V, Dvorina N, Martelli E, Ko J, Tuohy VK. Primary Immunoprevention of Epithelial Ovarian Carcinoma by Vaccination against the Extracellular Domain of Anti-Müllerian Hormone Receptor II. Cancer prevention research (Philadelphia, Pa.). 2017; 10(11); 612-624. [PubMed: 29093011].
  451. Mazumder et al., 2022: Mazumder S, Swank V, Dvorina N, Johnson JM, Tuohy VK. Formulation of an ovarian cancer vaccine with the squalene-based AddaVax adjuvant inhibits the growth of murine epithelial ovarian carcinomas. Clinical and experimental vaccine research. 2022; 11(2); 163-172. [PubMed: 35799868].
  452. McCaffery et al., 1996: McCaffery M, Yao TJ, Williams L, Livingston PO, Houghton AN, Chapman PB. Immunization of melanoma patients with BEC2 anti-idiotypic monoclonal antibody that mimics GD3 ganglioside: enhanced immunogenicity when combined with adjuvant. Clinical cancer research : an official journal of the American Association for Cancer Research. 1996; 2(4); 679-686. [PubMed: 9816218].
  453. McCormick et al., 2016: McCormick KA, Coveler AL, Rossi GR, Vahanian NN, Link C, Chiorean EG. Pancreatic cancer: Update on immunotherapies and algenpantucel-L. Human vaccines & immunotherapeutics. 2016; 12(3); 563-575. [PubMed: 26619245].
  454. McKenzie et al., 1998: McKenzie IF, Apostolopoulos V, Lees C, Xing PX, Lofthouse S, Osinski C, Popovski V, Acres B, Pietersz G. Oxidised mannan antigen conjugates preferentially stimulate T1 type immune responses. Veterinary immunology and immunopathology. 1998; 63(1-2); 185-190. [PubMed: 9656453].
  455. McKenzie et al., 2004: McKenzie T, Liu Y, Fanale M, Swisher SG, Chada S, Hunt KK. Combination therapy of Ad-mda7 and trastuzumab increases cell death in Her-2/neu-overexpressing breast cancer cells. Surgery. 2004; 136(2); 437-442. [PubMed: 15300212].
  456. McNeel et al., 2009: McNeel DG, Dunphy EJ, Davies JG, Frye TP, Johnson LE, Staab MJ, Horvath DL, Straus J, Alberti D, Marnocha R, Liu G, Eickhoff JC, Wilding G. Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2009; 27(25); 4047-4054. [PubMed: 19636017].
  457. McNeil et al., 2007: McNeil SA, Noya F, Dionne M, Predy G, Meekison W, Ojah C, Ferro S, Mills EL, Langley JM, Halperin SA. Comparison of the safety and immunogenicity of concomitant and sequential administration of an adult formulation tetanus and diphtheria toxoids adsorbed combined with acellular pertussis (Tdap) vaccine and trivalent inactivated influenza vaccine in adults. Vaccine. 2007; 25(17); 3464-3474. [PubMed: 17270320].
  458. Mehendale et al., 2008: Mehendale S, van Lunzen J, Clumeck N, Rockstroh J, Vets E, Johnson PR, Anklesaria P, Barin B, Boaz M, Kochhar S, Lehrman J, Schmidt C, Peeters M, Schwarze-Zander C, Kabamba K, Glaunsinger T, Sahay S, Thakar M, Paranjape R, Gilmour J, Excler JL, Fast P, Heald AE. A phase 1 study to evaluate the safety and immunogenicity of a recombinant HIV type 1 subtype C adeno-associated virus vaccine. AIDS research and human retroviruses. 2008; 24(6); 873-880. [PubMed: 18544020].
  459. Meleshko et al., 2017: Meleshko AN, Petrovskaya NA, Savelyeva N, Vashkevich KP, Doronina SN, Sachivko NV. Phase I clinical trial of idiotypic DNA vaccine administered as a complex with polyethylenimine to patients with B-cell lymphoma. Human vaccines & immunotherapeutics. 2017; 13(6); 1-6. [PubMed: 28272989].
  460. Melssen et al., 2019: Melssen MM, Petroni GR, Chianese-Bullock KA, Wages NA, Grosh WW, Varhegyi N, Smolkin ME, Smith KT, Galeassi NV, Deacon DH, Gaughan EM, Slingluff CL Jr. A multipeptide vaccine plus toll-like receptor agonists LPS or polyICLC in combination with incomplete Freund's adjuvant in melanoma patients. Journal for immunotherapy of cancer. 2019; 7(1); 163. [PubMed: 31248461].
  461. Meng et al., 2001: Meng WS, Butterfield LH, Ribas A, Dissette VB, Heller JB, Miranda GA, Glaspy JA, McBride WH, Economou JS. alpha-Fetoprotein-specific tumor immunity induced by plasmid prime-adenovirus boost genetic vaccination. Cancer research. 2001; 61(24); 8782-8786. [PubMed: 11751399].
  462. Mevorach et al., 2014: Mevorach D, Zuckerman T, Reiner I, Shimoni A, Samuel S, Nagler A, Rowe JM, Or R. Single infusion of donor mononuclear early apoptotic cells as prophylaxis for graft-versus-host disease in myeloablative HLA-matched allogeneic bone marrow transplantation: a phase I/IIa clinical trial. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 2014; 20(1); 58-65. [PubMed: 24140121].
  463. Meyer et al., 2005: Meyer RG, Britten CM, Siepmann U, Petzold B, Sagban TA, Lehr HA, Weigle B, Schmitz M, Mateo L, Schmidt B, Bernhard H, Jakob T, Hein R, Schuler G, Schuler-Thurner B, Wagner SN, Drexler I, Sutter G, Arndtz N, Chaplin P, Metz J, Enk A, Huber C, Wölfel T. A phase I vaccination study with tyrosinase in patients with stage II melanoma using recombinant modified vaccinia virus Ankara (MVA-hTyr). Cancer immunology, immunotherapy : CII. 2005; 54(5); 453-467. [PubMed: 15627214].
  464. MFGS-MOv18-gamma: Retroviral Vector MFGS-MOv18-gamma [https://www.ncbi.nlm.nih.gov/medgen/271119]
  465. Miguel et al., 2012: Miguel A, Herrero MJ, Sendra L, Botella R, Algás R, Sánchez M, Aliño SF. Comparative antitumor effect of preventive versus therapeutic vaccines employing B16 melanoma cells genetically modified to express GM-CSF and B7.2 in a murine model. Toxins. 2012; 4(11); 1058-1081. [PubMed: 23202306].
  466. Miguel et al., 2013: Miguel A, Herrero MJ, Sendra L, Botella R, Algás R, Sánchez M, Aliño SF. Comparative antitumor effect among GM-CSF, IL-12 and GM-CSF+IL-12 genetically modified tumor cell vaccines. Cancer gene therapy. 2013; 20(10); 576-581. [PubMed: 23969885].
  467. Miller et al., 2014: Miller MJ, Foy KC, Overholser JP, Nahta R, Kaumaya PT. HER-3 peptide vaccines/mimics: Combined therapy with IGF-1R, HER-2, and HER-1 peptides induces synergistic antitumor effects against breast and pancreatic cancer cells. Oncoimmunology. 2014; 3(11); e956012. [PubMed: 25941588].
  468. Millman and Pagliuca, 2017: Millman JR, Pagliuca FW. Autologous Pluripotent Stem Cell-Derived β-Like Cells for Diabetes Cellular Therapy. Diabetes. 2017; 66(5); 1111-1120. [PubMed: 28507211].
  469. Mincheff et al., 2000: Mincheff M, Tchakarov S, Zoubak S, Loukinov D, Botev C, Altankova I, Georgiev G, Petrov S, Meryman HT. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a phase I/II clinical trial. European urology. 2000; 38(2); 208-217. [PubMed: 10895014].
  470. Mincheff et al., 2006: Mincheff M, Zoubak S, Makogonenko Y. Immune responses against PSMA after gene-based vaccination for immunotherapy-A: results from immunizations in animals. Cancer gene therapy. 2006; 13(4); 436-444. [PubMed: 16276349].
  471. Mitchell et al., 1994: Mitchell MS, Jakowatz J, Harel W, Dean G, Stevenson L, Boswell WD, Groshen S. Increased effectiveness of interferon alfa-2b following active specific immunotherapy for melanoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1994; 12(2); 402-411. [PubMed: 8113848].
  472. Mitchell et al., 2015: Mitchell DA, Batich KA, Gunn MD, Huang MN, Sanchez-Perez L, Nair SK, Congdon KL, Reap EA, Archer GE, Desjardins A, Friedman AH, Friedman HS, Herndon JE 2nd, Coan A, McLendon RE, Reardon DA, Vredenburgh JJ, Bigner DD, Sampson JH. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature. 2015; 519(7543); 366-369. [PubMed: 25762141].
  473. Mitchell et al., 2018: Mitchell D, Chintala S, Dey M. Plasmacytoid dendritic cell in immunity and cancer. Journal of neuroimmunology. 2018; 322; 63-73. [PubMed: 30049538].
  474. Mittelman et al., 1995: Mittelman A, Chen GZ, Wong GY, Liu C, Hirai S, Ferrone S. Human high molecular weight-melanoma associated antigen mimicry by mouse anti-idiotypic monoclonal antibody MK2-23: modulation of the immunogenicity in patients with malignant melanoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 1995; 1(7); 705-713. [PubMed: 9816036].
  475. Mittendorf et al., 2011: Mittendorf EA, Alatrash G, Xiao H, Clifton GT, Murray JL, Peoples GE. Breast cancer vaccines: ongoing National Cancer Institute-registered clinical trials. Expert review of vaccines. 2011; 10(6); 755-774. [PubMed: 21692698].
  476. Miyauchi et al., 2011: Miyauchi M, Murata M, Shibuya K, Koga-Yamakawa E, Uenishi Y, Kusunose N, Sunagawa M, Yano I, Kashiwazaki Y. Arabino-mycolates derived from cell-wall skeleton of Mycobacterium bovis BCG as a prominent structure for recognition by host immunity. Drug discoveries & therapeutics. 2011; 5(3); 130-135. [PubMed: 22466242].
  477. Miyauchi et al., 2012: Miyauchi M, Murata M, Fukushima A, Sato T, Nakagawa M, Fujii T, Koseki N, Chiba N, Kashiwazaki Y. Optimization of cell-wall skeleton derived from Mycobacterium bovis BCG Tokyo 172 (SMP-105) emulsion in delayed-type hypersensitivity and antitumor models. Drug discoveries & therapeutics. 2012; 6(4); 218-225. [PubMed: 23006993].
  478. Mizote et al., 2014: Mizote Y, Uenaka A, Isobe M, Wada H, Kakimi K, Saika T, Kita S, Koide Y, Oka M, Nakayama E. Production of NY-ESO-1 peptide/DRB1*08:03 tetramers and ex vivo detection of CD4 T-cell responses in vaccinated cancer patients. Vaccine. 2014; 32(8); 957-964. [PubMed: 24397899].
  479. Moehler et al., 2019: Moehler M, Heo J, Lee HC, Tak WY, Chao Y, Paik SW, Yim HJ, Byun KS, Baron A, Ungerechts G, Jonker D, Ruo L, Cho M, Kaubisch A, Wege H, Merle P, Ebert O, Habersetzer F, Blanc JF, Rosmorduc O, Lencioni R, Patt R, Leen AM, Foerster F, Homerin M, Stojkowitz N, Lusky M, Limacher JM, Hennequi M, Gaspar N, McFadden B, De Silva N, Shen D, Pelusio A, Kirn DH, Breitbach CJ, Burke JM. Vaccinia-based oncolytic immunotherapy Pexastimogene Devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: a randomized multicenter Phase IIb trial (TRAVERSE). Oncoimmunology. 2019; 8(8); 1615817. [PubMed: 31413923].
  480. Mohammadzadeh et al., 2018: Mohammadzadeh M, Shirmohammadi M, Ghojazadeh M, Nikniaz L, Raeisi M, Aghdas SAM. Dendritic cells pulsed with prostate-specific membrane antigen in metastatic castration-resistant prostate cancer patients: a systematic review and meta-analysis. Prostate international. 2018; 6(4); 119-125. [PubMed: 30505813].
  481. Mohanty et al., 2007: Mohanty K, Saha A, Pal S, Mallick P, Chatterjee SK, Foon KA, Bhattacharya-Chatterjee M. Anti-tumor immunity induced by an anti-idiotype antibody mimicking human Her-2/neu. Breast cancer research and treatment. 2007; 104(1); 1-11. [PubMed: 17004107].
  482. Mohn et al., 2018: Mohn KG, Smith I, Sjursen H, Cox RJ. Immune responses after live attenuated influenza vaccination. Human vaccines & immunotherapeutics. 2018; 14(3); 571-578. [PubMed: 28933664].
  483. Mordoh et al., 2013: Mordoh J, Tapia IJ, Barrio MM. A word of caution: do not wake sleeping dogs; micrometastases of melanoma suddenly grew after progesterone treatment. BMC cancer. 2013; 13; 132. [PubMed: 23510193].
  484. Moreira et al., 2016: Moreira ED Jr, Block SL, Ferris D, Giuliano AR, Iversen OE, Joura EA, Kosalaraksa P, Schilling A, Van Damme P, Bornstein J, Bosch FX, Pils S, Cuzick J, Garland SM, Huh W, Kjaer SK, Qi H, Hyatt D, Martin J, Moeller E, Ritter M, Baudin M, Luxembourg A. Safety Profile of the 9-Valent HPV Vaccine: A Combined Analysis of 7 Phase III Clinical Trials. Pediatrics. 2016; 138(2); . [PubMed: 27422279].
  485. Morera et al., 2008: Morera Y, Bequet-Romero M, Ayala M, Lamdán H, Agger EM, Andersen P, Gavilondo JV. Anti-tumoral effect of active immunotherapy in C57BL/6 mice using a recombinant human VEGF protein as antigen and three chemically unrelated adjuvants. Angiogenesis. 2008; 11(4); 381-393. [PubMed: 19034678].
  486. Morera et al., 2017: Morera Y, Sánchez J, Bequet-Romero M, Selman-Housein KH, de la Torre A, Hernández-Bernal F, Martín Y, Garabito A, Piñero J, Bermúdez C, de la Torre J, Ayala M, Gavilondo JV. Specific humoral and cellular immune responses in cancer patients undergoing chronic immunization with a VEGF-based therapeutic vaccine. Vaccine. 2017; 35(28); 3582-3590. [PubMed: 28536029].
  487. Morris et al., 2000: Morris JC, Ramsey WJ, Wildner O, Muslow HA, Aguilar-Cordova E, Blaese RM. A phase I study of intralesional administration of an adenovirus vector expressing the HSV-1 thymidine kinase gene (AdV.RSV-TK) in combination with escalating doses of ganciclovir in patients with cutaneous metastatic malignant melanoma. Human gene therapy. 2000; 11(3); 487-503. [PubMed: 10697123].
  488. Morse et al., 2010: Morse MA, Hobeika AC, Osada T, Berglund P, Hubby B, Negri S, Niedzwiecki D, Devi GR, Burnett BK, Clay TM, Smith J, Lyerly HK. An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of Tregs to induce immune responses in humans with advanced cancer. The Journal of clinical investigation. 2010; 120(9); 3234-3241. [PubMed: 20679728].
  489. Morse et al., 2013: Morse MA, Chaudhry A, Gabitzsch ES, Hobeika AC, Osada T, Clay TM, Amalfitano A, Burnett BK, Devi GR, Hsu DS, Xu Y, Balcaitis S, Dua R, Nguyen S, Balint JP Jr, Jones FR, Lyerly HK. Novel adenoviral vector induces T-cell responses despite anti-adenoviral neutralizing antibodies in colorectal cancer patients. Cancer immunology, immunotherapy : CII. 2013; 62(8); 1293-1301. [PubMed: 23624851].
  490. Morse et al., 2013: Morse MA, Niedzwiecki D, Marshall JL, Garrett C, Chang DZ, Aklilu M, Crocenzi TS, Cole DJ, Dessureault S, Hobeika AC, Osada T, Onaitis M, Clary BM, Hsu D, Devi GR, Bulusu A, Annechiarico RP, Chadaram V, Clay TM, Lyerly HK. A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer. Annals of surgery. 2013; 258(6); 879-886. [PubMed: 23657083].
  491. Morton et al., 1992: Morton DL, Foshag LJ, Hoon DS, Nizze JA, Famatiga E, Wanek LA, Chang C, Davtyan DG, Gupta RK, Elashoff R. Prolongation of survival in metastatic melanoma after active specific immunotherapy with a new polyvalent melanoma vaccine. Annals of surgery. 1992; 216(4); 463-482. [PubMed: 1417196].
  492. Mosaheb et al., 2020: Mosaheb MM, Dobrikova EY, Brown MC, Yang Y, Cable J, Okada H, Nair SK, Bigner DD, Ashley DM, Gromeier M. Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nature communications. 2020; 11(1); 524. [PubMed: 31988324].
  493. Mota et al., 2023: Mota I, Patrucco E, Mastini C, Mahadevan NR, Thai TC, Bergaggio E, Cheong TC, Leonardi G, Karaca-Atabay E, Campisi M, Poggio T, Menotti M, Ambrogio C, Longo DL, Klaeger S, Keshishian H, Sztupinszki ZM, Szallasi Z, Keskin DB, Duke-Cohan JS, Reinhold B, Carr SA, Wu CJ, Moynihan KD, Irvine DJ, Barbie DA, Reinherz EL, Voena C, Awad MM, Blasco RB, Chiarle R. ALK peptide vaccination restores the immunogenicity of ALK-rearranged non-small cell lung cancer. Nature cancer. 2023; 4(7); 1016-1035. [PubMed: 37430060].
  494. Motta et al., 2001: Motta I, André F, Lim A, Tartaglia J, Cox WI, Zitvogel L, Angevin E, Kourilsky P. Cross-presentation by dendritic cells of tumor antigen expressed in apoptotic recombinant canarypox virus-infected dendritic cells. Journal of immunology (Baltimore, Md. : 1950). 2001; 167(3); 1795-1802. [PubMed: 11466405].
  495. Moulton et al., 2002: Moulton HM, Yoshihara PH, Mason DH, Iversen PL, Triozzi PL. Active specific immunotherapy with a beta-human chorionic gonadotropin peptide vaccine in patients with metastatic colorectal cancer: antibody response is associated with improved survival. Clinical cancer research : an official journal of the American Association for Cancer Research. 2002; 8(7); 2044-2051. [PubMed: 12114402].
  496. Mpendo et al., 2015: Mpendo J, Mutua G, Nyombayire J, Ingabire R, Nanvubya A, Anzala O, Karita E, Hayes P, Kopycinski J, Dally L, Hannaman D, Egan MA, Eldridge JH, Syvertsen K, Lehrman J, Rasmussen B, Gilmour J, Cox JH, Fast PE, Schmidt C. A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of Electroporated HIV DNA with or without Interleukin 12 in Prime-Boost Combinations with an Ad35 HIV Vaccine in Healthy HIV-Seronegative African Adults. PloS one. 2015; 10(8); e0134287. [PubMed: 26252526].
  497. Muderspach et al., 2000: Muderspach L, Wilczynski S, Roman L, Bade L, Felix J, Small LA, Kast WM, Fascio G, Marty V, Weber J. A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clinical cancer research : an official journal of the American Association for Cancer Research. 2000; 6(9); 3406-3416. [PubMed: 10999722].
  498. Mullane et al., 2013: Mullane KM, Winston DJ, Wertheim MS, Betts RF, Poretz DM, Camacho LH, Pergam SA, Mullane MR, Stek JE, Sterling TM, Zhao Y, Manoff SB, Annunziato PW. Safety and immunogenicity of heat-treated zoster vaccine (ZVHT) in immunocompromised adults. The Journal of infectious diseases. 2013; 208(9); 1375-1385. [PubMed: 23908479].
  499. Muthumani et al., 2017: Muthumani K, Marnin L, Kudchodkar SB, Perales-Puchalt A, Choi H, Agarwal S, Scott VL, Reuschel EL, Zaidi FI, Duperret EK, Wise MC, Kraynyak KA, Ugen KE, Sardesai NY, Joseph Kim J, Weiner DB. Novel prostate cancer immunotherapy with a DNA-encoded anti-prostate-specific membrane antigen monoclonal antibody. Cancer immunology, immunotherapy : CII. 2017; 66(12); 1577-1588. [PubMed: 28819703].
  500. Nagabhushan et al., 2007: Nagabhushan TL, Maneval DC, Benedict WF, Wen SF, Ihnat PM, Engler H, Connor RJ. Enhancement of intravesical delivery with Syn3 potentiates interferon-alpha2b gene therapy for superficial bladder cancer. Cytokine & growth factor reviews. 2007; 18(5-6); 389-394. [PubMed: 17692556].
  501. Nagayama et al., 2010: Nagayama H, Matsumoto K, Isoo N, Ohno H, Takahashi N, Nakaoka T, Shinozaki M, Watanabe M, Inoue Y, Nagamura F, Oyaizu N, Yamashita N. Gastrointestinal bleeding during anti-angiogenic peptide vaccination in combination with gemcitabine for advanced pancreatic cancer. Clinical journal of gastroenterology. 2010; 3(6); 307-317. [PubMed: 26190488].
  502. Nagorsen et al., 2004: Nagorsen D, Servis C, Lévy N, Provenzano M, Dudley ME, Marincola FM, Lévy F. Proteasomal cleavage does not determine immunogenicity of gp100-derived peptides gp100 209-217 and gp100 209-217T210M. Cancer immunology, immunotherapy : CII. 2004; 53(9); 817-824. [PubMed: 15133631].
  503. Narayanan et al., 2004: Narayanan K, Jaramillo A, Benshoff ND, Campbell LG, Fleming TP, Dietz JR, Mohanakumar T. Response of established human breast tumors to vaccination with mammaglobin-A cDNA. Journal of the National Cancer Institute. 2004; 96(18); 1388-1396. [PubMed: 15367572].
  504. Nasser et al., 2020: Nasser R, Rakedzon S, Dickstein Y, Mousa A, Solt I, Peterisel N, Feldman T, Neuberger A. Are all vaccines safe for the pregnant traveller? A systematic review and meta-analysis. Journal of travel medicine. 2020; 27(2); . [PubMed: 31616947].
  505. Nau, 2015: Nau JY. [Zona vaccine, molecular screening of lung cancer]. Revue medicale suisse. 2015; 11(477); 1258-1259. [PubMed: 26211288].
  506. NCBI, 2023: E1M184V peptide, HIV vaccine peptide CID 24204505 [https://pubchem.ncbi.nlm.nih.gov/compound/24204505]
  507. NCIt: C48373: NCIt vaccine ‘Alpha Fetoprotein Plasmid DNA Vaccine’ [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48373]
  508. NCIT_C100099: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C100099]
  509. NCIT_C101094: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C101094]
  510. NCIT_C101262: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C101262]
  511. NCIT_C101777: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C101777]
  512. NCIT_C101891: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C101891]
  513. NCIT_C101892: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C101892]
  514. NCIT_C102541: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C102541]
  515. NCIT_C102751: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C102751]
  516. NCIT_C102753: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C102753]
  517. NCIT_C102782: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C102782]
  518. NCIT_C102787: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C102787]
  519. NCIT_C102879: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C102879]
  520. NCIT_C102978: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C102978]
  521. NCIT_C102982: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C102982]
  522. NCIT_C103192: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C103192]
  523. NCIT_C103823: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C103823]
  524. NCIT_C103830: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C103830]
  525. NCIT_C104419: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C104419]
  526. NCIT_C104734: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C104734]
  527. NCIT_C104737: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C104737]
  528. NCIT_C104738: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C104738]
  529. NCIT_C104743: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C104743]
  530. NCIT_C104747: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C104747]
  531. NCIT_C105806: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C105806]
  532. NCIT_C106242: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C106242]
  533. NCIT_C106257: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C106257]
  534. NCIT_C107159: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C107159]
  535. NCIT_C107169: Allogeneic HLA-A2/4-1BB ligand-expressing Melanoma Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C107169]
  536. NCIT_C107243: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C107243]
  537. NCIT_C107243: PEP-CMV Vaccine (Code C107243) [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI%20Thesaurus&code=C107243]
  538. NCIT_C107685: BC-819 Plasmid/Polyethylenimine Complex [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C107685]
  539. NCIT_C111036: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C111036]
  540. NCIT_C111037: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C111037]
  541. NCIT_C111688: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C111688]
  542. NCIT_C111900: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C111900]
  543. NCIT_C111903: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C111903]
  544. NCIT_C111991: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C111991]
  545. NCIT_C111998: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C111998]
  546. NCIT_C112005: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C112005]
  547. NCIT_C112206: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C112206]
  548. NCIT_C1126: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1126]
  549. NCIT_C113174: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C113174]
  550. NCIT_C113296: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C113296]
  551. NCIT_C113432: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C113432]
  552. NCIT_C113432: NY-ESO-1/GLA-SE Vaccine ID-G305 (Code C113432) [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI%20Thesaurus&code=C113432]
  553. NCIT_C113647: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C113647]
  554. NCIT_C113651: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C113651]
  555. NCIT_C113653: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C113653]
  556. NCIT_C113786: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C113786]
  557. NCIT_C113794: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C113794]
  558. NCIT_C113807: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C113807]
  559. NCIT_C114285: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C114285]
  560. NCIT_C114289: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C114289]
  561. NCIT_C114293: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C114293]
  562. NCIT_C114295: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C114295]
  563. NCIT_C114380: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C114380]
  564. NCIT_C114385: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C114385]
  565. NCIT_C114496: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C114496]
  566. NCIT_C114755: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C114755]
  567. NCIT_C114990: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C114990]
  568. NCIT_C115101: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C115101]
  569. NCIT_C115105: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C115105]
  570. NCIT_C115106: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C115106]
  571. NCIT_C1159: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1159]
  572. NCIT_C115976: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C115976]
  573. NCIT_C116067: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C116067]
  574. NCIT_C116321: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C116321]
  575. NCIT_C116331: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C116331]
  576. NCIT_C116332: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C116332]
  577. NCIT_C116709: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C116709]
  578. NCIT_C116733: Autologous Lymphoma Immunoglobulin-derived scFv-chemokine DNA Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C116733]
  579. NCIT_C116736: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C116736]
  580. NCIT_C116740: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C116740]
  581. NCIT_C116777: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C116777]
  582. NCIT_C116847: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C116847]
  583. NCIT_C116848: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C116848]
  584. NCIT_C116868: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C116868]
  585. NCIT_C116879: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C116879]
  586. NCIT_C116880: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C116880]
  587. NCIT_C116888: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C116888]
  588. NCIT_C116893: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C116893]
  589. NCIT_C116913: Total Tumor RNA-loaded Dendritic Cell Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C116913]
  590. NCIT_C116920: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C116920]
  591. NCIT_C117235: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C117235]
  592. NCIT_C117725: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C117725]
  593. NCIT_C118364: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C118364]
  594. NCIT_C11845: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C11845]
  595. NCIT_C118851: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C118851]
  596. NCIT_C118852: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C118852]
  597. NCIT_C11915: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C11915]
  598. NCIT_C119614: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C119614]
  599. NCIT_C119616: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C119616]
  600. NCIT_C119617: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C119617]
  601. NCIT_C119664: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C119664]
  602. NCIT_C119745: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C119745]
  603. NCIT_C119759: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C119759]
  604. NCIT_C120039: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C120039]
  605. NCIT_C120118: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C120118]
  606. NCIT_C120129: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C120129]
  607. NCIT_C120183: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C120183]
  608. NCIT_C121544: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C121544]
  609. NCIT_C121570: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C121570]
  610. NCIT_C121640: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C121640]
  611. NCIT_C121777: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C121777]
  612. NCIT_C121848: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C121848]
  613. NCIT_C121856: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C121856]
  614. NCIT_C121947: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C121947]
  615. NCIT_C122396: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C122396]
  616. NCIT_C122399: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C122399]
  617. NCIT_C122402: Autologous Oxidized Ovarian Tumor Cell Lysate Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C122402]
  618. NCIT_C122678: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C122678]
  619. NCIT_C123283: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C123283]
  620. NCIT_C123378: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C123378]
  621. NCIT_C123381: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C123381]
  622. NCIT_C123918: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C123918]
  623. NCIT_C123919: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C123919]
  624. NCIT_C123921: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C123921]
  625. NCIT_C123923: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C123923]
  626. NCIT_C123928: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C123928]
  627. NCIT_C123930: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C123930]
  628. NCIT_C124054: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C124054]
  629. NCIT_C124652: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C124652]
  630. NCIT_C125631: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C125631]
  631. NCIT_C125692: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C125692]
  632. NCIT_C126797: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C126797]
  633. NCIT_C127125: NY-ESO-1/PRAME/MAGE-A3/WT-1 Peptide Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C127125]
  634. NCIT_C127910: pUMVC3-IGFBP2-HER2-IGF1R Plasmid DNA Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C127910]
  635. NCIT_C129522: Autologous Bladder Cell Carcinoma RNAs/CD40L RNA Electroporated Autologous Matured Dendritic Cells [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C129522]
  636. NCIT_C129935: Personalized Peptide Cancer Vaccine NEO-PV-01 [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C129935]
  637. NCIT_C1325: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1325]
  638. NCIT_C132684: H3.3K27M-specific Peptide Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C132684]
  639. NCIT_C141422: Neoantigen-loaded Autologous Dendritic Cell Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C141422]
  640. NCIT_C143034: Adenoviral Brachyury Vaccine ETBX-051 [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C143034]
  641. NCIT_C143035: Adenoviral MUC1 Vaccine ETBX-061 [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C143035]
  642. NCIT_C143059: Prime Cancer Vaccine MVA-BN-CV301 [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C143059]
  643. NCIT_C1455: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1455]
  644. NCIT_C1479: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1479]
  645. NCIT_C148144: Oral Therapeutic Vaccine V3-X [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C148144]
  646. NCIT_C148146: PD-L1 Peptide Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C148146]
  647. NCIT_C148154: PD-L1/IDO Peptide Vaccine IO102-103 [https://ncithesaurus.nci.nih.gov/ncitbrowser/pages/home.jsf]
  648. NCIT_C148214: Autologous AML/Dendritic Cell Fusion Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C148214]
  649. NCIT_C148239: mRNA-based Personalized Cancer Vaccine NCI-4650 [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C148239]
  650. NCIT_C148539: HPV E6/E7-encoding Semliki Forest Virus Vaccine Vvax001 [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C148539]
  651. NCIT_C150471: Personalized Synthetic Long Peptide Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C150471]
  652. NCIT_C153334: Allogeneic GM-CSF-secreting Lethally Irradiated Pancreatic Tumor Cell Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C153334]
  653. NCIT_C154278: Colorectal Cancer Peptide Vaccine PolyPEPI1018 [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C154278]
  654. NCIT_C156067: Autologous CMV-pp65-flLAMP mRNA Loaded Dendritic Cell Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C156067]
  655. NCIT_C158480: Autologous Dendritic Cell/Myeloma Fusion Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C158480]
  656. NCIT_C159498: IDO Peptide Vaccine IO102 [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C159498]
  657. NCIT_C159540: Oral Cancer Vaccine V3-OVA [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C159540]
  658. NCIT_C162186: mRNA-derived KRAS-targeted Vaccine V941 [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C162186]
  659. NCIT_C162250: Autologous mDC3 Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C162250]
  660. NCIT_C1633: Polyvalent Melanoma Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C1633]
  661. NCIT_C1643: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1643]
  662. NCIT_C1648: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1648]
  663. NCIT_C165508: Neoantigen Peptide Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C165508]
  664. NCIT_C1690: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1690]
  665. NCIT_C170932: Anti-HER2/HER3 Dendritic Cell Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C170932]
  666. NCIT_C173525: Multi-epitope HER2 Peptide Vaccine TPIV100 [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C173525]
  667. NCIT_C175590: ESR1 Peptides/GM-CSF/Montanide ISA Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C175590]
  668. NCIT_C178432: Autologous Total Tumor mRNA and CMV-pp65-flLAMP mRNA Loaded Liposome Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C178432]
  669. NCIT_C179254: Personalized Peptides-loaded Autologous Dendritic Cell Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C179254]
  670. NCIT_C179595: TLR1/2 Agonist Pam3Cys-GDPKHPKSF [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C179595]
  671. NCIT_C179670: Autologous CMV-pp65-LAMP mRNA Loaded Monocyte Vaccine MT-201-GBM [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C179670]
  672. NCIT_C180518: ALVAC gp100 Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C180518]
  673. NCIT_C1830: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1830]
  674. NCIT_C187131: P30-linked EphA2/CMV pp65/Survivin Peptide Vaccine P30-EPS [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C187131]
  675. NCIT_C192174: Prodencel [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C192174]
  676. NCIT_C1977: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1977]
  677. NCIT_C1978: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1978]
  678. NCIT_C1979: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1979]
  679. NCIT_C1980: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1980]
  680. NCIT_C1981: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1981]
  681. NCIT_C1982: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1982]
  682. NCIT_C1983: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1983]
  683. NCIT_C1985: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1985]
  684. NCIT_C1986: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1986]
  685. NCIT_C1987: Dendritic Cell Tumor Peptide Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C1987]
  686. NCIT_C1988: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C1988]
  687. NCIT_C1988: Dendritic Cell Tumor Cell Lysate Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C1988]
  688. NCIT_C199632: Autologous Vaccine-enhanced Ex Vivo Activated Cancer Neoantigens-specific T-cells TVI-Brain-1 [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C199632]
  689. NCIT_C200465: RAS Peptide Cancer Vaccine TG01 [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C200465]
  690. NCIT_C2023: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2023]
  691. NCIT_C2055: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2055]
  692. NCIT_C2057: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2057]
  693. NCIT_C2060: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2060]
  694. NCIT_C2063: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2063]
  695. NCIT_C2195: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2195]
  696. NCIT_C2204: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2204]
  697. NCIT_C2205: BCR-ABL Peptide Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C2205]
  698. NCIT_C2214: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2214]
  699. NCIT_C2227: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2227]
  700. NCIT_C2232: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2232]
  701. NCIT_C2235: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2235]
  702. NCIT_C2235: PR1 Leukemia Peptide Vaccine (Code C2235) [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI%20Thesaurus&code=C2235]
  703. NCIT_C2236: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2236]
  704. NCIT_C2237: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2237]
  705. NCIT_C2241: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2241]
  706. NCIT_C2339: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2339]
  707. NCIT_C2341: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2341]
  708. NCIT_C2382: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2382]
  709. NCIT_C2384: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2384]
  710. NCIT_C2403: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2403]
  711. NCIT_C2419: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2419]
  712. NCIT_C2423: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2423]
  713. NCIT_C2424: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2424]
  714. NCIT_C2426: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2426]
  715. NCIT_C2428: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2428]
  716. NCIT_C2430: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2430]
  717. NCIT_C2433: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2433]
  718. NCIT_C2436: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2436]
  719. NCIT_C2438: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2438]
  720. NCIT_C2439: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2439]
  721. NCIT_C2442: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2442]
  722. NCIT_C2445: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2445]
  723. NCIT_C2464: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2464]
  724. NCIT_C2465: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2465]
  725. NCIT_C2468: Tetanus Peptide Melanoma Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C2468]
  726. NCIT_C2471: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2471]
  727. NCIT_C2473: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2473]
  728. NCIT_C2474: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2474]
  729. NCIT_C2485: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2485]
  730. NCIT_C2492: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2492]
  731. NCIT_C2493: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2493]
  732. NCIT_C2497: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2497]
  733. NCIT_C2501: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2501]
  734. NCIT_C2510: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2510]
  735. NCIT_C2512: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2512]
  736. NCIT_C2520: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2520]
  737. NCIT_C2521: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2521]
  738. NCIT_C2531: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2531]
  739. NCIT_C2534: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2534]
  740. NCIT_C2540: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2540]
  741. NCIT_C2545: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2545]
  742. NCIT_C2569: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2569]
  743. NCIT_C2576: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2576]
  744. NCIT_C2606: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2606]
  745. NCIT_C2619: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2619]
  746. NCIT_C2620: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2620]
  747. NCIT_C2622: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2622]
  748. NCIT_C2628: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2628]
  749. NCIT_C2637: MVF-HER-2(628-647)-CRL 1005 Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C2637]
  750. NCIT_C2640: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2640]
  751. NCIT_C2643: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2643]
  752. NCIT_C26444: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C26444]
  753. NCIT_C26445: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C26445]
  754. NCIT_C26446: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C26446]
  755. NCIT_C26449: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C26449]
  756. NCIT_C26450: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C26450]
  757. NCIT_C2648: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2648]
  758. NCIT_C2650: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2650]
  759. NCIT_C2657: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2657]
  760. NCIT_C2660: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2660]
  761. NCIT_C26645: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C26645]
  762. NCIT_C2666: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2666]
  763. NCIT_C2667: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2667]
  764. NCIT_C26680: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C26680]
  765. NCIT_C26681: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C26681]
  766. NCIT_C2674: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2674]
  767. NCIT_C2675: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2675]
  768. NCIT_C2680: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2680]
  769. NCIT_C2686: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2686]
  770. NCIT_C2709: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2709]
  771. NCIT_C2710: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2710]
  772. NCIT_C2718: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2718]
  773. NCIT_C2732: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2732]
  774. NCIT_C2740: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2740]
  775. NCIT_C2741: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2741]
  776. NCIT_C2742: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2742]
  777. NCIT_C2743: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2743]
  778. NCIT_C2746: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2746]
  779. NCIT_C2754: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2754]
  780. NCIT_C2757: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2757]
  781. NCIT_C2760: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2760]
  782. NCIT_C2761: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2761]
  783. NCIT_C2762: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2762]
  784. NCIT_C2763: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2763]
  785. NCIT_C2764: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2764]
  786. NCIT_C2766: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2766]
  787. NCIT_C2767: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2767]
  788. NCIT_C2771: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2771]
  789. NCIT_C2772: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2772]
  790. NCIT_C2773: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2773]
  791. NCIT_C2774: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2774]
  792. NCIT_C2775: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2775]
  793. NCIT_C2776: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2776]
  794. NCIT_C2781: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2781]
  795. NCIT_C2783: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2783]
  796. NCIT_C2786: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2786]
  797. NCIT_C2787: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2787]
  798. NCIT_C2798: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2798]
  799. NCIT_C2805: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2805]
  800. NCIT_C2806: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2806]
  801. NCIT_C2807: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2807]
  802. NCIT_C2809: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2809]
  803. NCIT_C2811: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2811]
  804. NCIT_C2814: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2814]
  805. NCIT_C2815: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2815]
  806. NCIT_C2816: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2816]
  807. NCIT_C2821: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2821]
  808. NCIT_C2822: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2822]
  809. NCIT_C2824: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2824]
  810. NCIT_C2830: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C2830]
  811. NCIT_C28330: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C28330]
  812. NCIT_C28503: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C28503]
  813. NCIT_C28549: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C28549]
  814. NCIT_C28550: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C28550]
  815. NCIT_C28551: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C28551]
  816. NCIT_C28682: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C28682]
  817. NCIT_C28775: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C28775]
  818. NCIT_C28776: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C28776]
  819. NCIT_C28780: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C28780]
  820. NCIT_C28784: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C28784]
  821. NCIT_C28810: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C28810]
  822. NCIT_C28860: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C28860]
  823. NCIT_C28877: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C28877]
  824. NCIT_C28878: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C28878]
  825. NCIT_C29065: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29065]
  826. NCIT_C29068: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29068]
  827. NCIT_C29086: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29086]
  828. NCIT_C29088: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29088]
  829. NCIT_C29090: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29090]
  830. NCIT_C29091: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29091]
  831. NCIT_C29112: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29112]
  832. NCIT_C29187: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29187]
  833. NCIT_C29192: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29192]
  834. NCIT_C29316: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29316]
  835. NCIT_C29317: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29317]
  836. NCIT_C29334: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29334]
  837. NCIT_C29337: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29337]
  838. NCIT_C29338: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29338]
  839. NCIT_C29338: PSA:154-163(155L) Peptide Vaccine (Code C29338) [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI%20Thesaurus&code=C29338]
  840. NCIT_C29401: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29401]
  841. NCIT_C29402: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29402]
  842. NCIT_C29409: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29409]
  843. NCIT_C29476: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29476]
  844. NCIT_C29555: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29555]
  845. NCIT_C29558: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29558]
  846. NCIT_C29559: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29559]
  847. NCIT_C29560: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29560]
  848. NCIT_C29561: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29561]
  849. NCIT_C29563: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29563]
  850. NCIT_C29564: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29564]
  851. NCIT_C29566: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29566]
  852. NCIT_C29778: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29778]
  853. NCIT_C29785: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29785]
  854. NCIT_C29786: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29786]
  855. NCIT_C29908: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29908]
  856. NCIT_C29910: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29910]
  857. NCIT_C29918: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29918]
  858. NCIT_C29945: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29945]
  859. NCIT_C29982: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C29982]
  860. NCIT_C30000: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C30000]
  861. NCIT_C37448: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C37448]
  862. NCIT_C37515: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C37515]
  863. NCIT_C38117: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C38117]
  864. NCIT_C38119: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C38119]
  865. NCIT_C38121: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C38121]
  866. NCIT_C38122: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C38122]
  867. NCIT_C38123: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C38123]
  868. NCIT_C38124: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C38124]
  869. NCIT_C38132: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C38132]
  870. NCIT_C38587: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C38587]
  871. NCIT_C38681: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C38681]
  872. NCIT_C38695: Multi-epitope Melanoma Peptide Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C38695]
  873. NCIT_C38700: Melanoma Helper Peptide Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C38700]
  874. NCIT_C38708: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C38708]
  875. NCIT_C38715: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C38715]
  876. NCIT_C38720: Transgenic Lymphocyte Immunization Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C38720]
  877. NCIT_C38761: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C38761]
  878. NCIT_C48368: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48368]
  879. NCIT_C48371: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48371]
  880. NCIT_C48372: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48372]
  881. NCIT_C48373: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48373]
  882. NCIT_C48376: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48376]
  883. NCIT_C48377: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48377]
  884. NCIT_C48390: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48390]
  885. NCIT_C48391: GM.CD40L Cell Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C48391]
  886. NCIT_C48392: HER-2-neu, CEA Peptides, GM-CSF, Montanide ISA-51 Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C48392]
  887. NCIT_C48393: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48393]
  888. NCIT_C48394: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48394]
  889. NCIT_C48395: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48395]
  890. NCIT_C48396: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48396]
  891. NCIT_C48410: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48410]
  892. NCIT_C48411: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48411]
  893. NCIT_C48412: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48412]
  894. NCIT_C48414: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48414]
  895. NCIT_C48418: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48418]
  896. NCIT_C48419: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48419]
  897. NCIT_C48465: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48465]
  898. NCIT_C48632: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48632]
  899. NCIT_C48637: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48637]
  900. NCIT_C48638: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48638]
  901. NCIT_C48639: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48639]
  902. NCIT_C48640: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48640]
  903. NCIT_C48816: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C48816]
  904. NCIT_C49023: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C49023]
  905. NCIT_C49042: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C49042]
  906. NCIT_C49063: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C49063]
  907. NCIT_C49064: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C49064]
  908. NCIT_C49082: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C49082]
  909. NCIT_C49087: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C49087]
  910. NCIT_C49177: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C49177]
  911. NCIT_C49275: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C49275]
  912. NCIT_C49289: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C49289]
  913. NCIT_C49290: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C49290]
  914. NCIT_C51978: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C51978]
  915. NCIT_C52190: GM-K562 Cell Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C52190]
  916. NCIT_C53290: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C53290]
  917. NCIT_C53410: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C53410]
  918. NCIT_C53443: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C53443]
  919. NCIT_C61073: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C61073]
  920. NCIT_C61076: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C61076]
  921. NCIT_C61077: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C61077]
  922. NCIT_C61082: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C61082]
  923. NCIT_C61087: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C61087]
  924. NCIT_C61088: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C61088]
  925. NCIT_C61098: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C61098]
  926. NCIT_C61146: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C61146]
  927. NCIT_C61309: Bcr-Abl (b2a2)-Derived Peptide Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C61309]
  928. NCIT_C61310: Bcr-Abl (b3a2)-Derived Peptide Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C61310]
  929. NCIT_C61327: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C61327]
  930. NCIT_C61434: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C61434]
  931. NCIT_C61442: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C61442]
  932. NCIT_C61495: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C61495]
  933. NCIT_C61592: Hodgkin's Antigens-GM-CSF-Expressing Cell Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C61592]
  934. NCIT_C62452: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C62452]
  935. NCIT_C62478: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C62478]
  936. NCIT_C62479: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C62479]
  937. NCIT_C62527: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C62527]
  938. NCIT_C62531: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C62531]
  939. NCIT_C62756: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C62756]
  940. NCIT_C62767: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C62767]
  941. NCIT_C62768: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C62768]
  942. NCIT_C62775: MAGE-A1, Her-2/neu, FBP Peptides Cancer Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C62775]
  943. NCIT_C62801: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C62801]
  944. NCIT_C64635: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C64635]
  945. NCIT_C64773: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C64773]
  946. NCIT_C64785: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C64785]
  947. NCIT_C64846: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C64846]
  948. NCIT_C66972: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C66972]
  949. NCIT_C66985: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C66985]
  950. NCIT_C67082: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C67082]
  951. NCIT_C67085: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C67085]
  952. NCIT_C67086: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C67086]
  953. NCIT_C67089: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C67089]
  954. NCIT_C67098: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C67098]
  955. NCIT_C68839: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C68839]
  956. NCIT_C68842: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C68842]
  957. NCIT_C68999: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C68999]
  958. NCIT_C69000: Sialyl Lewis-Keyhole Limpet Hemocyanin Conjugate Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C69000]
  959. NCIT_C69076: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C69076]
  960. NCIT_C70644: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C70644]
  961. NCIT_C70674: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C70674]
  962. NCIT_C70968: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C70968]
  963. NCIT_C70985: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C70985]
  964. NCIT_C71036: Autologous Follicular Lymphoma-Derived Idiotype Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C71036]
  965. NCIT_C71162: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C71162]
  966. NCIT_C71520: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C71520]
  967. NCIT_C71526: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C71526]
  968. NCIT_C71533: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C71533]
  969. NCIT_C71723: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C71723]
  970. NCIT_C71741: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C71741]
  971. NCIT_C71748: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C71748]
  972. NCIT_C71757: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C71757]
  973. NCIT_C71758: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C71758]
  974. NCIT_C71760: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C71760]
  975. NCIT_C71761: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C71761]
  976. NCIT_C73438: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C73438]
  977. NCIT_C73995: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C73995]
  978. NCIT_C73997: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C73997]
  979. NCIT_C73998: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C73998]
  980. NCIT_C73999: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C73999]
  981. NCIT_C74000: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C74000]
  982. NCIT_C74015: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C74015]
  983. NCIT_C74016: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C74016]
  984. NCIT_C74023: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C74023]
  985. NCIT_C74036: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C74036]
  986. NCIT_C74042: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C74042]
  987. NCIT_C74056: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C74056]
  988. NCIT_C74057: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C74057]
  989. NCIT_C74063: Mixed Bacteria Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C74063]
  990. NCIT_C74064: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C74064]
  991. NCIT_C74066: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C74066]
  992. NCIT_C74070: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C74070]
  993. NCIT_C74087: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C74087]
  994. NCIT_C74088: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C74088]
  995. NCIT_C74089: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C74089]
  996. NCIT_C74090: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C74090]
  997. NCIT_C76227: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C76227]
  998. NCIT_C77858: Human Monoclonal Antibody B11-hCG Beta Fusion Protein CDX-1307 [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C77858]
  999. NCIT_C77863: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C77863]
  1000. NCIT_C77867: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C77867]
  1001. NCIT_C77869: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C77869]
  1002. NCIT_C77874: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C77874]
  1003. NCIT_C77877: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C77877]
  1004. NCIT_C77878: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C77878]
  1005. NCIT_C77895: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C77895]
  1006. NCIT_C77900: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C77900]
  1007. NCIT_C77907: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C77907]
  1008. NCIT_C77909: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C77909]
  1009. NCIT_C77910: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C77910]
  1010. NCIT_C78193: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C78193]
  1011. NCIT_C78448: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C78448]
  1012. NCIT_C78466: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C78466]
  1013. NCIT_C78487: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C78487]
  1014. NCIT_C78489: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C78489]
  1015. NCIT_C78819: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C78819]
  1016. NCIT_C78820: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C78820]
  1017. NCIT_C78821: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C78821]
  1018. NCIT_C78830: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C78830]
  1019. NCIT_C78832: LV.IL-2/B7.1-Transduced AML Blast Vaccine RFUSIN2-AML1 [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C78832]
  1020. NCIT_C78861: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C78861]
  1021. NCIT_C78862: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C78862]
  1022. NCIT_C78865: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C78865]
  1023. NCIT_C79799: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C79799]
  1024. NCIT_C79832: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C79832]
  1025. NCIT_C79833: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C79833]
  1026. NCIT_C79842: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C79842]
  1027. NCIT_C80055: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C80055]
  1028. NCIT_C80834: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C80834]
  1029. NCIT_C82352: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C82352]
  1030. NCIT_C82361: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C82361]
  1031. NCIT_C82371: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C82371]
  1032. NCIT_C82381: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C82381]
  1033. NCIT_C82388: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C82388]
  1034. NCIT_C82407: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C82407]
  1035. NCIT_C82416: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C82416]
  1036. NCIT_C82417: MUC1 Peptide-Poly-ICLC Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C82417]
  1037. NCIT_C82420: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C82420]
  1038. NCIT_C82420: P53-Synthetic Long Peptides Vaccine (Code C82420) [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI%20Thesaurus&code=C82420]
  1039. NCIT_C82654: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C82654]
  1040. NCIT_C82661: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C82661]
  1041. NCIT_C82675: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C82675]
  1042. NCIT_C82688: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C82688]
  1043. NCIT_C84755: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C84755]
  1044. NCIT_C84844: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C84844]
  1045. NCIT_C84845: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C84845]
  1046. NCIT_C84854: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C84854]
  1047. NCIT_C85445: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C85445]
  1048. NCIT_C85450: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C85450]
  1049. NCIT_C85451: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C85451]
  1050. NCIT_C85452: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C85452]
  1051. NCIT_C85456: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C85456]
  1052. NCIT_C85462: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C85462]
  1053. NCIT_C85463: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C85463]
  1054. NCIT_C85464: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C85464]
  1055. NCIT_C85466: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C85466]
  1056. NCIT_C85470: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C85470]
  1057. NCIT_C85479: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C85479]
  1058. NCIT_C87436: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C87436]
  1059. NCIT_C88279: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C88279]
  1060. NCIT_C88288: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C88288]
  1061. NCIT_C88289: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C88289]
  1062. NCIT_C88320: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C88320]
  1063. NCIT_C88326: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C88326]
  1064. NCIT_C88334: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C88334]
  1065. NCIT_C88341: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C88341]
  1066. NCIT_C90540: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C90540]
  1067. NCIT_C90542: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C90542]
  1068. NCIT_C90555: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C90555]
  1069. NCIT_C90558: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C90558]
  1070. NCIT_C90560: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C90560]
  1071. NCIT_C90569: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C90569]
  1072. NCIT_C90570: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C90570]
  1073. NCIT_C90571: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C90571]
  1074. NCIT_C90572: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C90572]
  1075. NCIT_C90592: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C90592]
  1076. NCIT_C91076: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C91076]
  1077. NCIT_C91077: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C91077]
  1078. NCIT_C91085: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C91085]
  1079. NCIT_C91373: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C91373]
  1080. NCIT_C91373: Adenoviral Vector Ad5-CEA(6D) Vaccine [ttps://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C91373]
  1081. NCIT_C91377: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C91377]
  1082. NCIT_C91378: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C91378]
  1083. NCIT_C91379: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C91379]
  1084. NCIT_C91380: Melanoma TRP2 CTL Epitope Vaccine SCIB1 [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C91380]
  1085. NCIT_C91707: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C91707]
  1086. NCIT_C91710: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C91710]
  1087. NCIT_C91714: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C91714]
  1088. NCIT_C91715: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C91715]
  1089. NCIT_C91716: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C91716]
  1090. NCIT_C91717: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C91717]
  1091. NCIT_C91718: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C91718]
  1092. NCIT_C91719: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C91719]
  1093. NCIT_C91722: 4-Peptide Melanoma Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C91722]
  1094. NCIT_C92573: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C92573]
  1095. NCIT_C94210: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C94210]
  1096. NCIT_C94215: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C94215]
  1097. NCIT_C94216: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C94216]
  1098. NCIT_C94217: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C94217]
  1099. NCIT_C94218: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C94218]
  1100. NCIT_C95024: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C95024]
  1101. NCIT_C95211: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C95211]
  1102. NCIT_C95212: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C95212]
  1103. NCIT_C95213: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C95213]
  1104. NCIT_C95705: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C95705]
  1105. NCIT_C95722: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C95722]
  1106. NCIT_C95727: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C95727]
  1107. NCIT_C95741: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C95741]
  1108. NCIT_C95751: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C95751]
  1109. NCIT_C95759: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C95759]
  1110. NCIT_C95771: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C95771]
  1111. NCIT_C96041: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C96041]
  1112. NCIT_C96042: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C96042]
  1113. NCIt_C96042: NA-17/MAGE-3.A2/NY-ESO-1 Peptide Vaccine (Code C96042) [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI%20Thesaurus&code=C96042]
  1114. NCIT_C96391: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C96391]
  1115. NCIT_C96392: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C96392]
  1116. NCIT_C96393: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C96393]
  1117. NCIT_C96397: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C96397]
  1118. NCIT_C96398: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C96398]
  1119. NCIT_C96399: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C96399]
  1120. NCIT_C96402: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C96402]
  1121. NCIT_C96405: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C96405]
  1122. NCIT_C96519: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C96519]
  1123. NCIT_C96737: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C96737]
  1124. NCIT_C96738: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C96738]
  1125. NCIT_C96739: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C96739]
  1126. NCIT_C97034: Pentavalent KLH Conjugate Vaccine [https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C97034]
  1127. NCIT_C97122: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C97122]
  1128. NCIT_C97123: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C97123]
  1129. NCIT_C97126: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C97126]
  1130. NCIT_C97127: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C97127]
  1131. NCIT_C97265: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C97265]
  1132. NCIT_C97344: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C97344]
  1133. NCIT_C97665: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C97665]
  1134. NCIT_C97666: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C97666]
  1135. NCIT_C97951: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C97951]
  1136. NCIT_C97951: Maveropepimut-S (Code C97951) [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI%20Thesaurus&code=C97951]
  1137. NCIT_C98287: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C98287]
  1138. NCIT_C99116: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C99116]
  1139. NCIT_C99129: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C99129]
  1140. NCIT_C99228: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C99228]
  1141. NCIT_C99378: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C99378]
  1142. NCIT_C99902: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C99902]
  1143. NCIT_C99903: [https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&code=C99903]
  1144. NCT00000105: Vaccination With Tetanus and KLH to Assess Immune Responses [https://clinicaltrials.gov/study/NCT00000105]
  1145. NCT00001386: [https://clinicaltrials.gov/ct2/show/NCT00001386]
  1146. NCT00001512: [https://clinicaltrials.gov/ct2/show/NCT00001512]
  1147. NCT00001561: [https://clinicaltrials.gov/ct2/show/NCT00001561]
  1148. NCT00001564: [https://clinicaltrials.gov/ct2/show/NCT00001564]
  1149. NCT00001564: [https://clinicaltrials.gov/show/NCT00001564/]
  1150. NCT00001565: [https://clinicaltrials.gov/ct2/show/NCT00001565]
  1151. NCT00001703: [https://clinicaltrials.gov/show/NCT00001703/]
  1152. NCT00001705: [https://clinicaltrials.gov/ct2/show/NCT00001705]
  1153. NCT00001827: p53 Vaccine for Ovarian Cancer [https://clinicaltrials.gov/ct2/show/NCT00001827]
  1154. NCT00002505: Tumor Cell Vaccine in Treating Patients With Advanced Cancer [https://clinicaltrials.gov/study/NCT00002505]
  1155. NCT00002637: Biological Therapy in Treating Patients With Prostate Cancer [https://clinicaltrials.gov/study/NCT00002637]
  1156. NCT00002767: [https://clinicaltrials.gov/ct2/show/NCT00002767]
  1157. NCT00002787: [https://clinicaltrials.gov/ct2/show/NCT00002787?term=Autologous+Immunoglobulin+Idiotype-Keyhole+Limpet+Hemocyanin+Conjugate+Vaccine&rank=1]
  1158. NCT00002817: [https://clinicaltrials.gov/show/NCT00002817/]
  1159. NCT00002916: [https://clinicaltrials.gov/ct2/show/NCT00002916]
  1160. NCT00002960: [https://clinicaltrials.gov/ct2/show/NCT00002960?term=Recombinant+Adenovirus+p53+SCH+58500&rank=1]
  1161. NCT00003023: [https://clinicaltrials.gov/ct2/show/NCT00003023]
  1162. NCT00003167: [https://clinicaltrials.gov/ct2/show/NCT00003167]
  1163. NCT00003184: [https://clinicaltrials.gov/ct2/show/NCT00003184]
  1164. NCT00003556: [https://clinicaltrials.gov/ct2/show/NCT00003556?term=Canarypox-hIL-12+Melanoma+Vaccine&rank=1]
  1165. NCT00003556: [https://clinicaltrials.gov/ct2/show/NCT00003556?term=ALVAC-hB7.1&rank=1]
  1166. NCT00003638: [https://clinicaltrials.gov/ct2/show/NCT00003638]
  1167. NCT00003761: [https://clinicaltrials.gov/ct2/show/NCT00003761?term=Recombinant+Vaccinia+DF3%2FMUC1+Vaccine&rank=1]
  1168. NCT00003871: [https://clinicaltrials.gov/ct2/show/NCT00003871?term=FOWLVAC&rank=1]
  1169. NCT00003871: [https://clinicaltrials.gov/ct2/show/NCT00003871?term=Fowlpox+Vaccine&rank=1]
  1170. NCT00003877: [https://clinicaltrials.gov/show/NCT00003877/]
  1171. NCT00003895: [https://clinicaltrials.gov/ct2/show/NCT00003895]
  1172. NCT00004032: [https://clinicaltrials.gov/ct2/show/NCT00004032]
  1173. NCT00004052: Vaccine Therapy in Treating Patients With Chronic Myelogenous Leukemia [https://clinicaltrials.gov/study/NCT00004052]
  1174. NCT00004104: Vaccine Therapy Plus Interleukin-2 With or Without Interferon Alfa-2b in Treating Patients With Stage III Melanoma [https://clinicaltrials.gov/study/NCT00004104]
  1175. NCT00004156: [https://clinicaltrials.gov/ct2/show/NCT00004156?term=MUC1-KLH+Vaccine%2FQS21&rank=1]
  1176. NCT00004184: [https://clinicaltrials.gov/ct2/show/NCT00004184]
  1177. NCT00004211: [https://clinicaltrials.gov/ct2/show/NCT00004211]
  1178. NCT00004604: [https://clinicaltrials.gov/ct2/show/NCT00004604]
  1179. NCT00004880: Vaccine Therapy in Treating Patients With Advanced Kidney Cancer [https://clinicaltrials.gov/study/NCT00004880]
  1180. NCT00004918: [https://clinicaltrials.gov/show/NCT00004918/]
  1181. NCT00005039: [https://clinicaltrials.gov/show/NCT00005039/]
  1182. NCT00005039: [https://clinicaltrials.gov/ct2/show/NCT00005039?term=Recombinant+Fowlpox-Prostate+Specific+Antigen+Vaccine&rank=1]
  1183. NCT00005057: [https://clinicaltrials.gov/ct2/show/NCT00005057]
  1184. NCT00005629: [https://clinicaltrials.gov/ct2/show/NCT00005629]
  1185. NCT00006041: [https://clinicaltrials.gov/ct2/show/NCT00006041?term=MUC1-KLH+Conjugate+Vaccine&rank=1]
  1186. NCT00006066: [https://clinicaltrials.gov/ct2/show/NCT00006066]
  1187. NCT00006106: [https://clinicaltrials.gov/ct2/show/NCT00006106?term=ONYX-015&rank=1]
  1188. NCT00006106: ONYX-015 With Cisplatin and Fluorouracil in Treating Patients With Advanced Head and Neck Cancer [https://clinicaltrials.gov/ct2/show/NCT00006106]
  1189. NCT00006216: [https://clinicaltrials.gov/ct2/show/NCT00006216]
  1190. NCT00006243: [https://clinicaltrials.gov/ct2/show/NCT00006243?term=MART-1%3A27-35+Peptide&rank=1]
  1191. NCT00006352: [https://clinicaltrials.gov/ct2/show/NCT00006352]
  1192. NCT00006470: [https://clinicaltrials.gov/ct2/show/NCT00006470]
  1193. NCT00007826: [https://clinicaltrials.gov/ct2/show/NCT00007826]
  1194. NCT00008099: [https://clinicaltrials.gov/ct2/show/NCT00008099?term=MUC1+Antigen%2FSB+AS-2&rank=1]
  1195. NCT00015977: [https://clinicaltrials.gov/ct2/show/NCT00015977]
  1196. NCT00016146: [https://clinicaltrials.gov/ct2/show/NCT00016146?term=MUC-2-Globo+H-KLH+Conjugate+Vaccine&rank=2]
  1197. NCT00017537: Vaccine Therapy in Treating Patients With Metastatic or Recurrent Cancer [https://clinicaltrials.gov/study/NCT00017537]
  1198. NCT00019006: [https://clinicaltrials.gov/show/NCT00019006/]
  1199. NCT00019110: [https://clinicaltrials.gov/ct2/show/NCT00019110]
  1200. NCT00019383: [https://clinicaltrials.gov/show/NCT00019383/]
  1201. NCT00019591: Vaccine Therapy With or Without Interleukin-2 in Treating Patients With Locally Advanced or Metastatic Colorectal Cancer [https://clinicaltrials.gov/ct2/show/NCT00019591]
  1202. NCT00019734: [https://clinicaltrials.gov/show/NCT00019734/]
  1203. NCT00019890: [https://clinicaltrials.gov/ct2/show/NCT00019890]
  1204. NCT00019916: [https://clinicaltrials.gov/ct2/show/NCT00019916?term=p53+Peptide+Vaccine&rank=1]
  1205. NCT00020475: [https://clinicaltrials.gov/ct2/show/NCT00020475?term=MART-1%3A26-35+%2827L%29&rank=1]
  1206. NCT00022438: [https://clinicaltrials.gov/show/NCT00022438/]
  1207. NCT00023647: [https://clinicaltrials.gov/show/NCT00023647]
  1208. NCT00028431: Novel Adjuvants for Peptide-Based Melanoma Vaccines [https://clinicaltrials.gov/ct2/show/NCT00028431]
  1209. NCT00028431: Novel Adjuvants for Peptide-Based Melanoma Vaccines [https://clinicaltrials.gov/study/NCT00028431]
  1210. NCT00028496: [https://clinicaltrials.gov/ct2/show/NCT00028496?term=Recombinant+Fowlpox-CEA%286D%29%2FTRICOM+Vaccine&rank=1]
  1211. NCT00030693: [https://clinicaltrials.gov/ct2/show/NCT00030693?term=Recombinant+Fowlpox-B7.1+Vaccine&rank=1]
  1212. NCT00030823: [https://clinicaltrials.gov/ct2/show/NCT00030823?term=Globo-H-GM2-Lewis-y-MUC1-32%28aa%29-sTn%28c%29-TF%28c%29-Tn%28c%29-KLH+Conjugate+Vaccine&rank=1]
  1213. NCT00031564: [https://clinicaltrials.gov/ct2/show/NCT00031564]
  1214. NCT00033228: [https://clinicaltrials.gov/show/NCT00033228]
  1215. NCT00033748: [https://clinicaltrials.gov/ct2/show/NCT00033748]
  1216. NCT00038415: A Phase I/​II Trial of Idiotypic Vaccination for Chronic Lymphocytic Leukemia Using a Genetic Approach [https://clinicaltrials.gov/study/NCT00038415]
  1217. NCT00039325: [https://clinicaltrials.gov/ct2/show/NCT00039325]
  1218. NCT00039325: [https://clinicaltrials.gov/ct2/show/NCT00039325?term=MART-1+Adenovirus+Vaccine&rank=1]
  1219. NCT00040170: [https://clinicaltrials.gov/show/NCT00040170/]
  1220. NCT00048386: Neuroblastoma Vaccine for Treatment of High-Risk Neuroblastoma After Chemotherapy (CYCHE2) [https://clinicaltrials.gov/study/NCT00048386]
  1221. NCT00049218: [https://clinicaltrials.gov/ct2/show/NCT00049218]
  1222. NCT00054535: [https://clinicaltrials.gov/ct2/show/NCT00054535?term=Recombinant+Fowlpox-Tyrosinase+Vaccine&rank=1]
  1223. NCT00056134: Vaccine Therapy in Treating Patients With Stage III or Stage IV Melanoma [https://clinicaltrials.gov/study/NCT00056134]
  1224. NCT00057915: [https://clinicaltrials.gov/ct2/show/NCT00057915]
  1225. NCT00058747: [https://clinicaltrials.gov/ct2/show/NCT00058747]
  1226. NCT00061035: Evaluation of Transgenic Lymphocyte Immunization Vaccine in Subjects With Prostate Adenocarcinoma [https://clinicaltrials.gov/study/NCT00061035]
  1227. NCT00062907: [https://clinicaltrials.gov/ct2/show/NCT00062907?term=Recombinant+Adenovirus+L523S+Vaccine&rank=1]
  1228. NCT00062907: [https://clinicaltrials.gov/show/NCT00062907]
  1229. NCT00066404: [https://clinicaltrials.gov/ct2/show/NCT00066404?term=Recombinant+Adenovirus-hIFN-beta&rank=1]
  1230. NCT00069940: [https://clinicaltrials.gov/show/NCT00069940/]
  1231. NCT00071942: [https://clinicaltrials.gov/show/NCT00071942/]
  1232. NCT00071981: [https://clinicaltrials.gov/ct2/show/NCT00071981]
  1233. NCT00071981: Vaccine Therapy Using Melanoma Peptides for Cytotoxic T Cells and Helper T Cells in Treating Patients With Metastatic Melanoma [https://clinicaltrials.gov/study/NCT00071981]
  1234. NCT00072085: [https://clinicaltrials.gov/ct2/show/NCT00072085]
  1235. NCT00072137: [https://clinicaltrials.gov/ct2/show/NCT00072137?term=Recombinant+Fowlpox+GM-CSF+Vaccine+Adjuvant&rank=1]
  1236. NCT00074295: [https://clinicaltrials.gov/ct2/show/NCT00074295]
  1237. NCT00078494: [https://clinicaltrials.gov/ct2/show/NCT00078494?term=LMP-2%3A340-349+Peptide+Vaccine&rank=1]
  1238. NCT00078520: [https://clinicaltrials.gov/ct2/show/NCT00078520]
  1239. NCT00080353: [https://clinicaltrials.gov/ct2/show/NCT00080353?term=Recombinant+Fowlpox-gp100p209&rank=1]
  1240. NCT00081848: [https://clinicaltrials.gov/show/NCT00081848/]
  1241. NCT00085189: Vaccine Therapy in Treating Patients With Stage IIC-IV Melanoma [https://clinicaltrials.gov/study/NCT00085189]
  1242. NCT00085462: [https://clinicaltrials.gov/ct2/show/NCT00085462?term=gp100-Fowlpox+Vaccine&rank=1]
  1243. NCT00087373: [https://clinicaltrials.gov/ct2/show/NCT00087373?term=Recombinant+Fowlpox-TRICOM+Vaccine&rank=1]
  1244. NCT00089778: [https://clinicaltrials.gov/ct2/show/NCT00089778]
  1245. NCT00090480: Vaccine Treatment for Advanced Breast Cancer [https://clinicaltrials.gov/study/NCT00090480]
  1246. NCT00091104: [https://clinicaltrials.gov/ct2/show/NCT00091104]
  1247. NCT00091273: [https://clinicaltrials.gov/ct2/show/NCT00091273]
  1248. NCT00091286: Vaccine Therapy in Treating Patients With Stage IIB, Stage III, or Stage IV Colorectal Cancer [https://clinicaltrials.gov/study/NCT00091286]
  1249. NCT00092534: [https://clinicaltrials.gov/ct2/show/NCT00092534]
  1250. NCT00093548: [https://clinicaltrials.gov/show/NCT00093548]
  1251. NCT00094653: MDX-010 Antibody, MDX-1379 Melanoma Vaccine, or MDX-010/​MDX-1379 Combination Treatment for Patients With Unresectable or Metastatic Melanoma [https://clinicaltrials.gov/study/NCT00094653]
  1252. NCT00096629: [https://clinicaltrials.gov/show/NCT00096629]
  1253. NCT00098917: [https://clinicaltrials.gov/ct2/show/NCT00098917]
  1254. NCT00100971: [https://clinicaltrials.gov/ct2/show/NCT00100971]
  1255. NCT00101101: Universal Granulocyte Macrophage-colony Stimulating Factor (GM-CSF)-Producing and GM.CD40L for Autologous Tumor Vaccine in Mantle Cell Lymphoma [https://clinicaltrials.gov/study/NCT00101101]
  1256. NCT00101166: Universal Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF)-Producing and CD40L Expressing Bystander Cell Line for Tumor Vaccine in Melanoma [https://clinicaltrials.gov/study/NCT00101166]
  1257. NCT00101309: [https://clinicaltrials.gov/ct2/show/NCT00101309]
  1258. NCT00103142: [https://clinicaltrials.gov/show/NCT00103142/]
  1259. NCT00105053: Vaccine Treatment for Hormone Refractory Prostate Cancer [https://clinicaltrials.gov/study/NCT00105053]
  1260. NCT00107159: [https://clinicaltrials.gov/ct2/show/NCT00107159]
  1261. NCT00108732: [https://clinicaltrials.gov/ct2/show/NCT00108732?term=Fowlpox-PSA-TRICOM+Vaccine&rank=1]
  1262. NCT00108875: [https://clinicaltrials.gov/ct2/show/NCT00108875?term=Survivin+Peptide+Vaccine&rank=2]
  1263. NCT00109655: [https://clinicaltrials.gov/ct2/show/NCT00109655?term=CG0070&rank=1]
  1264. NCT00109655: Dose-Escalation Study of CG0070 for Bladder Cancer After BCG (Bacillus Calmette-Guerin) Failure [https://clinicaltrials.gov/ct2/show/NCT00109655]
  1265. NCT00109811: [https://clinicaltrials.gov/show/NCT00109811/]
  1266. NCT00110526: [https://clinicaltrials.gov/ct2/show/NCT00110526]
  1267. NCT00112957: [https://clinicaltrials.gov/show/NCT00112957/]
  1268. NCT00112957: [https://clinicaltrials.gov/ct2/show/NCT00112957?term=rF-NY-ESO-1&rank=1]
  1269. NCT00116363: [https://clinicaltrials.gov/ct2/show/NCT00116363]
  1270. NCT00116467: [https://clinicaltrials.gov/ct2/show/NCT00116467]
  1271. NCT00116597: [https://clinicaltrials.gov/show/NCT00116597/]
  1272. NCT00121173: [https://clinicaltrials.gov/show/NCT00121173]
  1273. NCT00128661: [https://clinicaltrials.gov/ct2/show/NCT00128661]
  1274. NCT00136903: [https://clinicaltrials.gov/show/NCT00136903]
  1275. NCT00140738: [https://clinicaltrials.gov/show/NCT00140738/]
  1276. NCT00145145: [https://clinicaltrials.gov/ct2/show/NCT00145145?term=MAGE-3.A1&rank=1]
  1277. NCT00145158: [https://clinicaltrials.gov/ct2/show/NCT00145158?term=Peptides%2FMontanide+ISA-51&rank=1]
  1278. NCT00146835: [https://clinicaltrials.gov/ct2/show/NCT00146835]
  1279. NCT00148928: Safety & Activity of P501-AS15 Vaccine as a First-line Treatment for Patients With Hormone-sensitive Prostate Cancer Who Show Rising PSA [https://clinicaltrials.gov/study/NCT00148928]
  1280. NCT00197860: [https://clinicaltrials.gov/ct2/show/NCT00197860]
  1281. NCT00199836: A Pilot Study of NY-ESO-1b Peptide Plus CpG 7909 and Montanide® ISA-51 in Patients With Cancer [https://clinicaltrials.gov/ct2/show/NCT00199836]
  1282. NCT00199849: [https://clinicaltrials.gov/show/NCT00199849]
  1283. NCT00199849: NY-ESO-1 Plasmid DNA (pPJV7611) Cancer Vaccine [https://clinicaltrials.gov/ct2/show/NCT00199849]
  1284. NCT00203866: [https://clinicaltrials.gov/ct2/show/NCT00203866]
  1285. NCT00203892: [https://clinicaltrials.gov/ct2/show/NCT00203892]
  1286. NCT00217373: [https://clinicaltrials.gov/show/NCT00217373/]
  1287. NCT00217373: Vaccine Therapy, GM-CSF, and Interferon Alfa-2b in Treating Patients With Locally Advanced or Metastatic Cancer That Expresses Carcinoembryonic Antigen (CEA) [https://clinicaltrials.gov/ct2/show/NCT00217373]
  1288. NCT00227474: [https://clinicaltrials.gov/show/NCT00227474/]
  1289. NCT00257465: [https://clinicaltrials.gov/ct2/show/NCT00257465]
  1290. NCT00257738: [https://clinicaltrials.gov/ct2/show/NCT00257738?term=MAGE-A3+Peptide+Vaccine&rank=1]
  1291. NCT00264732: [https://clinicaltrials.gov/show/NCT00264732]
  1292. NCT00267085: Synthetic Vaccine in Patients With Chronic Myeloid Leukemia and Minimal Residual Disease [https://clinicaltrials.gov/study/NCT00267085]
  1293. NCT00273910: [https://clinicaltrials.gov/ct2/show/NCT00273910]
  1294. NCT00278200: [https://clinicaltrials.gov/ct2/show/NCT00278200]
  1295. NCT00285259: [https://clinicaltrials.gov/show/NCT00285259]
  1296. NCT00298298: [https://clinicaltrials.gov/ct2/show/NCT00298298]
  1297. NCT00300612: Vaccine Treatment for Advanced Malignant Melanoma [https://clinicaltrials.gov/study/NCT00300612]
  1298. NCT00301093: Vaccine Therapy and Imatinib Mesylate in Treating Patients With Chronic Phase Chronic Myelogenous Leukemia [https://clinicaltrials.gov/study/NCT00301093]
  1299. NCT00304096: [https://clinicaltrials.gov/show/NCT00304096/]
  1300. NCT00305760: Vaccine Therapy, Cyclophosphamide, and Cetuximab in Treating Patients With Metastatic or Locally Advanced Pancreatic Cancer [https://clinicaltrials.gov/study/NCT00305760]
  1301. NCT00306566: [https://clinicaltrials.gov/ct2/show/NCT00306566?term=Melan-A+VLP+Vaccine&rank=1]
  1302. NCT00307229: [https://clinicaltrials.gov/ct2/show/NCT00307229]
  1303. NCT00312286: [https://clinicaltrials.gov/ct2/show/NCT00312286]
  1304. NCT00313508: [https://clinicaltrials.gov/ct2/show/NCT00313508]
  1305. NCT00323557: [https://clinicaltrials.gov/ct2/show/NCT00323557?term=Streptococcus+pneumoniae+Vaccine&rank=1]
  1306. NCT00329368: [https://clinicaltrials.gov/ct2/show/NCT00329368?term=KLH-FITC&rank=1]
  1307. NCT00343109: Vaccine Therapy in Treating Patients Receiving Trastuzumab For HER2-Positive Stage IIIB-IV Breast Cancer [https://clinicaltrials.gov/study/NCT00343109]
  1308. NCT00345293: Dendritic Cell Vaccine Study (DC/PC3) for Prostate Cancer [https://clinicaltrials.gov/ct2/show/NCT00345293]
  1309. NCT00361296: Vaccine Therapy in Treating Patients With Myelodysplastic Syndromes [https://clinicaltrials.gov/study/NCT00361296]
  1310. NCT00373217: Vaccine Therapy, Paclitaxel, and Carboplatin in Treating Patients Who Are Undergoing Surgery for Stage III or Stage IV Ovarian Cancer, Primary Peritoneal Cancer, or Fallopian Tube Cancer [https://clinicaltrials.gov/study/NCT00373217]
  1311. NCT00379977: [https://clinicaltrials.gov/ct2/show/NCT00379977?term=Haemophilus+Influenzae+B+Vaccine&rank=4]
  1312. NCT00381875: [https://clinicaltrials.gov/ct2/show/NCT00381875]
  1313. NCT00389610: [https://clinicaltrials.gov/ct2/show/NCT00389610]
  1314. NCT00393029: [https://clinicaltrials.gov/ct2/show/NCT00393029]
  1315. NCT00398073: [https://clinicaltrials.gov/show/NCT00398073]
  1316. NCT00399529: [https://clinicaltrials.gov/ct2/show/NCT00399529]
  1317. NCT00404339: [https://clinicaltrials.gov/ct2/show/NCT00404339]
  1318. NCT00405327: [https://clinicaltrials.gov/ct2/show/NCT00405327]
  1319. NCT00405327: A Pilot Study of Tumor Cell Vaccine for High-risk Solid Tumor Patients Following Stem Cell Transplantation [https://clinicaltrials.gov/study/NCT00405327]
  1320. NCT00411749: [https://clinicaltrials.gov/ct2/show/NCT00411749?term=V501&rank=1]
  1321. NCT00418574: [https://clinicaltrials.gov/ct2/show/NCT00418574]
  1322. NCT00423254: [https://clinicaltrials.gov/show/NCT00423254/]
  1323. NCT00423254: [https://clinicaltrials.gov/show/NCT00423254]
  1324. NCT00433914: [https://clinicaltrials.gov/ct2/show/NCT00433914]
  1325. NCT00436254: [https://clinicaltrials.gov/show/NCT00436254]
  1326. NCT00442130: Reduced Intensity Stem Cell Transplantation for Chronic Lymphocytic Leukemia Followed by Vaccination [https://clinicaltrials.gov/study/NCT00442130]
  1327. NCT00450619: [https://clinicaltrials.gov/ct2/show/NCT00450619?term=TRICOM+Vaccine&rank=1]
  1328. NCT00455221: Safety Assessment of a Multipeptide-gene Vaccine in CML [https://clinicaltrials.gov/study/NCT00455221]
  1329. NCT00457249: [https://clinicaltrials.gov/ct2/show/NCT00457249?term=DECAVAC&rank=1]
  1330. NCT00458653: [https://clinicaltrials.gov/ct2/show/NCT00458653]
  1331. NCT00458679: [https://clinicaltrials.gov/ct2/show/NCT00458679]
  1332. NCT00466726: Vaccine Therapy in Treating Patients With Philadelphia Chromosome-Positive Chronic Myelogenous Leukemia (CML0206) [https://clinicaltrials.gov/study/NCT00466726]
  1333. NCT00470379: [https://clinicaltrials.gov/ct2/show/NCT00470379?term=NY-ESO-1b+Peptide+Vaccine&rank=1]
  1334. NCT00470574: Vaccine Therapy and QS21 in Treating Patients With Metastatic Breast Cancer [https://clinicaltrials.gov/study/NCT00470574]
  1335. NCT00471133: [https://clinicaltrials.gov/show/NCT00471133]
  1336. NCT00477906: [https://clinicaltrials.gov/ct2/show/NCT00477906]
  1337. NCT00478062: Vaccine Therapy in Treating Patients Who Have Received First-Line Therapy for Hodgkin's Lymphoma [https://clinicaltrials.gov/study/NCT00478062]
  1338. NCT00480025: [https://clinicaltrials.gov/ct2/show/NCT00480025?term=GSK1572932A&rank=1]
  1339. NCT00482027: [https://clinicaltrials.gov/ct2/show/NCT00482027]
  1340. NCT00493545: [https://clinicaltrials.gov/show/NCT00493545/]
  1341. NCT00499577: [https://clinicaltrials.gov/ct2/show/NCT00499577?term=hTERT+I540%2FR572Y%2FD988Y+Multipeptide+Vaccine&rank=1]
  1342. NCT00499577: [https://clinicaltrials.gov/show/NCT00499577/]
  1343. NCT00505063: [https://clinicaltrials.gov/show/NCT00505063]
  1344. NCT00505271: Safety and Efficacy Study Using Rexin-G for Breast Cancer [https://clinicaltrials.gov/ct2/show/NCT00505271]
  1345. NCT00505713: [https://clinicaltrials.gov/show/NCT00505713]
  1346. NCT00509288: [https://clinicaltrials.gov/ct2/show/NCT00509288]
  1347. NCT00509496: [https://clinicaltrials.gov/ct2/show/NCT00509496]
  1348. NCT00510133: [https://clinicaltrials.gov/ct2/show/NCT00510133]
  1349. NCT00514072: [https://clinicaltrials.gov/ct2/show/NCT00514072]
  1350. NCT00515528: Vaccination Plus Ontak in Patients With Metastatic Melanoma [https://clinicaltrials.gov/study/NCT00515528]
  1351. NCT00516685: [https://clinicaltrials.gov/show/NCT00516685/]
  1352. NCT00521261: [https://clinicaltrials.gov/show/NCT00521261/]
  1353. NCT00523159: [https://clinicaltrials.gov/show/NCT00523159/]
  1354. NCT00524277: [https://clinicaltrials.gov/ct2/show/NCT00524277]
  1355. NCT00530140: Idiotypic Vaccination for Follicular Lymphoma Patients (FLIDVAX2006) [https://clinicaltrials.gov/study/NCT00530140]
  1356. NCT00534209: [https://clinicaltrials.gov/ct2/show/NCT00534209]
  1357. NCT00551187: [https://clinicaltrials.gov/ct2/show/NCT00551187]
  1358. NCT00574977: [https://clinicaltrials.gov/show/NCT00574977]
  1359. NCT00580060: [https://clinicaltrials.gov/show/NCT00580060]
  1360. NCT00589186: [https://clinicaltrials.gov/ct2/show/NCT00589186]
  1361. NCT00610311: Anti-gp100 Cells Plus ALVAC gp100 Vaccine to Treat Advanced Melanoma [https://clinicaltrials.gov/study/NCT00610311]
  1362. NCT00612001: [https://clinicaltrials.gov/ct2/show/NCT00612001]
  1363. NCT00612222: [https://clinicaltrials.gov/ct2/show/NCT00612222?term=ALVAC-MART-1+Vaccine&rank=1]
  1364. NCT00613509: [https://clinicaltrials.gov/ct2/show/NCT00613509?term=ALVAC%282%29+Melanoma+Multi-antigen+Vaccine&rank=1]
  1365. NCT00616135: [https://clinicaltrials.gov/show/NCT00616135/]
  1366. NCT00616291: [https://clinicaltrials.gov/ct2/show/NCT00616291?term=NY-ESO-1%2FLAGE-1+Peptide+Vaccine&rank=1]
  1367. NCT00616291: Vaccine Therapy in Treating Patients With Metastatic, Progressive Prostate Cancer [https://clinicaltrials.gov/ct2/show/NCT00616291]
  1368. NCT00616720: [https://clinicaltrials.gov/ct2/show/NCT00616720]
  1369. NCT00623831: A Phase 1 Study of Mixed Bacteria Vaccine (MBV) in Patients With Tumors Expressing NY-ESO-1 Antigen [https://clinicaltrials.gov/study/NCT00623831]
  1370. NCT00624182: [https://clinicaltrials.gov/show/NCT00624182/]
  1371. NCT00625755: A Phase I/​II Study to Assess the Safety and Efficacy of Vaccinations With Allogeneic Dendritic Cells: Autologous Tumor-Derived Cells Subjected to Electrofusions in Patients With AJCC Stage IV Renal Cell Carcinoma [https://clinicaltrials.gov/study/NCT00625755]
  1372. NCT00626015: [https://clinicaltrials.gov/ct2/show/NCT00626015?term=PEP-3-KLH&rank=1]
  1373. NCT00626483: Basiliximab in Treating Patients With Newly Diagnosed Glioblastoma Multiforme Undergoing Targeted Immunotherapy and Temozolomide-Caused Lymphopenia (REGULATe) [https://clinicaltrials.gov/study/NCT00626483]
  1374. NCT00629057: [https://clinicaltrials.gov/show/NCT00629057/]
  1375. NCT00632333: Combination of Chemoradiation Therapy and Epitope Peptide Vaccine Therapy in Treating Patients With Esophageal Cancer [https://clinicaltrials.gov/ct2/show/NCT00632333]
  1376. NCT00633724: [https://clinicaltrials.gov/ct2/show/NCT00633724?term=HLA-A*2402-Restricted+VEGFR1+VEGFR2&rank=3]
  1377. NCT00639925: [https://clinicaltrials.gov/show/NCT00639925/]
  1378. NCT00654030: [https://clinicaltrials.gov/ct2/show/NCT00654030]
  1379. NCT00655785: Antiangiogenic Peptide Vaccine Therapy With Gemcitabine in Treating Patient With Pancreatic Cancer (Phase1/2) [https://clinicaltrials.gov/ct2/show/NCT00655785]
  1380. NCT00660101: [https://clinicaltrials.gov/ct2/show/NCT00660101]
  1381. NCT00660101: Trial of Autologous, Hapten-Modified Vaccine, OVAX, in Patients With Relapsed Stage III or IV Ovarian Cancer [https://clinicaltrials.gov/study/NCT00660101]
  1382. NCT00669136: [https://clinicaltrials.gov/ct2/show/NCT00669136]
  1383. NCT00669734: [https://clinicaltrials.gov/ct2/show/NCT00669734?term=Falimarev&rank=2]
  1384. NCT00674791: [https://clinicaltrials.gov/ct2/show/NCT00674791?term=IMT-1012+Immunotherapeutic+Vaccine&rank=1]
  1385. NCT00676507: [https://clinicaltrials.gov/ct2/show/NCT00676507]
  1386. NCT00677859: [https://clinicaltrials.gov/show/NCT00677859/]
  1387. NCT00681421: [https://clinicaltrials.gov/ct2/show/NCT00681421]
  1388. NCT00681577: Histocompatibility Leukocyte Antigen (HLA)-A*2402 Restricted Peptide Vaccine Therapy in Patients With Gastric Cancer [https://clinicaltrials.gov/ct2/show/NCT00681577]
  1389. NCT00683670: Dendritic Cells (White Blood Cells) Vaccination for Advanced Melanoma [https://clinicaltrials.gov/study/NCT00683670]
  1390. NCT00684294: Phase I Trial of TGFB2-Antisense-GMCSF Gene Modified Autologous Tumor Cell (TAG) Vaccine for Advanced Cancer (Auto TAG) [https://clinicaltrials.gov/study/NCT00684294]
  1391. NCT00685412: [https://clinicaltrials.gov/show/NCT00685412]
  1392. NCT00694551: [https://clinicaltrials.gov/show/NCT00694551/]
  1393. NCT00698711: [https://clinicaltrials.gov/ct2/show/NCT00698711?term=MUC-2-KLH+Vaccine&rank=1]
  1394. NCT00703222: [https://clinicaltrials.gov/ct2/show/NCT00703222]
  1395. NCT00716495: [https://clinicaltrials.gov/ct2/show/NCT00716495]
  1396. NCT00722839: [https://clinicaltrials.gov/ct2/show/NCT00722839?term=PADRE-CMV+Fusion+Peptide+Vaccine&rank=1]
  1397. NCT00722839: [https://clinicaltrials.gov/show/NCT00722839/]
  1398. NCT00725283: [https://clinicaltrials.gov/show/NCT00725283/]
  1399. NCT00726739: [https://clinicaltrials.gov/ct2/show/NCT00726739]
  1400. NCT00727441: [https://clinicaltrials.gov/ct2/show/NCT00727441]
  1401. NCT00727441: Vaccine Therapy With or Without Cyclophosphamide in Treating Patients Undergoing Chemotherapy and Radiation Therapy for Stage I or Stage II Pancreatic Cancer That Can Be Removed by Surgery [https://clinicaltrials.gov/study/NCT00727441]
  1402. NCT00753415: [https://clinicaltrials.gov/ct2/show/NCT00753415?term=V934%2FV935&rank=1]
  1403. NCT00784524: [https://clinicaltrials.gov/ct2/show/NCT00784524]
  1404. NCT00791570: [https://clinicaltrials.gov/ct2/show/NCT00791570?]
  1405. NCT00793208: [https://clinicaltrials.gov/ct2/show/NCT00793208]
  1406. NCT00798629: [https://clinicaltrials.gov/ct2/show/NCT00798629?term=gp100+Adenovirus+Vaccine&rank=1]
  1407. NCT00798629: [https://clinicaltrials.gov/ct2/show/NCT00798629]
  1408. NCT00807781: [https://clinicaltrials.gov/show/NCT00807781]
  1409. NCT00809250: Vaccination With GM-K562 Cells in Patients With Advanced Myelodysplastic Syndrome (MDS) or Acute Myeloid Leukemia (AML) After Allogeneic Hematopoetic Stem Cell Transplantation [https://clinicaltrials.gov/study/NCT00809250]
  1410. NCT00831467: [https://clinicaltrials.gov/show/NCT00831467/]
  1411. NCT00831753: [https://clinicaltrials.gov/ct2/show/NCT00831753]
  1412. NCT00836199: [https://clinicaltrials.gov/ct2/show/NCT00836199?term=NicVax&rank=1]
  1413. NCT00836407: Ipilimumab +/​- Vaccine Therapy in Treating Patients With Locally Advanced, Unresectable or Metastatic Pancreatic Cancer [https://clinicaltrials.gov/study/NCT00836407]
  1414. NCT00840931: Immunotherapy Using Lenalidomide + Bystander Vaccine in High Risk Myelodysplastic Syndrome (MDS) [https://clinicaltrials.gov/study/NCT00840931]
  1415. NCT00844506: [https://clinicaltrials.gov/ct2/show/NCT00844506?term=P53-Synthetic+Long+Peptides+Vaccine&rank=1]
  1416. NCT00849290: [https://clinicaltrials.gov/ct2/show/NCT00849290]
  1417. NCT00859729: [https://clinicaltrials.gov/show/NCT00859729]
  1418. NCT00868114: Direct Tumor Injection KLH-Pulsed Dendritic Cells in Unresectable Pancreatic Cancer [https://clinicaltrials.gov/study/NCT00868114]
  1419. NCT00868595: [https://clinicaltrials.gov/ct2/show/NCT00868595]
  1420. NCT00874588: [https://clinicaltrials.gov/ct2/show/NCT00874588?term=HLA-A*2402-Restricted+VEGFR1+Peptide+Vaccine&rank=2]
  1421. NCT00880464: [https://clinicaltrials.gov/ct2/show/NCT00880464]
  1422. NCT00886613: [https://clinicaltrials.gov/show/NCT00886613]
  1423. NCT00890110: [https://clinicaltrials.gov/ct2/show/NCT00890110]
  1424. NCT00891137: [https://clinicaltrials.gov/show/NCT00891137/]
  1425. NCT00895466: [https://clinicaltrials.gov/ct2/show/NCT00895466]
  1426. NCT00897923: [https://clinicaltrials.gov/show/NCT00897923/]
  1427. NCT00900809: [https://clinicaltrials.gov/show/NCT00900809/]
  1428. NCT00900809: QUILT-3.018: Neukoplastâ„¢ (NK-92) for the Treatment of Refractory or Relapsed Acute Myeloid Leukemia [https://clinicaltrials.gov/ct2/show/NCT00900809]
  1429. NCT00911560: Bivalent Vaccine With Escalating Doses of the Immunological Adjuvant OPT-821, in Combination With Oral β-glucan for High-Risk Neuroblastoma [https://clinicaltrials.gov/study/NCT00911560]
  1430. NCT00923195: [https://clinicaltrials.gov/ct2/show/NCT00923195]
  1431. NCT00923351: Therapy to Treat Ewing's Sarcoma, Rhabdomyosarcoma or Neuroblastoma [https://clinicaltrials.gov/study/NCT00923351]
  1432. NCT00924092: Open Label Phase I Study to Evaluate the Safety and Tolerability of Vaccine (GI-6207) Consisting of Whole, Heat-Killed Recombinant Saccharomyces Cerevisiae Genetically Modified to Express CEA Protein in Adults With Metastatic CEA-Expressing Carcinoma [https://clinicaltrials.gov/ct2/show/NCT00924092]
  1433. NCT00927381: [https://clinicaltrials.gov/ct2/show/NCT00927381]
  1434. NCT00928902: Trial for the Evaluation of the Effect of Systemic Low-dose Interleukin-2 (IL-2) on the Immunogenicity of a Vaccine Comprising Synthetic Melanoma Peptides Administered With Granulocyte-macrophage Colony-stimulating Factor (GM-CSF)-In-Adjuvant, in Patients With High Risk Melanoma (MEL36) [https://clinicaltrials.gov/study/NCT00928902]
  1435. NCT00935597: [https://clinicaltrials.gov/ct2/show/NCT00935597]
  1436. NCT00937183: [https://clinicaltrials.gov/ct2/show/NCT00937183]
  1437. NCT00938223: Evaluation of the Immunogenicity of Vaccination With Multiple Synthetic Melanoma Peptides With Granulocyte-macrophage Colony-stimulating Factor (GM-CSF)-In-Adjuvant, in Patients With Advanced Melanoma (MEL39) [https://clinicaltrials.gov/study/NCT00938223]
  1438. NCT00943722: [https://clinicaltrials.gov/ct2/show/NCT00943722]
  1439. NCT00944580: [https://clinicaltrials.gov/ct2/show/NCT00944580?term=MAGE-A1%2FMAGE-A3%2FNY-ESO-1+Peptides+Vaccine&rank=2]
  1440. NCT00972309: [https://clinicaltrials.gov/show/NCT00972309/]
  1441. NCT00978107: [https://clinicaltrials.gov/show/NCT00978107/]
  1442. NCT00978913: [https://clinicaltrials.gov/ct2/show/NCT00978913]
  1443. NCT00986609: MUC1 Vaccine for Triple-negative Breast Cancer [https://clinicaltrials.gov/study/NCT00986609]
  1444. NCT00988559: [https://clinicaltrials.gov/show/NCT00988559]
  1445. NCT01008813: [https://clinicaltrials.gov/ct2/show/NCT01008813]
  1446. NCT01016548: [https://clinicaltrials.gov/show/NCT01016548]
  1447. NCT01022346: [https://clinicaltrials.gov/show/NCT01022346/]
  1448. NCT01045460: [https://clinicaltrials.gov/ct2/show/NCT01045460]
  1449. NCT01047345: [https://clinicaltrials.gov/ct2/show/NCT01047345]
  1450. NCT01048151: [https://clinicaltrials.gov/ct2/show/NCT01048151?term=Golnerminogene+Pradenovec&rank=1]
  1451. NCT01058850: [https://clinicaltrials.gov/ct2/show/NCT01058850?]
  1452. NCT01064375: [https://clinicaltrials.gov/show/NCT01064375]
  1453. NCT01066390: [https://clinicaltrials.gov/ct2/show/NCT01066390]
  1454. NCT01081223: Phase I/​II Study To Test The Safety and Efficacy of TVI-Brain-1 As A Treatment For Recurrent Grade IV Glioma [https://clinicaltrials.gov/study/NCT01081223]
  1455. NCT01082198: [https://clinicaltrials.gov/ct2/show/NCT01082198]
  1456. NCT01088789: [https://clinicaltrials.gov/ct2/show/NCT01088789]
  1457. NCT01094496: A Study of the CDX-1307 Vaccine Regimen in Patients With Newly Diagnosed Muscle-Invasive Bladder Cancer (The "N-ABLE" Study) [https://clinicaltrials.gov/study/NCT01094496]
  1458. NCT01094548: [https://clinicaltrials.gov/ct2/show/NCT01094548]
  1459. NCT01095848: [https://clinicaltrials.gov/ct2/show/NCT01095848]
  1460. NCT01096602: Blockade of PD-1 in Conjunction With the Dendritic Cell/​AML Vaccine Following Chemotherapy Induced Remission [https://clinicaltrials.gov/study/NCT01096602]
  1461. NCT01143545: [https://clinicaltrials.gov/ct2/show/NCT01143545]
  1462. NCT01146262: [https://clinicaltrials.gov/ct2/show/NCT01146262]
  1463. NCT01147965: [https://clinicaltrials.gov/ct2/show/NCT01147965]
  1464. NCT01171729: [https://clinicaltrials.gov/ct2/show/NCT01171729]
  1465. NCT01174082: Trial of ID-Specific Donor Vaccinated Lymphocyte Infusion for Patients With Myeloma Relapsing or Failing to Achieve a Complete Remission After an Allogenic Transplant [https://clinicaltrials.gov/study/NCT01174082]
  1466. NCT01176461: [https://clinicaltrials.gov/ct2/show/NCT01176461]
  1467. NCT01176462: [https://clinicaltrials.gov/ct2/show/NCT01176462]
  1468. NCT01189383: IL15 Dendritic Cell Vaccine for Patients With Resected Stage III (A, B or C) or Stage IV Melanoma [https://clinicaltrials.gov/study/NCT01189383]
  1469. NCT01209871: Vaccine Therapy in Treating Patients With Lymphoplasmacytic Lymphoma [https://clinicaltrials.gov/study/NCT01209871]
  1470. NCT01213472: [https://clinicaltrials.gov/ct2/show/NCT01213472]
  1471. NCT01216436: [https://clinicaltrials.gov/ct2/show/NCT01216436]
  1472. NCT01219348: [https://clinicaltrials.gov/ct2/show/NCT01219348?term=IDO+Peptide+Vaccine&rank=1]
  1473. NCT01220128: [https://clinicaltrials.gov/show/NCT01220128/]
  1474. NCT01241162: Decitabine Followed by a Cancer Antigen Vaccine for Patients With Neuroblastoma and Sarcoma [https://clinicaltrials.gov/study/NCT01241162]
  1475. NCT01241682: [https://clinicaltrials.gov/ct2/show/NCT01241682]
  1476. NCT01242618: [https://clinicaltrials.gov/show/NCT01242618/]
  1477. NCT01250470: [https://clinicaltrials.gov/ct2/show/NCT01250470?term=Montanide+ISA-51%2FSurvivin+Peptide+Vaccine&rank=1]
  1478. NCT01253837: [https://clinicaltrials.gov/ct2/show/NCT01253837]
  1479. NCT01265368: [https://clinicaltrials.gov/ct2/show/NCT01265368]
  1480. NCT01270503: [https://clinicaltrials.gov/ct2/show/NCT01270503?term=Menactra&rank=1]
  1481. NCT01280552: [https://clinicaltrials.gov/ct2/show/NCT01280552]
  1482. NCT01307618: [https://clinicaltrials.gov/ct2/show/NCT01307618?term=NA17.A2&rank=2]
  1483. NCT01307618: Vaccine Therapy With or Without Recombinant Interleukin-12 Followed by Daclizumab in Treating Patients With Metastatic Melanoma [https://clinicaltrials.gov/ct2/show/NCT01307618]
  1484. NCT01308294: [https://clinicaltrials.gov/ct2/show/NCT01308294?term=Melan-A%2FMAGE-3.DP4+Peptide+Vaccine&rank=1]
  1485. NCT01312376: Autologous T-Cells Combined With Autologous OC-DC Vaccine in Ovarian Cancer [https://clinicaltrials.gov/study/NCT01312376]
  1486. NCT01322802: [https://clinicaltrials.gov/show/NCT01322802]
  1487. NCT01334047: [https://clinicaltrials.gov/ct2/show/NCT01334047]
  1488. NCT01334060: [https://clinicaltrials.gov/show/NCT01334060]
  1489. NCT01349647: Immunization With a Pentavalent Vaccine Composed of KLH-conjugates of GD2L, GD3L, Globo H, Fucosyl GM1, and N-Propionylated Polysialic Acid [https://clinicaltrials.gov/study/NCT01349647]
  1490. NCT01353222: [https://clinicaltrials.gov/ct2/show/NCT01353222]
  1491. NCT01380600: [https://clinicaltrials.gov/show/NCT01380600]
  1492. NCT01398124: [https://clinicaltrials.gov/ct2/show/NCT01398124]
  1493. NCT01400672: [https://clinicaltrials.gov/ct2/show/NCT01400672]
  1494. NCT01405521: [https://clinicaltrials.gov/ct2/show/NCT01405521?term=Ty21a&rank=2]
  1495. NCT01413087: Efficacy and Safety of BC-819 and Gemcitabine in Patients With Locally Advanced Pancreatic Adenocarcinoma (LAPC-BC-819) [https://clinicaltrials.gov/study/NCT01413087]
  1496. NCT01437280: [https://clinicaltrials.gov/ct2/show/NCT01437280?term=CGTG-102&rank=1]
  1497. NCT01453361: [https://clinicaltrials.gov/show/NCT01453361]
  1498. NCT01488188: [https://clinicaltrials.gov/ct2/show/NCT01488188]
  1499. NCT01498328: [https://clinicaltrials.gov/ct2/show/NCT01498328]
  1500. NCT01525017: [https://clinicaltrials.gov/ct2/show/NCT01525017]
  1501. NCT01526473: [https://clinicaltrials.gov/ct2/show/NCT01526473?term=AVX901&rank=1]
  1502. NCT01536054: [https://clinicaltrials.gov/ct2/show/NCT01536054?term=ALVAC%282%29-NY-ESO-1+%28M%29%2FTRICOM+Vaccine&rank=1]
  1503. NCT01556789: [https://clinicaltrials.gov/ct2/show/NCT01556789?term=ONT-10&rank=1]
  1504. NCT01559597: [https://clinicaltrials.gov/ct2/show/NCT01559597?term=Tetanus+Toxoid+Vaccine&rank=3]
  1505. NCT01598454: [https://clinicaltrials.gov/ct2/show/NCT01598454]
  1506. NCT01606241: [https://clinicaltrials.gov/ct2/show/NCT01606241?term=FR+Alpha+Peptide+Vaccine&rank=1]
  1507. NCT01621542: [https://clinicaltrials.gov/show/NCT01621542/]
  1508. NCT01622933: Multiple Antigen-Engineered DC Vaccine for Melanoma [https://clinicaltrials.gov/study/NCT01622933]
  1509. NCT01624701: [https://clinicaltrials.gov/show/NCT01624701/]
  1510. NCT01639612: [https://clinicaltrials.gov/show/NCT01639612/]
  1511. NCT01660529: [https://clinicaltrials.gov/ct2/show/NCT01660529?term=hTERT%2FSurvivin%2FCMV+Multipeptide+Vaccine&rank=1]
  1512. NCT01666782: [https://clinicaltrials.gov/ct2/show/NCT01666782]
  1513. NCT01666783: [https://clinicaltrials.gov/ct2/show/NCT01666783]
  1514. NCT01690377: [https://clinicaltrials.gov/ct2/show/NCT01690377]
  1515. NCT01697527: [https://clinicaltrials.gov/ct2/show/NCT01697527]
  1516. NCT01711970: [https://clinicaltrials.gov/ct2/show/NCT01711970]
  1517. NCT01718899: Phase 1/2a Study of Cancer Vaccine to Treat Smoldering Multiple Myeloma [https://clinicaltrials.gov/ct2/show/NCT01718899]
  1518. NCT01744171: [https://clinicaltrials.gov/ct2/show/NCT01744171]
  1519. NCT01748747: [https://clinicaltrials.gov/ct2/show/NCT01748747]
  1520. NCT01759810: Proteome-based Personalized Immunotherapy of Glioblastoma [https://clinicaltrials.gov/study/NCT01759810]
  1521. NCT01766739: [https://clinicaltrials.gov/show/NCT01766739/]
  1522. NCT01767467: [https://clinicaltrials.gov/ct2/show/NCT01767467]
  1523. NCT01773395: GVAX vs. Placebo for MDS/​AML After Allo HSCT [https://clinicaltrials.gov/study/NCT01773395]
  1524. NCT01784913: [https://clinicaltrials.gov/show/NCT01784913/]
  1525. NCT01795313: [https://clinicaltrials.gov/ct2/show/NCT01795313?term=HLA-A2-Restricted+Synthetic+Glioma+Antigen+Peptides+Vaccine&rank=1]
  1526. NCT01800071: [https://clinicaltrials.gov/show/NCT01800071/]
  1527. NCT01823978: [https://clinicaltrials.gov/ct2/show/NCT01823978]
  1528. NCT01827137: [https://clinicaltrials.gov/show/NCT01827137/]
  1529. NCT01828762: [https://clinicaltrials.gov/ct2/show/NCT01828762]
  1530. NCT01836432: [https://clinicaltrials.gov/ct2/show/NCT01836432]
  1531. NCT01842139: [https://clinicaltrials.gov/show/NCT01842139/]
  1532. NCT01853878: [https://clinicaltrials.gov/ct2/show/NCT01853878]
  1533. NCT01854099: [https://clinicaltrials.gov/show/NCT01854099/]
  1534. NCT01861938: Modified Melanoma Vaccine for High Risk or Low Residual Disease Patients [https://clinicaltrials.gov/study/NCT01861938]
  1535. NCT01863108: [https://clinicaltrials.gov/ct2/show/NCT01863108]
  1536. NCT01898039: Modified Melanoma Vaccine for High Risk or Low Residual Disease Patients [https://clinicaltrials.gov/study/NCT01898039]
  1537. NCT01957956: [https://clinicaltrials.gov/ct2/show/NCT01957956]
  1538. NCT01961115: [https://clinicaltrials.gov/ct2/show/NCT01961115?term=MELITAC+12.1+Peptide+Vaccine&rank=1]
  1539. NCT01961882: [https://clinicaltrials.gov/show/NCT01961882/]
  1540. NCT01966289: [https://clinicaltrials.gov/ct2/show/NCT01966289]
  1541. NCT01967758: [https://clinicaltrials.gov/ct2/show/NCT01967758]
  1542. NCT01970358: A Phase I Study With a Personalized NeoAntigen Cancer Vaccine in Melanoma [https://clinicaltrials.gov/study/NCT01970358]
  1543. NCT01972737: [https://clinicaltrials.gov/show/NCT01972737]
  1544. NCT01972737, ClinicalTrials.gov: Phase I Study of Ad5-hGCC (Human Guanylyl Cyclase C)-PADRE in Stage I/II Colon Cancer [https://clinicaltrials.gov/show/NCT01972737]
  1545. NCT01994369: [https://clinicaltrials.gov/ct2/show/NCT01994369?term=EC17&rank=2]
  1546. NCT01995708: [https://clinicaltrials.gov/ct2/show/NCT01995708]
  1547. NCT02010203: [https://clinicaltrials.gov/ct2/show/NCT02010203]
  1548. NCT02015416: [https://clinicaltrials.gov/ct2/show/NCT02015416]
  1549. NCT02017678: [https://clinicaltrials.gov/show/NCT02017678/]
  1550. NCT02018458: Safety Study Of Chemotherapy Combined With Dendritic Cell Vaccine to Treat Breast Cancer [https://clinicaltrials.gov/study/NCT02018458]
  1551. NCT02028442: [https://clinicaltrials.gov/ct2/show/NCT02028442]
  1552. NCT02033616: [https://clinicaltrials.gov/ct2/show/NCT02033616]
  1553. NCT02035358: [https://clinicaltrials.gov/ct2/show/NCT02035358]
  1554. NCT02040636: [https://clinicaltrials.gov/ct2/show/NCT02040636]
  1555. NCT02040637: [https://clinicaltrials.gov/ct2/show/NCT02040637]
  1556. NCT02045836: [https://clinicaltrials.gov/ct2/show/NCT02045836]
  1557. NCT02049489: [https://clinicaltrials.gov/ct2/show/NCT02049489]
  1558. NCT02058680: Phase 1A/1B Study of PSA/IL-2/GM-CSF Vaccine for Recurrent Prostate Cancer in Hormone Naive and Hormone Independent Patients (PSA) [https://clinicaltrials.gov/ct2/show/NCT02058680]
  1559. NCT02061423: [https://clinicaltrials.gov/ct2/show/NCT02061423]
  1560. NCT02063724: [https://clinicaltrials.gov/ct2/show/NCT02063724]
  1561. NCT02065973: [https://clinicaltrials.gov/ct2/show/NCT02065973?term=PDS0101&rank=1]
  1562. NCT02074046: Safety Study of Cancer Stem Cell Vaccine to Treat Pancreatic Cancer [https://clinicaltrials.gov/study/NCT02074046]
  1563. NCT02077114: Vaccination With Peptides in Combination With Either Ipilimumab or Vemurafenib for the Treatment of Unresectable Stage III or IV Malignant Melanoma [https://clinicaltrials.gov/study/NCT02077114]
  1564. NCT02078648: [https://clinicaltrials.gov/ct2/show/NCT02078648]
  1565. NCT02079324: [https://clinicaltrials.gov/show/NCT02079324/]
  1566. NCT02103426: [https://clinicaltrials.gov/show/NCT02103426]
  1567. NCT02107404: [https://clinicaltrials.gov/ct2/show/NCT02107404]
  1568. NCT02107950: [https://clinicaltrials.gov/ct2/show/NCT02107950]
  1569. NCT02107963: A Phase I Trial of T Cells Expressing an Anti-GD2 Chimeric Antigen Receptor in Children and Young Adults With GD2+ Solid Tumors [https://clinicaltrials.gov/study/NCT02107963]
  1570. NCT02111577: Phase III Study of DCVAC/PCa Added to Standard Chemotherapy for Men With Metastatic Castration Resistant Prostate Cancer (VIABLE) [https://clinicaltrials.gov/ct2/show/NCT02111577]
  1571. NCT02111941: [https://clinicaltrials.gov/ct2/show/NCT02111941]
  1572. NCT02115126: Phase II Trial to Evaluate an EBV-derived Dendritic Cell Vaccine in Autologous Stem Cell Transplant [https://clinicaltrials.gov/study/NCT02115126]
  1573. NCT02122861: [https://clinicaltrials.gov/ct2/show/NCT02122861?term=Dendritic+Cell-targeting+Lentiviral+Vector+ID-LV305&rank=1]
  1574. NCT02126579: [https://clinicaltrials.gov/ct2/show/NCT02126579?term=LPV7&rank=1]
  1575. NCT02128126: [https://clinicaltrials.gov/show/NCT02128126/]
  1576. NCT02140996: [https://clinicaltrials.gov/ct2/show/NCT02140996]
  1577. NCT02149225: [https://clinicaltrials.gov/show/NCT02149225/]
  1578. NCT02157051: [https://clinicaltrials.gov/show/NCT02157051]
  1579. NCT02159950: [https://clinicaltrials.gov/ct2/show/NCT02159950]
  1580. NCT02170389: [https://clinicaltrials.gov/ct2/show/NCT02170389]
  1581. NCT02179515: [https://clinicaltrials.gov/show/NCT02179515/]
  1582. NCT02193347: [https://clinicaltrials.gov/ct2/show/NCT02193347?term=PEPIDH1M+Vaccine&rank=1]
  1583. NCT02203357: [https://clinicaltrials.gov/ct2/show/NCT02203357?term=Hepatitis+B+Vaccine&rank=1]
  1584. NCT02204085: [https://clinicaltrials.gov/ct2/show/NCT02204085?term=GO-203-2C&rank=1]
  1585. NCT02223312: [https://clinicaltrials.gov/ct2/show/NCT02223312]
  1586. NCT02237638: [https://clinicaltrials.gov/ct2/show/NCT02237638?term=hVEGF26-104%2FRFASE&rank=1]
  1587. NCT02241369: [https://clinicaltrials.gov/show/NCT02241369]
  1588. NCT02264236: [https://clinicaltrials.gov/ct2/show/NCT02264236?term=Mimotope-P10s-PADRE+Peptide+Vaccine&rank=1]
  1589. NCT02285816: [https://clinicaltrials.gov/ct2/show/NCT02285816?term=AdMA3&rank=1]
  1590. NCT02293707: [https://clinicaltrials.gov/ct2/show/NCT02293707?term=GX+301&rank=1]
  1591. NCT02293850: [https://clinicaltrials.gov/ct2/show/NCT02293850?term=OBP-301&rank=1]
  1592. NCT02310464: [https://clinicaltrials.gov/ct2/show/NCT02310464?term=Globo+H-DT+Vaccine+OBI-833&rank=1]
  1593. NCT02316457: [https://clinicaltrials.gov/ct2/show/NCT02316457]
  1594. NCT02323230: [https://clinicaltrials.gov/show/NCT02323230/]
  1595. NCT02327468: [https://clinicaltrials.gov/show/NCT02327468]
  1596. NCT02332889: Phase I/​II: Decitabine/​Vaccine Therapy in Relapsed/​Refractory Pediatric High Grade Gliomas/​Medulloblastomas/​CNS PNETs [https://clinicaltrials.gov/study/NCT02332889]
  1597. NCT02334865: [https://clinicaltrials.gov/show/NCT02334865/]
  1598. NCT02362464: Long-Term TARP Vaccination Using a Multi-Epitope TARP Peptide Autologous Dendritic Cell Vaccination in Previously Vaccinated Men on NCI 09-C-0139 [https://clinicaltrials.gov/ct2/show/NCT02362464]
  1599. NCT02390063: [https://clinicaltrials.gov/ct2/show/NCT02390063]
  1600. NCT02410733: [https://clinicaltrials.gov/ct2/show/NCT02410733]
  1601. NCT02411019: [https://clinicaltrials.gov/show/NCT02411019]
  1602. NCT02411786: [https://clinicaltrials.gov/show/NCT02411786]
  1603. NCT02419170: Mature Dendritic Cell Vaccination Against Unique Immunogenic Peptides in Patients With Non Small Cell Lung Cancer (NSCLC) [https://clinicaltrials.gov/study/NCT02419170]
  1604. NCT02423928: [https://clinicaltrials.gov/ct2/show/NCT02423928]
  1605. NCT02427581: [https://clinicaltrials.gov/ct2/show/NCT02427581]
  1606. NCT02439450: [https://clinicaltrials.gov/ct2/show/NCT02439450]
  1607. NCT02454634: [https://clinicaltrials.gov/ct2/show/NCT02454634?term=IDH1R132H-specific+Peptide+Vaccine&rank=1]
  1608. NCT02460367: [https://clinicaltrials.gov/ct2/show/NCT02460367]
  1609. NCT02479230: [https://clinicaltrials.gov/ct2/show/NCT02479230]
  1610. NCT02493829: B7.1/​IL-2 Leukaemia Cell Vaccine for Non-Transplant AML RFUSIN2-AML2 (NTX) [https://clinicaltrials.gov/study/NCT02493829]
  1611. NCT02499835: [https://clinicaltrials.gov/show/NCT02499835]
  1612. NCT02501278: [https://clinicaltrials.gov/show/NCT02501278]
  1613. NCT02503150: [https://clinicaltrials.gov/ct2/show/NCT02503150]
  1614. NCT02506933: [https://clinicaltrials.gov/ct2/show/NCT02506933?term=CMV-MVA+Triplex+Vaccine&rank=1]
  1615. NCT02510950: Neoepitope-based Personalized Vaccine Approach in Patients With Newly Diagnosed Glioblastoma [https://clinicaltrials.gov/study/NCT02510950]
  1616. NCT02514213: [https://clinicaltrials.gov/show/NCT02514213]
  1617. NCT02528682: [https://clinicaltrials.gov/ct2/show/NCT02528682]
  1618. NCT02529930: [https://clinicaltrials.gov/show/NCT02529930]
  1619. NCT02550678: [https://clinicaltrials.gov/ct2/show/NCT02550678?term=Interferon-gamma-expressing+Adenovirus+Vaccine+ASN-002&rank=1]
  1620. NCT02555397: [https://clinicaltrials.gov/ct2/show/NCT02555397]
  1621. NCT02562755: Hepatocellular Carcinoma Study Comparing Vaccinia Virus Based Immunotherapy Plus Sorafenib vs Sorafenib Alone (PHOCUS) [https://clinicaltrials.gov/ct2/show/NCT02562755]
  1622. NCT02568566: [https://clinicaltrials.gov/ct2/show/NCT02568566?term=Recombinant+Human+Papillomavirus+Nonavalent+Vaccine&rank=1]
  1623. NCT02587520: [https://clinicaltrials.gov/ct2/show/NCT02587520?term=Bordetella+pertussis+Vaccine+Adsorbed&rank=1]
  1624. NCT02587520: [https://clinicaltrials.gov/ct2/show/NCT02587520?term=Diphtheria+Toxoid+Tetanus+Toxoid+Vaccine+Adsorbed&rank=1]
  1625. NCT02601040: [https://clinicaltrials.gov/show/NCT02601040]
  1626. NCT02615574: [https://clinicaltrials.gov/show/NCT02615574/]
  1627. NCT02625857: [https://clinicaltrials.gov/ct2/show/NCT02625857]
  1628. NCT02636582: [https://clinicaltrials.gov/ct2/show/NCT02636582?term=Nelipepimut-S+Plus+GM-CSF+Vaccine&rank=1]
  1629. NCT02636582: Nelipepimut-S Plus GM-CSF Vaccine Therapy in Treating Patients With Breast Cancer [https://clinicaltrials.gov/ct2/show/NCT02636582]
  1630. NCT02648282: [https://clinicaltrials.gov/ct2/show/NCT02648282]
  1631. NCT02649439: [https://clinicaltrials.gov/show/NCT02649439/]
  1632. NCT02654587: [https://clinicaltrials.gov/ct2/show/NCT02654587]
  1633. NCT02688673: DC Vaccine Combined With CIK Cells in Patients With SCLC [https://clinicaltrials.gov/study/NCT02688673]
  1634. NCT02693236: [https://clinicaltrials.gov/show/NCT02693236/]
  1635. NCT02718443: [https://clinicaltrials.gov/show/NCT02718443]
  1636. NCT02728102: Dendritic Cell/​Myeloma Fusion Vaccine for Multiple Myeloma (BMT CTN 1401) [https://clinicaltrials.gov/study/NCT02728102]
  1637. NCT02745756: A Combined Cell Therapy Approach to the Treatment of Neuroblastoma [https://clinicaltrials.gov/study/NCT02745756]
  1638. NCT02750995: Peptide Vaccination in Combination With Azacitidine for Patients With MDS and AML (AZACTA) [https://clinicaltrials.gov/study/NCT02750995]
  1639. NCT02772562: [https://clinicaltrials.gov/show/NCT02772562/]
  1640. NCT02773849: [https://clinicaltrials.gov/ct2/show/NCT02773849?term=Instiladrin&rank=1]
  1641. NCT02780401: Vaccine Therapy in Preventing Cancer Recurrence in Patients With Non-Metastatic, Node Positive, HER2 Negative Breast Cancer That is in Remission (WOKVAC) [https://clinicaltrials.gov/study/NCT02780401]
  1642. NCT02795988: [https://clinicaltrials.gov/ct2/show/NCT02795988]
  1643. NCT02808416: Personalized Cellular Vaccine for Brain Metastases (PERCELLVAC3) (PerCellVac3) [https://clinicaltrials.gov/study/NCT02808416]
  1644. NCT02822079: [https://clinicaltrials.gov/show/NCT02822079]
  1645. NCT02826434: [https://clinicaltrials.gov/show/NCT02826434/]
  1646. NCT02848911: [https://clinicaltrials.gov/show/NCT02848911/]
  1647. NCT02851056: Survivin Vaccine : Multiple Myeloma Autologous Hematopoietic Cell Transplant (HCT) [https://clinicaltrials.gov/study/NCT02851056]
  1648. NCT02855892: A Phase II Clinical Trial to Evaluate the Efficacy and Safety of GV1001 in Patients With BPH [https://clinicaltrials.gov/ct2/show/NCT02855892]
  1649. NCT02864368: Peptide Targets for Glioblastoma Against Novel Cytomegalovirus Antigens (PERFORMANCE) [https://clinicaltrials.gov/ct2/show/NCT02864368]
  1650. NCT02935790: [https://clinicaltrials.gov/show/NCT02935790/]
  1651. NCT02944357: Gemcitabine Hydrochloride, Cisplatin, and AGS-003-BLD in Treating Patients With Muscle-Invasive Bladder Cancer Undergoing Surgery [https://clinicaltrials.gov/study/NCT02944357]
  1652. NCT02960594: hTERT Immunotherapy Alone or in Combination With IL-12 DNA Followed by Electroporation in Adults With Solid Tumors at High Risk of Relapse (TRT-001) [https://clinicaltrials.gov/ct2/show/NCT02960594]
  1653. NCT03042182: Trial of Therapeutic Vaccine in Patients With Cholangiocarcinoma (cholangio) [https://clinicaltrials.gov/study/NCT03042182]
  1654. NCT03042793: Vaccination With PD-L1 Peptide Against Multiple Myeloma [https://clinicaltrials.gov/study/NCT03042793]
  1655. NCT03047928: Combination Therapy With Nivolumab and PD-L1/​IDO Peptide Vaccine to Patients With Metastatic Melanoma [https://clinicaltrials.gov/study/NCT03047928]
  1656. NCT03059485: DC/​AML Fusion Cell Vaccine vs Observation in Patients Who Achieve a Chemotherapy-induced Remission [https://clinicaltrials.gov/study/NCT03059485]
  1657. NCT03092453: Dendritic Cell Vaccination in Patients With Advanced Melanoma [https://clinicaltrials.gov/study/NCT03092453]
  1658. NCT03121677: Personalized Tumor Vaccine Strategy and PD-1 Blockade in Patients With Follicular Lymphoma [https://clinicaltrials.gov/study/NCT03121677]
  1659. NCT03141463: Vvax001 Cancer Vaccine in (Pre) Malignant Cervical Lesions [https://clinicaltrials.gov/study/NCT03141463]
  1660. NCT03166254: Personalized Therapeutic Anti-tumor Vaccine With Pembrolizumab and Standard of Care Chemotherapy in Squamous Non-Small Cell Lung Cancer and Extensive Stage Small Cell Lung Cancer [https://clinicaltrials.gov/study/NCT03166254]
  1661. NCT03226236: Vaccination With Dendritic Cells Pulsed With Autologous Tumor Homogenate in Combination With HD-IL2 and Immunomodulating Radiotherapy in Metastatic RCC (RENALVax-2) [https://clinicaltrials.gov/study/NCT03226236]
  1662. NCT03294564: Cognitive, Emotional, and Neural Responses to Acute Inflammation [https://clinicaltrials.gov/ct2/show/NCT03294564]
  1663. NCT03300817: MUC1 Vaccine in Preventing Lung Cancer in Current and Former Smokers at High Risk for Lung Cancer [https://clinicaltrials.gov/study/NCT03300817]
  1664. NCT03300843: Ability of a Dendritic Cell Vaccine to Immunize Melanoma or Epithelial Cancer Patients Against Defined Mutated Neoantigens Expressed by the Autologous Cancer [https://clinicaltrials.gov/study/NCT03300843]
  1665. NCT03391232: PolyPEPI1018 Vaccine and CDx for the Treatment of Metastatic Colorectal Cancer (OBERTO) (OBERTO) [https://clinicaltrials.gov/study/NCT03391232]
  1666. NCT03396575: Brain Stem Gliomas Treated With Adoptive Cellular Therapy During Focal Radiotherapy Recovery Alone or With Dose-intensified Temozolomide (Phase I) (BRAVO) [https://clinicaltrials.gov/study/NCT03396575]
  1667. NCT03412786: Bcl-XL_42-CAF09b Vaccination for Patients With Prostate Cancer With Lymph Node Metastases [https://clinicaltrials.gov/study/NCT03412786]
  1668. NCT03468244: Clinical Study of Personalized mRNA Vaccine Encoding Neoantigen in Patients With Advanced Digestive System Neoplasms [https://clinicaltrials.gov/study/NCT03468244]
  1669. NCT03480152: Messenger RNA (mRNA)-Based, Personalized Cancer Vaccine Against Neoantigens Expressed by the Autologous Cancer [https://clinicaltrials.gov/study/NCT03480152]
  1670. NCT03556566: Open Label Immunotherapy Trial for Ovarian Cancer (V3-OVA) [https://clinicaltrials.gov/study/NCT03556566]
  1671. NCT03558945: Clinical Trial on Personalized Neoantigen Vaccine for Pancreatic Tumor [https://clinicaltrials.gov/study/NCT03558945]
  1672. NCT03598816: PolyImmune {Durvalumab (MEDI4736) and Tremelimumab} & Vaccine Orchestrated Treatment for Patients With Advanced/​Metastatic Renal Cell Carcinoma (PIVOT-RCC) [https://clinicaltrials.gov/study/NCT03598816]
  1673. NCT03674073: A Study Combining Personalized Neoantigen-based Dendritic Cell Vaccine With Microwave Ablation for the Treatment of Hepatocellular Carcinoma [https://clinicaltrials.gov/study/NCT03674073]
  1674. NCT03871205: Neoantigen-primed DC Vaccines Therapy for Refractory Lung Cancer [https://clinicaltrials.gov/study/NCT03871205]
  1675. NCT03914768: Immune Modulatory DC Vaccine Against Brain Tumor [https://clinicaltrials.gov/study/NCT03914768]
  1676. NCT04079166: SCIB1 in Melanoma Patients Receiving Either Nivolumab With Ipilimumab or Pembrolizumab (The SCOPE Study) [https://clinicaltrials.gov/study/NCT04079166]
  1677. NCT04147078: Personalized DC Vaccine for Postoperative Cancer [https://clinicaltrials.gov/study/NCT04147078]
  1678. NCT04197687: TPIV100 and Sargramostim for the Treatment of HER2 Positive, Stage II-III Breast Cancer in Patients With Residual Disease After Chemotherapy and Surgery [https://clinicaltrials.gov/study/NCT04197687]
  1679. NCT04247282: Anti-PD-L1/​TGF-beta Trap (M7824) Alone and in Combination With TriAd Vaccine and N-803 for Resectable Head and Neck Squamous Cell Carcinoma Not Associated With Human Papillomavirus Infection [https://clinicaltrials.gov/study/NCT04247282]
  1680. NCT04270149: Cancer Peptides Plus GM-CSF and Adjuvant in Breast Cancer [https://clinicaltrials.gov/study/NCT04270149]
  1681. NCT04317248: "Cocktail" Therapy for Hepatitis B Related Hepatocellular Carcinoma [https://clinicaltrials.gov/study/NCT04317248]
  1682. NCT04348747: Dendritic Cell Vaccines Against Her2/​Her3 and Pembrolizumab for the Treatment of Brain Metastasis From Triple Negative Breast Cancer or HER2+ Breast Cancer [https://clinicaltrials.gov/study/NCT04348747]
  1683. NCT04418219: Breast Cancer Vaccine in Combination With Pembrolizumab for Treatment of Persistent, Recurrent, or Metastatic Breast Cancer [https://clinicaltrials.gov/study/NCT04418219]
  1684. NCT04573140: A Study of RNA-lipid Particle (RNA-LP) Vaccines for Newly Diagnosed Pediatric High-Grade Gliomas (pHGG) and Adult Glioblastoma (GBM) (PNOC020) [https://clinicaltrials.gov/study/NCT04573140]
  1685. NCT04574583: Phase I/​II Trial Investigating the Safety, Tolerability, Pharmacokinetics, Immune and Clinical Activity of SX-682 in Combination With BinTrafusp Alfa (M7824 or TGF-beta "Trap"/​PD-L1) With CV301 TRICOM in Advanced Solid Tumors (STAT) [https://clinicaltrials.gov/study/NCT04574583]
  1686. NCT04688385: Personalized Multi-peptide Vaccination in CLL Patients [https://clinicaltrials.gov/study/NCT04688385]
  1687. NCT04741984: Monocyte Antigen Carrier Cells for Newly Diagnosed GBM (DEMAND) [https://clinicaltrials.gov/study/NCT04741984]
  1688. NCT04749641: Neoantigen Vaccine Therapy Against H3.3-K27M Diffuse Intrinsic Pontine Glioma (ENACTING) [https://clinicaltrials.gov/study/NCT04749641]
  1689. NCT04912765: Neoantigen Dendritic Cell Vaccine and Nivolumab in HCC and Liver Metastases From CRC [https://clinicaltrials.gov/study/NCT04912765]
  1690. NCT04998474: FRAME-001 Personalized Vaccine in NSCLC [https://clinicaltrials.gov/study/NCT04998474]
  1691. NCT05014607: Personalized Multi-peptide Vaccination in Combination With the TLR1/​2 Ligand XS15 in Cancer Patients (InHeVac01) [https://clinicaltrials.gov/study/NCT05014607]
  1692. NCT05023928: Tumor Antigen-sensitized DC Vaccine as an Adjuvant Therapy for Esophagus Cancer [https://clinicaltrials.gov/study/NCT05023928]
  1693. NCT05098210: Personalized Neo-Antigen Peptide Vaccine for the Treatment of Stage IIIC-IV Melanoma or Hormone Receptor Positive Her2 Negative Metastatic Refractory Breast Cancer [https://clinicaltrials.gov/study/NCT05098210]
  1694. NCT05111353: Neoantigen Vaccines in Pancreatic Cancer in the Window Prior to Surgery [https://clinicaltrials.gov/study/NCT05111353]
  1695. NCT05163223: Therapeutic Cancer Vaccine (AST-301, pNGVL3-hICD) in Patients With Breast Cancer (Cornerstone001) [https://clinicaltrials.gov/ct2/show/NCT05163223]
  1696. NCT05195619: Autologous dendritic cell vaccine loaded with personalized peptides (PEP-DC vaccine) [https://clinicaltrials.gov/study/NCT05195619]
  1697. NCT05202561: A Study of RNA Tumor Vaccine in Patients With Advanced Solid Tumors [https://clinicaltrials.gov/study/NCT05202561]
  1698. NCT05227378: Safety and Efficacy of Personalized Neoantigen Vaccine in Advanced Gastric Cancer [https://clinicaltrials.gov/study/NCT05227378]
  1699. NCT05235607: Personalized Immune Cell Therapy Targeting Neoantigen of Malignant Solid Tumors [https://clinicaltrials.gov/study/NCT05235607]
  1700. NCT05264974: Novel RNA-nanoparticle Vaccine for the Treatment of Early Melanoma Recurrence Following Adjuvant Anti-PD-1 Antibody Therapy [https://clinicaltrials.gov/study/NCT05264974]
  1701. NCT05283109: ETAPA I: Peptide-based Tumor Associated Antigen Vaccine in GBM (ETAPA I) [https://clinicaltrials.gov/study/NCT05283109]
  1702. NCT05317325: A Translational Study of Tumor Antigen-pulsed DC Vaccine for ESCC [https://clinicaltrials.gov/study/NCT05317325]
  1703. NCT05359354: Safety and Efficacy of Personalized Neoantigen Vaccine in Advanced Solid Tumors [https://clinicaltrials.gov/study/NCT05359354]
  1704. NCT05457959: Peptide-Pulsed Dendritic Cell Vaccination in Combination With Nivolumab and Ipilimumab for the Treatment of Recurrent and/​or Progressive Diffuse Hemispheric Glioma, H3 G34-mutant [https://clinicaltrials.gov/study/NCT05457959]
  1705. NCT05479045: A Combination Therapy Strategy to Prevent Anti-PD-1 Therapy Resistance in Metastatic Ovarian Cancer Patients [https://clinicaltrials.gov/ct2/show/NCT05479045]
  1706. NCT05533203: Safety of Prodencel in the Treatment of Metastatic Castration-resistant Prostate Cancer (mCRPC) [https://clinicaltrials.gov/study/NCT05533203]
  1707. NCT05559177: An Open, Dose-escalation Clinical Study of Chimeric Exosomal Tumor Vaccines for Recurrent or Metastatic Bladder Cancer [https://clinicaltrials.gov/study/NCT05559177]
  1708. NCT05638698: Tg01 Vaccine /​ Qs-21 Stimulon™ With Or Without Balstilimab As Maintenance Therapy Following Adjuvant Chemotherapy In Patients With Resected Pancreatic Cancer (TESLA) [https://clinicaltrials.gov/study/NCT05638698]
  1709. Nelson et al., 2016: Nelson HH, Pawlita M, Michaud DS, McClean M, Langevin SM, Eliot MN, Kelsey KT. Immune Response to HPV16 E6 and E7 Proteins and Patient Outcomes in Head and Neck Cancer. JAMA oncology. 2016; ; . [PubMed: 27930753].
  1710. Nemunaitis et al., 2006: Nemunaitis J, Dillman RO, Schwarzenberger PO, Senzer N, Cunningham C, Cutler J, Tong A, Kumar P, Pappen B, Hamilton C, DeVol E, Maples PB, Liu L, Chamberlin T, Shawler DL, Fakhrai H. Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2006; 24(29); 4721-4730. [PubMed: 16966690].
  1711. Nemunaitis et al., 2009: Nemunaitis J, Nemunaitis M, Senzer N, Snitz P, Bedell C, Kumar P, Pappen B, Maples PB, Shawler D, Fakhrai H. Phase II trial of Belagenpumatucel-L, a TGF-beta2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer gene therapy. 2009; 16(8); 620-624. [PubMed: 19287371].
  1712. Nemunaitis, 2003: Nemunaitis J. GVAX (GMCSF gene modified tumor vaccine) in advanced stage non small cell lung cancer. Journal of controlled release : official journal of the Controlled Release Society. 2003; 91(1-2); 225-231. [PubMed: 12932654].
  1713. New et al., 1988: New JH, Eggleston AK, Fennewald M. Binding of the Tn3 transposase to the inverted repeats of Tn3. Journal of molecular biology. 1988; 201(3); 589-599. [PubMed: 2843651].
  1714. Nicholaou et al., 2009: Nicholaou T, Ebert LM, Davis ID, McArthur GA, Jackson H, Dimopoulos N, Tan B, Maraskovsky E, Miloradovic L, Hopkins W, Pan L, Venhaus R, Hoffman EW, Chen W, Cebon J. Regulatory T-cell-mediated attenuation of T-cell responses to the NY-ESO-1 ISCOMATRIX vaccine in patients with advanced malignant melanoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009; 15(6); 2166-2173. [PubMed: 19276262].
  1715. Nicholson et al., 2003: Nicholson S, Guile K, John J, Clarke IA, Diffley J, Donnellan P, Michael A, Szlosarek P, Dalgleish AG. A randomized phase II trial of SRL172 (Mycobacterium vaccae) +/- low-dose interleukin-2 in the treatment of metastatic malignant melanoma. Melanoma research. 2003; 13(4); 389-393. [PubMed: 12883365].
  1716. Niethammer et al., 2002: Niethammer AG, Xiang R, Becker JC, Wodrich H, Pertl U, Karsten G, Eliceiri BP, Reisfeld RA. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nature medicine. 2002; 8(12); 1369-1375. [PubMed: 12415261].
  1717. Nigro et al., 2009: Nigro EA, Brini AT, Soprana E, Ambrosi A, Dombrowicz D, Siccardi AG, Vangelista L. Antitumor IgE adjuvanticity: key role of Fc epsilon RI. Journal of immunology (Baltimore, Md. : 1950). 2009; 183(7); 4530-4536. [PubMed: 19748979].
  1718. Nitschke et al., 2017: Nitschke NJ, Bjoern J, Iversen TZ, Andersen MH, Svane IM. Indoleamine 2,3-dioxygenase and survivin peptide vaccine combined with temozolomide in metastatic melanoma. Stem cell investigation. 2017; 4; 77. [PubMed: 29057249].
  1719. Nooka et al., 2018: Nooka AK, Wang ML, Yee AJ, Kaufman JL, Bae J, Peterkin D, Richardson PG, Raje NS. Assessment of Safety and Immunogenicity of PVX-410 Vaccine With or Without Lenalidomide in Patients With Smoldering Multiple Myeloma: A Nonrandomized Clinical Trial. JAMA oncology. 2018; 4(12); e183267. [PubMed: 30128502].
  1720. Nothdurft, 2008: Nothdurft HD. Hepatitis A vaccines. Expert review of vaccines. 2008; 7(5); 535-545. [PubMed: 18564009].
  1721. Nowicki et al., 2019: Nowicki TS, Berent-Maoz B, Cheung-Lau G, Huang RR, Wang X, Tsoi J, Kaplan-Lefko P, Cabrera P, Tran J, Pang J, Macabali M, Garcilazo IP, Carretero IB, Kalbasi A, Cochran AJ, Grasso CS, Hu-Lieskovan S, Chmielowski B, Comin-Anduix B, Singh A, Ribas A. A Pilot Trial of the Combination of Transgenic NY-ESO-1-reactive Adoptive Cellular Therapy with Dendritic Cell Vaccination with or without Ipilimumab. Clinical cancer research : an official journal of the American Association for Cancer Research. 2019; 25(7); 2096-2108. [PubMed: 30573690].
  1722. O'Connor et al., 1978: O'Connor TP, Labandter HP, Hiles RW, Bodenham DC. A clinical trial of BCG immunotherapy as an adjunct to surgery in the treatment of primary malignant melanoma. British journal of plastic surgery. 1978; 31(4); 317-322. [PubMed: 361132].
  1723. Ochiai et al., 2014: Ochiai RL, Khan MI, Soofi SB, Sur D, Kanungo S, You YA, Habib MA, Sahito SM, Manna B, Dutta S, Acosta CJ, Ali M, Bhattacharya SK, Bhutta ZA, Clemens JD. Immune responses to Vi capsular polysaccharide typhoid vaccine in children 2 to 16 years old in Karachi, Pakistan, and Kolkata, India. Clinical and vaccine immunology : CVI. 2014; 21(5); 661-666. [PubMed: 24599532].
  1724. Odin et al., 2001: Odin L, Favrot M, Poujol D, Michot JP, Moingeon P, Tartaglia J, Puisieux I. Canarypox virus expressing wild type p53 for gene therapy in murine tumors mutated in p53. Cancer gene therapy. 2001; 8(2); 87-98. [PubMed: 11263530].
  1725. Odunsi et al., 2007: Odunsi K, Qian F, Matsuzaki J, Mhawech-Fauceglia P, Andrews C, Hoffman EW, Pan L, Ritter G, Villella J, Thomas B, Rodabaugh K, Lele S, Shrikant P, Old LJ, Gnjatic S. Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America. 2007; 104(31); 12837-12842. [PubMed: 17652518].
  1726. Odunsi et al., 2012: Odunsi K, Matsuzaki J, Karbach J, Neumann A, Mhawech-Fauceglia P, Miller A, Beck A, Morrison CD, Ritter G, Godoy H, Lele S, duPont N, Edwards R, Shrikant P, Old LJ, Gnjatic S, Jäger E. Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients. Proceedings of the National Academy of Sciences of the United States of America. 2012; 109(15); 5797-5802. [PubMed: 22454499].
  1727. Oertli et al., 2002: Oertli D, Marti WR, Zajac P, Noppen C, Kocher T, Padovan E, Adamina M, Schumacher R, Harder F, Heberer M, Spagnoli GC. Rapid induction of specific cytotoxic T lymphocytes against melanoma-associated antigens by a recombinant vaccinia virus vector expressing multiple immunodominant epitopes and costimulatory molecules in vivo. Human gene therapy. 2002; 13(4); 569-575. [PubMed: 11874634].
  1728. Oka et al., 2006: Oka Y, Tsuboi A, Kawakami M, Elisseeva OA, Nakajima H, Udaka K, Kawase I, Oji Y, Sugiyama H. Development of WT1 peptide cancer vaccine against hematopoietic malignancies and solid cancers. Current medicinal chemistry. 2006; 13(20); 2345-2352. [PubMed: 16918359].
  1729. Okada et al., 2011: Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, Mintz AH, Engh JA, Bartlett DL, Brown CK, Zeh H, Holtzman MP, Reinhart TA, Whiteside TL, Butterfield LH, Hamilton RL, Potter DM, Pollack IF, Salazar AM, Lieberman FS. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2011; 29(3); 330-336. [PubMed: 21149657].
  1730. Okur et al., 2011: Okur FV, Yvon E, Biagi E, Dotti G, Carrum G, Heslop H, Mims MP, Fratantoni JC, Peshwa MV, Li L, Brenner MK. Comparison of two CD40-ligand/interleukin-2 vaccines in patients with chronic lymphocytic leukemia. Cytotherapy. 2011; 13(9); 1128-1139. [PubMed: 21745159].
  1731. Olin et al., 2014: Olin MR, Low W, McKenna DH, Haines SJ, Dahlheimer T, Nascene D, Gustafson MP, Dietz AB, Clark HB, Chen W, Blazar B, Ohlfest JR, Moertel C. Vaccination with dendritic cells loaded with allogeneic brain tumor cells for recurrent malignant brain tumors induces a CD4(+)IL17(+) response. Journal for immunotherapy of cancer. 2014; 2; 4. [PubMed: 24829761].
  1732. Olivares et al., 2011: Olivares J, Kumar P, Yu Y, Maples PB, Senzer N, Bedell C, Barve M, Tong A, Pappen BO, Kuhn J, Magee M, Wallraven G, Nemunaitis J. Phase I trial of TGF-beta 2 antisense GM-CSF gene-modified autologous tumor cell (TAG) vaccine. Clinical cancer research : an official journal of the American Association for Cancer Research. 2011; 17(1); 183-192. [PubMed: 21208907].
  1733. Onaitis et al., 2002: Onaitis M, Kalady MF, Pruitt S, Tyler DS. Dendritic cell gene therapy. Surgical oncology clinics of North America. 2002; 11(3); 645-660. [PubMed: 12487060].
  1734. Osanto, 1997: Osanto S. Vaccine Trials for the Clinician: Prospects for Tumor Antigens. The oncologist. 1997; 2(5); 284-299. [PubMed: 10388061].
  1735. Ott et al., 2017: Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, Chen C, Olive O, Carter TA, Li S, Lieb DJ, Eisenhaure T, Gjini E, Stevens J, Lane WJ, Javeri I, Nellaiappan K, Salazar AM, Daley H, Seaman M, Buchbinder EI, Yoon CH, Harden M, Lennon N, Gabriel S, Rodig SJ, Barouch DH, Aster JC, Getz G, Wucherpfennig K, Neuberg D, Ritz J, Lander ES, Fritsch EF, Hacohen N, Wu CJ. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017; 547(7662); 217-221. [PubMed: 28678778].
  1736. Ottensmeier et al., 2016: Ottensmeier C, Bowers M, Hamid D, Maishman T, Regan S, Wood W, Cazaly A, Stanton L. Wilms’ tumour antigen 1 Immunity via DNA fusion gene vaccination in haematological malignancies by intramuscular injection followed by intramuscular electroporation: a Phase II non-randomised clinical trial (WIN). NIHR Journals Library. 2016; ; . [PubMed: 27099895].
  1737. Overwijk et al., 1999: Overwijk WW, Lee DS, Surman DR, Irvine KR, Touloukian CE, Chan CC, Carroll MW, Moss B, Rosenberg SA, Restifo NP. Vaccination with a recombinant vaccinia virus encoding a "self" antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America. 1999; 96(6); 2982-2987. [PubMed: 10077623].
  1738. Paff et al., 2014: Paff M, Alexandru-Abrams D, Hsu FP, Bota DA. The evolution of the EGFRvIII (rindopepimut) immunotherapy for glioblastoma multiforme patients. Human vaccines & immunotherapeutics. 2014; 10(11); 3322-3331. [PubMed: 25625931].
  1739. Pal et al., 2006: Pal R, Venzon D, Santra S, Kalyanaraman VS, Montefiori DC, Hocker L, Hudacik L, Rose N, Nacsa J, Edghill-Smith Y, Moniuszko M, Hel Z, Belyakov IM, Berzofsky JA, Parks RW, Markham PD, Letvin NL, Tartaglia J, Franchini G. Systemic immunization with an ALVAC-HIV-1/protein boost vaccine strategy protects rhesus macaques from CD4+ T-cell loss and reduces both systemic and mucosal simian-human immunodeficiency virus SHIVKU2 RNA levels. Journal of virology. 2006; 80(8); 3732-3742. [PubMed: 16571790].
  1740. Palefsky et al., 2006: Palefsky JM, Berry JM, Jay N, Krogstad M, Da Costa M, Darragh TM, Lee JY. A trial of SGN-00101 (HspE7) to treat high-grade anal intraepithelial neoplasia in HIV-positive individuals. AIDS (London, England). 2006; 20(8); 1151-1155. [PubMed: 16691066].
  1741. Panelli et al., 2000: Panelli MC, Wunderlich J, Jeffries J, Wang E, Mixon A, Rosenberg SA, Marincola FM. Phase 1 study in patients with metastatic melanoma of immunization with dendritic cells presenting epitopes derived from the melanoma-associated antigens MART-1 and gp100. Journal of immunotherapy (Hagerstown, Md. : 1997). 2000; 23(4); 487-498. [PubMed: 10916759].
  1742. Park et al., 2010: Park MY, Kim DR, Jung HW, Yoon HI, Lee JH, Lee CT. Genetic immunotherapy of lung cancer using conditionally replicating adenovirus and adenovirus-interferon-beta. Cancer gene therapy. 2010; 17(5); 356-364. [PubMed: 19893592].
  1743. Park et al., 2011: Park MH, Yang DH, Kim MH, Jang JH, Jang YY, Lee YK, Jin CJ, Pham TN, Thi TA, Lim MS, Lee HJ, Hong CY, Yoon JH, Lee JJ. Alpha-Type 1 Polarized Dendritic Cells Loaded with Apoptotic Allogeneic Breast Cancer Cells Can Induce Potent Cytotoxic T Lymphocytes against Breast Cancer. Cancer research and treatment : official journal of Korean Cancer Association. 2011; 43(1); 56-66. [PubMed: 21509164].
  1744. Parker et al., 2000: Parker LL, Do MT, Westwood JA, Wunderlich JR, Dudley ME, Rosenberg SA, Hwu P. Expansion and characterization of T cells transduced with a chimeric receptor against ovarian cancer. Human gene therapy. 2000; 11(17); 2377-2387. [PubMed: 11096442].
  1745. Parkhurst et al., 2003: Parkhurst MR, DePan C, Riley JP, Rosenberg SA, Shu S. Hybrids of dendritic cells and tumor cells generated by electrofusion simultaneously present immunodominant epitopes from multiple human tumor-associated antigens in the context of MHC class I and class II molecules. Journal of immunology (Baltimore, Md. : 1950). 2003; 170(10); 5317-5325. [PubMed: 12734382].
  1746. Parkhurst et al., 2011: Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, Hughes MS, Kammula US, Phan GQ, Lim RM, Wank SA, Restifo NP, Robbins PF, Laurencot CM, Rosenberg SA. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Molecular therapy : the journal of the American Society of Gene Therapy. 2011; 19(3); 620-626. [PubMed: 21157437].
  1747. Parkinson and Sznol, 1995: Parkinson DR, Sznol M. High-dose interleukin-2 in the therapy of metastatic renal-cell carcinoma. Seminars in oncology. 1995; 22(1); 61-66. [PubMed: 7855620].
  1748. Parmiani et al., 2014: Parmiani G, Pilla L, Corti A, Doglioni C, Cimminiello C, Bellone M, Parolini D, Russo V, Capocefalo F, Maccalli C. A pilot Phase I study combining peptide-based vaccination and NGR-hTNF vessel targeting therapy in metastatic melanoma. Oncoimmunology. 2014; 3(11); e963406. [PubMed: 25941591].
  1749. Parvanova et al., 2011: Parvanova I, Rettig L, Knuth A, Pascolo S. The form of NY-ESO-1 antigen has an impact on the clinical efficacy of anti-tumor vaccination. Vaccine. 2011; 29(22); 3832-3836. [PubMed: 21470580].
  1750. Patel et al., 2013: Patel JD, Socinski MA, Garon EB, Reynolds CH, Spigel DR, Olsen MR, Hermann RC, Jotte RM, Beck T, Richards DA, Guba SC, Liu J, Frimodt-Moller B, John WJ, Obasaju CK, Pennella EJ, Bonomi P, Govindan R. PointBreak: a randomized phase III study of pemetrexed plus carboplatin and bevacizumab followed by maintenance pemetrexed and bevacizumab versus paclitaxel plus carboplatin and bevacizumab followed by maintenance bevacizumab in patients with stage IIIB or IV nonsquamous non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013; 31(34); 4349-4357. [PubMed: 24145346].
  1751. Pavlenko et al., 2004: Pavlenko M, Roos AK, Lundqvist A, Palmborg A, Miller AM, Ozenci V, Bergman B, Egevad L, Hellström M, Kiessling R, Masucci G, Wersäll P, Nilsson S, Pisa P. A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. British journal of cancer. 2004; 91(4); 688-694. [PubMed: 15280930].
  1752. Peethambaram et al., 2009: Peethambaram PP, Melisko ME, Rinn KJ, Alberts SR, Provost NM, Jones LA, Sims RB, Lin LR, Frohlich MW, Park JW. A phase I trial of immunotherapy with lapuleucel-T (APC8024) in patients with refractory metastatic tumors that express HER-2/neu. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009; 15(18); 5937-5944. [PubMed: 19723649].
  1753. Pektor et al., 2018: Pektor S, Hilscher L, Walzer KC, Miederer I, Bausbacher N, Loquai C, Schreckenberger M, Sahin U, Diken M, Miederer M. In vivo imaging of the immune response upon systemic RNA cancer vaccination by FDG-PET. EJNMMI research. 2018; 8(1); 80. [PubMed: 30112704].
  1754. Pellegatta et al., 2015: Pellegatta S, Valletta L, Corbetta C, Patanè M, Zucca I, Riccardi Sirtori F, Bruzzone MG, Fogliatto G, Isacchi A, Pollo B, Finocchiaro G. Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta neuropathologica communications. 2015; 3; 4. [PubMed: 25849072].
  1755. Perloff et al., 1977: Perloff M, Holland JF, Lumb GJ, Bekesi JG. Effects of methanol extraction residue of Bacillus calmette-Guérin in humans. Cancer research. 1977; 37(4); 1191-1196. [PubMed: 321117].
  1756. Perricone et al., 2004: Perricone MA, Smith KA, Claussen KA, Plog MS, Hempel DM, Roberts BL, St George JA, Kaplan JM. Enhanced efficacy of melanoma vaccines in the absence of B lymphocytes. Journal of immunotherapy (Hagerstown, Md. : 1997). 2004; 27(4); 273-281. [PubMed: 15235388].
  1757. Pertl et al., 2003: Pertl U, Wodrich H, Ruehlmann JM, Gillies SD, Lode HN, Reisfeld RA. Immunotherapy with a posttranscriptionally modified DNA vaccine induces complete protection against metastatic neuroblastoma. Blood. 2003; 101(2); 649-654. [PubMed: 12393580].
  1758. Phan et al., 2003: Phan GQ, Touloukian CE, Yang JC, Restifo NP, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Seipp CA, Freezer LJ, Morton KE, Mavroukakis SA, White DE, Rosenberg SA. Immunization of patients with metastatic melanoma using both class I- and class II-restricted peptides from melanoma-associated antigens. Journal of immunotherapy (Hagerstown, Md. : 1997). 2003; 26(4); 349-356. [PubMed: 12843797].
  1759. Phuphanich et al., 2013: Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H, Nuño MA, Richardson JE, Fan X, Ji J, Chu RM, Bender JG, Hawkins ES, Patil CG, Black KL, Yu JS. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer immunology, immunotherapy : CII. 2013; 62(1); 125-135. [PubMed: 22847020].
  1760. Pinto et al., 1999: Pinto LA, Berzofsky JA, Fowke KR, Little RF, Merced-Galindez F, Humphrey R, Ahlers J, Dunlop N, Cohen RB, Steinberg SM, Nara P, Shearer GM, Yarchoan R. HIV-specific immunity following immunization with HIV synthetic envelope peptides in asymptomatic HIV-infected patients. AIDS (London, England). 1999; 13(15); 2003-2012. [PubMed: 10546852].
  1761. Pitel, 1988: Pitel ML. Use of a cantilevered acrylic splint in the autogenous transplantation of a third molar: report of case. Journal of the American Dental Association (1939). 1988; 117(2); 329-331. [PubMed: 3166476].
  1762. Plotkin and Bouveret-Le, 1995: Plotkin SA, Bouveret-Le Cam N. A new typhoid vaccine composed of the Vi capsular polysaccharide. Archives of internal medicine. 1995; 155(21); 2293-2299. [PubMed: 7487253].
  1763. Pol et al., 2014: Pol JG, Zhang L, Bridle BW, Stephenson KB, Rességuier J, Hanson S, Chen L, Kazdhan N, Bramson JL, Stojdl DF, Wan Y, Lichty BD. Maraba virus as a potent oncolytic vaccine vector. Molecular therapy : the journal of the American Society of Gene Therapy. 2014; 22(2); 420-429. [PubMed: 24322333].
  1764. Pol et al., 2019: Pol JG, Acuna SA, Yadollahi B, Tang N, Stephenson KB, Atherton MJ, Hanwell D, El-Warrak A, Goldstein A, Moloo B, Turner PV, Lopez R, LaFrance S, Evelegh C, Denisova G, Parsons R, Millar J, Stoll G, Martin CG, Pomoransky J, Breitbach CJ, Bramson JL, Bell JC, Wan Y, Stojdl DF, Lichty BD, McCart JA. Preclinical evaluation of a MAGE-A3 vaccination utilizing the oncolytic Maraba virus currently in first-in-human trials. Oncoimmunology. 2019; 8(1); e1512329. [PubMed: 30546947].
  1765. Pollack et al., 2016: Pollack IF, Jakacki RI, Butterfield LH, Hamilton RL, Panigrahy A, Normolle DP, Connelly AK, Dibridge S, Mason G, Whiteside TL, Okada H. Antigen-specific immunoreactivity and clinical outcome following vaccination with glioma-associated antigen peptides in children with recurrent high-grade gliomas: results of a pilot study. Journal of neuro-oncology. 2016; 130(3); 517-527. [PubMed: 27624914].
  1766. Pope et al., 1994: Pope BL, Sigindere J, Chourmouzis E, MacIntyre P, Goodman MG. 7-Allyl-8-oxoguanosine (loxoribine) inhibits the metastasis of B16 melanoma cells and has adjuvant activity in mice immunized with a B16 tumor vaccine. Cancer immunology, immunotherapy : CII. 1994; 38(2); 83-91. [PubMed: 8306370].
  1767. Posner et al., 2008: Posner MC, Niedzwiecki D, Venook AP, Hollis DR, Kindler HL, Martin EW, Schilsky RL, Goldberg RM, Mayer RJ. A phase II prospective multi-institutional trial of adjuvant active specific immunotherapy following curative resection of colorectal cancer hepatic metastases: cancer and leukemia group B study 89903. Annals of surgical oncology. 2008; 15(1); 158-164. [PubMed: 18008108].
  1768. Prabakaran et al., 2002: Prabakaran I, Menon C, Xu S, Gómez-Yafal A, Czerniecki BJ, Fraker DL. Mature CD83(+) dendritic cells infected with recombinant gp100 vaccinia virus stimulate potent antimelanoma T cells. Annals of surgical oncology. 2002; 9(4); 411-418. [PubMed: 11986195].
  1769. Prince et al., 2015: Prince HE, Seaton BL, Matud JL, Batterman HJ. Chikungunya virus RNA and antibody testing at a National Reference Laboratory since the emergence of Chikungunya virus in the Americas. Clinical and vaccine immunology : CVI. 2015; 22(3); 291-297. [PubMed: 25540275].
  1770. Prins et al., 2013: Prins RM, Wang X, Soto H, Young E, Lisiero DN, Fong B, Everson R, Yong WH, Lai A, Li G, Cloughesy TF, Liau LM. Comparison of glioma-associated antigen peptide-loaded versus autologous tumor lysate-loaded dendritic cell vaccination in malignant glioma patients. Journal of immunotherapy (Hagerstown, Md. : 1997). 2013; 36(2); 152-157. [PubMed: 23377664].
  1771. Procaccio et al., 2017: Procaccio L, Schirripa M, Fassan M, Vecchione L, Bergamo F, Prete AA, Intini R, Manai C, Dadduzio V, Boscolo A, Zagonel V, Lonardi S. Immunotherapy in Gastrointestinal Cancers. BioMed research international. 2017; 2017; 4346576. [PubMed: 28758114].
  1772. Pruitt et al., 2011: Pruitt SK, Boczkowski D, de Rosa N, Haley NR, Morse MA, Tyler DS, Dannull J, Nair S. Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. European journal of immunology. 2011; 41(12); 3553-3563. [PubMed: 22028176].
  1773. Pujol et al., 2016: Pujol JL, De Pas T, Rittmeyer A, Vallières E, Kubisa B, Levchenko E, Wiesemann S, Masters GA, Shen R, Tjulandin SA, Hofmann HS, Vanhoutte N, Salaun B, Debois M, Jarnjak S, De Sousa Alves PM, Louahed J, Brichard VG, Lehmann FF. Safety and Immunogenicity of the PRAME Cancer Immunotherapeutic in Patients with Resected Non-Small Cell Lung Cancer: A Phase I Dose Escalation Study. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2016; 11(12); 2208-2217. [PubMed: 27544054].
  1774. Pullarkat et al., 2003: Pullarkat V, Lee PP, Scotland R, Rubio V, Groshen S, Gee C, Lau R, Snively J, Sian S, Woulfe SL, Wolfe RA, Weber JS. A phase I trial of SD-9427 (progenipoietin) with a multipeptide vaccine for resected metastatic melanoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2003; 9(4); 1301-1312. [PubMed: 12684398].
  1775. Purner et al., 1994: Purner MB, Berens RL, Krug EC, Curiel TJ. Epstein-Barr virus-transformed B cells, a potentially convenient source of autologous antigen-presenting cells for the propagation of certain human cytotoxic T lymphocytes. Clinical and diagnostic laboratory immunology. 1994; 1(6); 696-700. [PubMed: 8556523].
  1776. Qazilbash et al., 2017: Qazilbash MH, Wieder E, Thall PF, Wang X, Rios R, Lu S, Kanodia S, Ruisaard KE, Giralt SA, Estey EH, Cortes J, Komanduri KV, Clise-Dwyer K, Alatrash G, Ma Q, Champlin RE, Molldrem JJ. PR1 peptide vaccine induces specific immunity with clinical responses in myeloid malignancies. Leukemia. 2017; 31(3); 697-704. [PubMed: 27654852].
  1777. Qi et al., 2006: Qi H, Li YH, Zheng SB. [Oral gene therapy via live attenuated Salmonella leads to tumor regression and survival prolongation in mice]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2006; 26(12); 1738-1741. [PubMed: 17259109].
  1778. Qi et al., 2012: Qi CJ, Ning YL, Han YS, Min HY, Ye H, Zhu YL, Qian KQ. Autologous dendritic cell vaccine for estrogen receptor (ER)/progestin receptor (PR) double-negative breast cancer. Cancer immunology, immunotherapy : CII. 2012; 61(9); 1415-1424. [PubMed: 22290073].
  1779. Qiao et al., 2005: Qiao H, Qian XP, Zhang HG, Tian C, Chen WF. [Estimation of an NY-ESO-1 expressing HCC cell line by NY-ESO-1b specific CD8+T cells in vitro induced by HLA-A2 restricted NY-ESO-1b peptide]. Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences. 2005; 37(6); 565-568. [PubMed: 16378102].
  1780. Qin and Chatterjee, 1996: Qin H, Chatterjee SK. Cancer gene therapy using tumor cells infected with recombinant vaccinia virus expressing GM-CSF. Human gene therapy. 1996; 7(15); 1853-1860. [PubMed: 8894677].
  1781. Qin et al., 2005: Qin H, Zhou C, Wang D, Ma W, Liang X, Lin C, Zhang Y, Zhang S. Specific antitumor immune response induced by a novel DNA vaccine composed of multiple CTL and T helper cell epitopes of prostate cancer associated antigens. Immunology letters. 2005; 99(1); 85-93. [PubMed: 15894116].
  1782. Qiu et al., 2018: Qiu J, Peng S, Ma Y, Yang A, Farmer E, Cheng MA, Roden RBS, Wu TC, Chang YN, Hung CF. Epithelial boost enhances antigen expression by vaccinia virus for the generation of potent CD8+ T cell-mediated antitumor immunity following DNA priming vaccination. Virology. 2018; 525; 205-215. [PubMed: 30296681].
  1783. Quandt et al., 2018: Quandt J, Schlude C, Bartoschek M, Will R, Cid-Arregui A, Schölch S, Reissfelder C, Weitz J, Schneider M, Wiemann S, Momburg F, Beckhove P. Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses. Oncoimmunology. 2018; 7(12); e1500671. [PubMed: 30524892].
  1784. Quirt et al., 1991: Quirt IC, Shelley WE, Pater JL, Bodurtha AJ, McCulloch PB, McPherson TA, Paterson AH, Prentice R, Silver HK, Willan AR. Improved survival in patients with poor-prognosis malignant melanoma treated with adjuvant levamisole: a phase III study by the National Cancer Institute of Canada Clinical Trials Group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1991; 9(5); 729-735. [PubMed: 2016615].
  1785. Raez et al., 2003: Raez LE, Cassileth PA, Schlesselman JJ, Padmanabhan S, Fisher EZ, Baldie PA, Sridhar K, Podack ER. Induction of CD8 T-cell-Ifn-gamma response and positive clinical outcome after immunization with gene-modified allogeneic tumor cells in advanced non-small-cell lung carcinoma. Cancer gene therapy. 2003; 10(11); 850-858. [PubMed: 14605671].
  1786. Raez et al., 2004: Raez LE, Cassileth PA, Schlesselman JJ, Sridhar K, Padmanabhan S, Fisher EZ, Baldie PA, Podack ER. Allogeneic vaccination with a B7.1 HLA-A gene-modified adenocarcinoma cell line in patients with advanced non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2004; 22(14); 2800-2807. [PubMed: 15254047].
  1787. Ragupathi et al., 1998: Ragupathi G, Koganty RR, Qiu D, Lloyd KO, Livingston PO. A novel and efficient method for synthetic carbohydrate conjugate vaccine preparation: synthesis of sialyl Tn-KLH conjugate using a 4-(4-N-maleimidomethyl) cyclohexane-1-carboxyl hydrazide (MMCCH) linker arm. Glycoconjugate journal. 1998; 15(3); 217-221. [PubMed: 9579798].
  1788. Ragupathi et al., 2000: Ragupathi G, Meyers M, Adluri S, Howard L, Musselli C, Livingston PO. Induction of antibodies against GD3 ganglioside in melanoma patients by vaccination with GD3-lactone-KLH conjugate plus immunological adjuvant QS-21. International journal of cancer. 2000; 85(5); 659-666. [PubMed: 10699946].
  1789. Ragupathi et al., 2009: Ragupathi G, Damani P, Srivastava G, Srivastava O, Sucheck SJ, Ichikawa Y, Livingston PO. Synthesis of sialyl Lewis(a) (sLe (a), CA19-9) and construction of an immunogenic sLe(a) vaccine. Cancer immunology, immunotherapy : CII. 2009; 58(9); 1397-1405. [PubMed: 19190907].
  1790. Rahma et al., 2010: Rahma OE, Ashtar E, Ibrahim R, Toubaji A, Gause B, Herrin VE, Linehan WM, Steinberg SM, Grollman F, Grimes G, Bernstein SA, Berzofsky JA, Khleif SN. A pilot clinical trial testing mutant von Hippel-Lindau peptide as a novel immune therapy in metastatic renal cell carcinoma. Journal of translational medicine. 2010; 8; 8. [PubMed: 20109232].
  1791. Rakhmilevich et al., 2001: Rakhmilevich AL, Imboden M, Hao Z, Macklin MD, Roberts T, Wright KM, Albertini MR, Yang NS, Sondel PM. Effective particle-mediated vaccination against mouse melanoma by coadministration of plasmid DNA encoding Gp100 and granulocyte-macrophage colony-stimulating factor. Clinical cancer research : an official journal of the American Association for Cancer Research. 2001; 7(4); 952-961. [PubMed: 11309346].
  1792. Ramesh et al., 2010: Ramesh R, Ioannides CG, Roth JA, Chada S. Adenovirus-mediated interleukin (IL)-24 immunotherapy for cancer. Methods in molecular biology (Clifton, N.J.). 2010; 651; 241-270. [PubMed: 20686970].
  1793. Rapoport et al., 2011: Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Fang HB, Cai L, Janofsky S, Chew A, Storek J, Akpek G, Badros A, Yanovich S, Tan MT, Veloso E, Pasetti MF, Cross A, Philip S, Murphy H, Bhagat R, Zheng Z, Milliron T, Cotte J, Cannon A, Levine BL, Vonderheide RH, June CH. Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood. 2011; 117(3); 788-797. [PubMed: 21030558].
  1794. Rapoport et al., 2014: Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Xu YY, Kalos M, Cai L, Fang HB, Weiss BM, Badros A, Yanovich S, Akpek G, Tsao P, Cross A, Mann D, Philip S, Kerr N, Brennan A, Zheng Z, Ruehle K, Milliron T, Strome SE, Salazar AM, Levine BL, June CH. Combination immunotherapy after ASCT for multiple myeloma using MAGE-A3/Poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clinical cancer research : an official journal of the American Association for Cancer Research. 2014; 20(5); 1355-1365. [PubMed: 24520093].
  1795. Rapoport et al., 2015: Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, Badros AZ, Garfall A, Weiss B, Finklestein J, Kulikovskaya I, Sinha SK, Kronsberg S, Gupta M, Bond S, Melchiori L, Brewer JE, Bennett AD, Gerry AB, Pumphrey NJ, Williams D, Tayton-Martin HK, Ribeiro L, Holdich T, Yanovich S, Hardy N, Yared J, Kerr N, Philip S, Westphal S, Siegel DL, Levine BL, Jakobsen BK, Kalos M, June CH. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nature medicine. 2015; 21(8); 914-921. [PubMed: 26193344].
  1796. Ravindranathan et al., 2018: Ravindranathan S, Nguyen KG, Kurtz SL, Frazier HN, Smith SG, Koppolu BP, Rajaram N, Zaharoff DA. Tumor-derived granulocyte colony-stimulating factor diminishes efficacy of breast tumor cell vaccines. Breast cancer research : BCR. 2018; 20(1); 126. [PubMed: 30348199].
  1797. Reali et al., 2001: Reali E, Greiner JW, Corti A, Gould HJ, Bottazzoli F, Paganelli G, Schlom J, Siccardi AG. IgEs targeted on tumor cells: therapeutic activity and potential in the design of tumor vaccines. Cancer research. 2001; 61(14); 5517-5522. [PubMed: 11454701].
  1798. Reali et al., 2005: Reali E, Canter D, Zeytin H, Schlom J, Greiner JW. Comparative studies of Avipox-GM-CSF versus recombinant GM-CSF protein as immune adjuvants with different vaccine platforms. Vaccine. 2005; 23(22); 2909-2921. [PubMed: 15780740].
  1799. Redman et al., 2008: Redman BG, Chang AE, Whitfield J, Esper P, Jiang G, Braun T, Roessler B, Mulé JJ. Phase Ib trial assessing autologous, tumor-pulsed dendritic cells as a vaccine administered with or without IL-2 in patients with metastatic melanoma. Journal of immunotherapy (Hagerstown, Md. : 1997). 2008; 31(6); 591-598. [PubMed: 18528294].
  1800. Reed et al., 2015: Reed CM, Cresce ND, Mauldin IS, Slingluff CL Jr, Olson WC. Vaccination with Melanoma Helper Peptides Induces Antibody Responses Associated with Improved Overall Survival. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015; 21(17); 3879-3887. [PubMed: 25967144].
  1801. Reid et al., 2004: Reid Y, Storts D, Riss T, Minor L. Authentication of Human Cell Lines by STR DNA Profiling Analysis. . 2004; ; . [PubMed: 23805434].
  1802. Reinartz et al., 2004: Reinartz S, Köhler S, Schlebusch H, Krista K, Giffels P, Renke K, Huober J, Möbus V, Kreienberg R, DuBois A, Sabbatini P, Wagner U. Vaccination of patients with advanced ovarian carcinoma with the anti-idiotype ACA125: immunological response and survival (phase Ib/II). Clinical cancer research : an official journal of the American Association for Cancer Research. 2004; 10(5); 1580-1587. [PubMed: 15014007].
  1803. Reker et al., 2004: Reker S, Becker JC, Svane IM, Ralfkiaer E, Straten PT, Andersen MH. HLA-B35-restricted immune responses against survivin in cancer patients. International journal of cancer. 2004; 108(6); 937-941. [PubMed: 14712500].
  1804. Relitti et al., 2020: Relitti N, Saraswati AP, Federico S, Khan T, Brindisi M, Zisterer D, Brogi S, Gemma S, Butini S, Campiani G. Telomerase-based cancer therapeutics: a review on their clinical trials. Current topics in medicinal chemistry. 2020; ; . [PubMed: 31894749].
  1805. Reusch et al., 2015: Reusch U, Duell J, Ellwanger K, Herbrecht C, Knackmuss SH, Fucek I, Eser M, McAleese F, Molkenthin V, Gall FL, Topp M, Little M, Zhukovsky EA. A tetravalent bispecific TandAb (CD19/CD3), AFM11, efficiently recruits T cells for the potent lysis of CD19(+) tumor cells. mAbs. 2015; 7(3); 584-604. [PubMed: 25875246].
  1806. Reuschenbach et al., 2016: Reuschenbach M, Pauligk C, Karbach J, Rafiyan MR, Kloor M, Prigge ES, Sauer M, Al-Batran SE, Kaufmann AM, Schneider A, Jäger E, von Knebel Doeberitz M. A phase 1/2a study to test the safety and immunogenicity of a p16(INK4a) peptide vaccine in patients with advanced human papillomavirus-associated cancers. Cancer. 2016; 122(9); 1425-1433. [PubMed: 26949913].
  1807. Ribas et al., 2010: Ribas A, Camacho LH, Lee SM, Hersh EM, Brown CK, Richards JM, Rodriguez MJ, Prieto VG, Glaspy JA, Oseguera DK, Hernandez J, Villanueva A, Chmielowski B, Mitsky P, Bercovici N, Wasserman E, Landais D, Ross MI. Multicenter phase II study of matured dendritic cells pulsed with melanoma cell line lysates in patients with advanced melanoma. Journal of translational medicine. 2010; 8; 89. [PubMed: 20875102].
  1808. Rice et al., 2004: Rice J, Buchan S, Dewchand H, Simpson E, Stevenson FK. DNA fusion vaccines induce targeted epitope-specific CTLs against minor histocompatibility antigens from a normal or tolerized repertoire. Journal of immunology (Baltimore, Md. : 1950). 2004; 173(7); 4492-4499. [PubMed: 15383580].
  1809. Rice et al., 2008: Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nature reviews. Cancer. 2008; 8(2); 108-120. [PubMed: 18219306].
  1810. Ricupito et al., 2013: Ricupito A, Grioni M, Calcinotto A, Hess Michelini R, Longhi R, Mondino A, Bellone M. Booster vaccinations against cancer are critical in prophylactic but detrimental in therapeutic settings. Cancer research. 2013; 73(12); 3545-3554. [PubMed: 23539449].
  1811. Ridolfi et al., 2018: Ridolfi L, de Rosa F, Fiammenghi L, Petrini M, Granato AM, Ancarani V, Pancisi E, Soldati V, Cassan S, Bulgarelli J, Riccobon A, Gentili G, Nanni O, Framarini M, Tauceri F, Guidoboni M. Complementary vaccination protocol with dendritic cells pulsed with autologous tumour lysate in patients with resected stage III or IV melanoma: protocol for a phase II randomised trial (ACDC Adjuvant Trial). BMJ open. 2018; 8(8); e021701. [PubMed: 30082356].
  1812. Rijavec et al., 2015: Rijavec E, Biello F, Genova C, Barletta G, Maggioni C, Dal Bello MG, Coco S, Truini A, Vanni I, Alama A, Beltramini S, Grassi MA, Boccardo F, Grossi F. Belagenpumatucel-L for the treatment of non-small cell lung cancer. Expert opinion on biological therapy. 2015; 15(9); 1371-1379. [PubMed: 26211534].
  1813. Rijnkels and Rosen, 2001: Rijnkels M, Rosen JM. Adenovirus-Cre-mediated recombination in mammary epithelial early progenitor cells. Journal of cell science. 2001; 114(Pt 17); 3147-3153. [PubMed: 11590241].
  1814. Rinaldi et al., 2008: Rinaldi M, Fioretti D, Iurescia S, Signori E, Pierimarchi P, Seripa D, Tonon G, Fazio VM. Anti-tumor immunity induced by CDR3-based DNA vaccination in a murine B-cell lymphoma model. Biochemical and biophysical research communications. 2008; 370(2); 279-284. [PubMed: 18364239].
  1815. Rini et al., 2016: Rini BI, Stenzl A, Zdrojowy R, Kogan M, Shkolnik M, Oudard S, Weikert S, Bracarda S, Crabb SJ, Bedke J, Ludwig J, Maurer D, Mendrzyk R, Wagner C, Mahr A, Fritsche J, Weinschenk T, Walter S, Kirner A, Singh-Jasuja H, Reinhardt C, Eisen T. IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): a multicentre, open-label, randomised, controlled, phase 3 trial. The Lancet. Oncology. 2016; 17(11); 1599-1611. [PubMed: 27720136].
  1816. Rivoltini et al., 1999: Rivoltini L, Squarcina P, Loftus DJ, Castelli C, Tarsini P, Mazzocchi A, Rini F, Viggiano V, Belli F, Parmiani G. A superagonist variant of peptide MART1/Melan A27-35 elicits anti-melanoma CD8+ T cells with enhanced functional characteristics: implication for more effective immunotherapy. Cancer research. 1999; 59(2); 301-306. [PubMed: 9927036].
  1817. Robbins et al., 2015: Robbins PF, Kassim SH, Tran TL, Crystal JS, Morgan RA, Feldman SA, Yang JC, Dudley ME, Wunderlich JR, Sherry RM, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Li YF, El-Gamil M, Rosenberg SA. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015; 21(5); 1019-1027. [PubMed: 25538264].
  1818. Robert et al., 2013: Robert C, Schadendorf D, Messina M, Hodi FS, O'Day S. Efficacy and safety of retreatment with ipilimumab in patients with pretreated advanced melanoma who progressed after initially achieving disease control. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013; 19(8); 2232-2239. [PubMed: 23444228].
  1819. Robins et al., 1991: Robins RA, Denton GW, Hardcastle JD, Austin EB, Baldwin RW, Durrant LG. Antitumor immune response and interleukin 2 production induced in colorectal cancer patients by immunization with human monoclonal anti-idiotypic antibody. Cancer research. 1991; 51(19); 5425-5429. [PubMed: 1913661].
  1820. Rochlitz et al., 2003: Rochlitz C, Figlin R, Squiban P, Salzberg M, Pless M, Herrmann R, Tartour E, Zhao Y, Bizouarne N, Baudin M, Acres B. Phase I immunotherapy with a modified vaccinia virus (MVA) expressing human MUC1 as antigen-specific immunotherapy in patients with MUC1-positive advanced cancer. The journal of gene medicine. 2003; 5(8); 690-699. [PubMed: 12898638].
  1821. Rodeberg et al., 2005: Rodeberg DA, Nuss RA, Heppelmann CJ, Celis E. Lack of effective T-lymphocyte response to the PAX3/FKHR translocation area in alveolar rhabdomyosarcoma. Cancer immunology, immunotherapy : CII. 2005; 54(6); 526-534. [PubMed: 15838707].
  1822. Rodriguez and Jungery, 1987: Rodriguez MH, Jungery M. Glycoprotein recognition mediates attachment of Plasmodium chabaudi to mouse erythrocytes. Infection and immunity. 1987; 55(1); 187-192. [PubMed: 3539801].
  1823. Roldão et al., 2010: Roldão A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM. Virus-like particles in vaccine development. Expert review of vaccines. 2010; 9(10); 1149-1176. [PubMed: 20923267].
  1824. Roohvand and Kossari, 2012: Roohvand F, Kossari N. Advances in hepatitis C virus vaccines, part two: advances in hepatitis C virus vaccine formulations and modalities. Expert opinion on therapeutic patents. 2012; 22(4); 391-415. [PubMed: 22455502].
  1825. Roos et al., 2005: Roos AK, Pavlenko M, Charo J, Egevad L, Pisa P. Induction of PSA-specific CTLs and anti-tumor immunity by a genetic prostate cancer vaccine. The Prostate. 2005; 62(3); 217-223. [PubMed: 15389792].
  1826. Rosenberg et al., 1998: Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkhurst MR, Kawakami Y, Seipp CA, Einhorn JH, White DE. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nature medicine. 1998; 4(3); 321-327. [PubMed: 9500606].
  1827. Rosenberg et al., 2003: Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Topalian SL, Sherry RM, Restifo NP, Wunderlich JR, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, Gritz L, Panicali DL, White DE. Recombinant fowlpox viruses encoding the anchor-modified gp100 melanoma antigen can generate antitumor immune responses in patients with metastatic melanoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2003; 9(8); 2973-2980. [PubMed: 12912944].
  1828. Rosenblatt et al., 2011: Rosenblatt J, Vasir B, Uhl L, Blotta S, Macnamara C, Somaiya P, Wu Z, Joyce R, Levine JD, Dombagoda D, Yuan YE, Francoeur K, Fitzgerald D, Richardson P, Weller E, Anderson K, Kufe D, Munshi N, Avigan D. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood. 2011; 117(2); 393-402. [PubMed: 21030562].
  1829. Rosenblatt et al., 2013: Rosenblatt J, Avivi I, Vasir B, Uhl L, Munshi NC, Katz T, Dey BR, Somaiya P, Mills H, Campigotto F, Weller E, Joyce R, Levine JD, Tzachanis D, Richardson P, Laubach J, Raje N, Boussiotis V, Yuan YE, Bisharat L, Held V, Rowe J, Anderson K, Kufe D, Avigan D. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013; 19(13); 3640-3648. [PubMed: 23685836].
  1830. Roth et al., 1996: Roth J, Dittmer D, Rea D, Tartaglia J, Paoletti E, Levine AJ. p53 as a target for cancer vaccines: recombinant canarypox virus vectors expressing p53 protect mice against lethal tumor cell challenge. Proceedings of the National Academy of Sciences of the United States of America. 1996; 93(10); 4781-4786. [PubMed: 8643480].
  1831. Rousseau et al., 2006: Rousseau RF, Biagi E, Dutour A, Yvon ES, Brown MP, Lin T, Mei Z, Grilley B, Popek E, Heslop HE, Gee AP, Krance RA, Popat U, Carrum G, Margolin JF, Brenner MK. Immunotherapy of high-risk acute leukemia with a recipient (autologous) vaccine expressing transgenic human CD40L and IL-2 after chemotherapy and allogeneic stem cell transplantation. Blood. 2006; 107(4); 1332-1341. [PubMed: 16249392].
  1832. Rouxel et al., 2016: Rouxel RN, Mérour E, Biacchesi S, Brémont M. Complete Protection against Influenza Virus H1N1 Strain A/PR/8/34 Challenge in Mice Immunized with Non-Adjuvanted Novirhabdovirus Vaccines. PloS one. 2016; 11(10); e0164245. [PubMed: 27711176].
  1833. Ruan et al., 2009: Ruan Z, Yang Z, Wang Y, Wang H, Chen Y, Shang X, Yang C, Guo S, Han J, Liang H, Wu Y. DNA vaccine against tumor endothelial marker 8 inhibits tumor angiogenesis and growth. Journal of immunotherapy (Hagerstown, Md. : 1997). 2009; 32(5); 486-491. [PubMed: 19609240].
  1834. Rubinstein et al., 2000: Rubinstein A, Mizrachi Y, Bernstein L, Shliozberg J, Golodner M, Liu GQ, Ochs HD. Progressive specific immune attrition after primary, secondary and tertiary immunizations with bacteriophage phi X174 in asymptomatic HIV-1 infected patients. AIDS (London, England). 2000; 14(4); F55-62. [PubMed: 10770533].
  1835. Russo et al., 2007: Russo V, Cipponi A, Raccosta L, Rainelli C, Fontana R, Maggioni D, Lunghi F, Mukenge S, Ciceri F, Bregni M, Bordignon C, Traversari C. Lymphocytes genetically modified to express tumor antigens target DCs in vivo and induce antitumor immunity. The Journal of clinical investigation. 2007; 117(10); 3087-3096. [PubMed: 17885685].
  1836. Russo et al., 2013: Russo V, Pilla L, Lunghi F, Crocchiolo R, Greco R, Ciceri F, Maggioni D, Fontana R, Mukenge S, Rivoltini L, Rigamonti G, Mercuri SR, Nicoletti R, Maschio AD, Gianolli L, Fazio F, Marchianò A, Florio AD, Maio M, Salomoni M, Gallo-Stampino C, Fiacco MD, Lambiase A, Coulie PG, Patuzzo R, Parmiani G, Traversari C, Bordignon C, Santinami M, Bregni M. Clinical and immunologic responses in melanoma patients vaccinated with MAGE-A3-genetically modified lymphocytes. International journal of cancer. Journal international du cancer. 2013; 132(11); 2557-2566. [PubMed: 23151995].
  1837. Sabbatini et al., 2006: Sabbatini P, Dupont J, Aghajanian C, Derosa F, Poynor E, Anderson S, Hensley M, Livingston P, Iasonos A, Spriggs D, McGuire W, Reinartz S, Schneider S, Grande C, Lele S, Rodabaugh K, Kepner J, Ferrone S, Odunsi K. Phase I study of abagovomab in patients with epithelial ovarian, fallopian tube, or primary peritoneal cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2006; 12(18); 5503-5510. [PubMed: 17000686].
  1838. Sabbatini et al., 2007: Sabbatini PJ, Ragupathi G, Hood C, Aghajanian CA, Juretzka M, Iasonos A, Hensley ML, Spassova MK, Ouerfelli O, Spriggs DR, Tew WP, Konner J, Clausen H, Abu Rustum N, Dansihefsky SJ, Livingston PO. Pilot study of a heptavalent vaccine-keyhole limpet hemocyanin conjugate plus QS21 in patients with epithelial ovarian, fallopian tube, or peritoneal cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007; 13(14); 4170-4177. [PubMed: 17634545].
  1839. Saeki et al., 2004: Saeki A, Nakao K, Nagayama Y, Yanagi K, Matsumoto K, Hayashi T, Ishikawa H, Hamasaki K, Ishii N, Eguchi K. Diverse efficacy of vaccination therapy using the alpha-fetoprotein gene against mouse hepatocellular carcinoma. International journal of molecular medicine. 2004; 13(1); 111-116. [PubMed: 14654980].
  1840. Saenger et al., 2008: Saenger YM, Li Y, Chiou KC, Chan B, Rizzuto G, Terzulli SL, Merghoub T, Houghton AN, Wolchok JD. Improved tumor immunity using anti-tyrosinase related protein-1 monoclonal antibody combined with DNA vaccines in murine melanoma. Cancer research. 2008; 68(23); 9884-9891. [PubMed: 19047169].
  1841. Saeterdal et al., 2001: Saeterdal I, Bjørheim J, Lislerud K, Gjertsen MK, Bukholm IK, Olsen OC, Nesland JM, Eriksen JA, Møller M, Lindblom A, Gaudernack G. Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America. 2001; 98(23); 13255-13260. [PubMed: 11687624].
  1842. Saha et al., 2004: Saha A, Chatterjee SK, Foon KA, Primus FJ, Sreedharan S, Mohanty K, Bhattacharya-Chatterjee M. Dendritic cells pulsed with an anti-idiotype antibody mimicking carcinoembryonic antigen (CEA) can reverse immunological tolerance to CEA and induce antitumor immunity in CEA transgenic mice. Cancer research. 2004; 64(14); 4995-5003. [PubMed: 15256474].
  1843. Saha et al., 2006: Saha A, Baral RN, Chatterjee SK, Mohanty K, Pal S, Foon KA, Primus FJ, Krieg AM, Weiner GJ, Bhattacharya-Chatterjee M. CpG oligonucleotides enhance the tumor antigen-specific immune response of an anti-idiotype antibody-based vaccine strategy in CEA transgenic mice. Cancer immunology, immunotherapy : CII. 2006; 55(5); 515-527. [PubMed: 16044253].
  1844. Saito et al., 2017: Saito H, Kitagawa K, Yoneda T, Fukui Y, Fujsawa M, Bautista D, Shirakawa T. Combination of p53-DC vaccine and rAd-p53 gene therapy induced CTLs cytotoxic against p53-deleted human prostate cancer cells in vitro. Cancer gene therapy. 2017; 24(7); 289-296. [PubMed: 28621316].
  1845. Salerno et al., 2013: Salerno EP, Shea SM, Olson WC, Petroni GR, Smolkin ME, McSkimming C, Chianese-Bullock KA, Slingluff CL Jr. Activation, dysfunction and retention of T cells in vaccine sites after injection of incomplete Freund's adjuvant, with or without peptide. Cancer immunology, immunotherapy : CII. 2013; 62(7); 1149-1159. [PubMed: 23657629].
  1846. Sampson et al., 2020: Sampson JH, Gunn MD, Fecci PE, Ashley DM. Brain immunology and immunotherapy in brain tumours. Nature reviews. Cancer. 2020; 20(1); 12-25. [PubMed: 31806885].
  1847. Sang et al., 2011: Sang M, Wang L, Ding C, Zhou X, Wang B, Wang L, Lian Y, Shan B. Melanoma-associated antigen genes - an update. Cancer letters. 2011; 302(2); 85-90. [PubMed: 21093980].
  1848. Sarivalasis et al., 2019: Sarivalasis A, Boudousquié C, Balint K, Stevenson BJ, Gannon PO, Iancu EM, Rossier L, Martin Lluesma S, Mathevet P, Sempoux C, Coukos G, Dafni U, Harari A, Bassani-Sternberg M, Kandalaft LE. A Phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinoma. Journal of translational medicine. 2019; 17(1); 391. [PubMed: 31771601].
  1849. Sato et al., 1997: Sato T, Bullock TN, Eisenlohr LC, Mastrangelo MJ, Berd D. Dinitrophenyl-modified autologous melanoma vaccine induces a T cell response to hapten-modified, melanoma peptides. Clinical immunology and immunopathology. 1997; 85(3); 265-272. [PubMed: 9400626].
  1850. Sato-Dahlman et al., 2020: Sato-Dahlman M, LaRocca CJ, Yanagiba C, Yamamoto M. Adenovirus and Immunotherapy: Advancing Cancer Treatment by Combination. Cancers. 2020; 12(5); . [PubMed: 32455560].
  1851. SAUER and TUCKER, 1954: SAUER LW, TUCKER WH. Immune responses to diphtheria, tetanus, and pertussis, aluminum phosphate adsorbed. American journal of public health and the nation's health. 1954; 44(6); 784-788. [PubMed: 13158668].
  1852. Savvateeva et al., 2015: Savvateeva LV, Schwartz AM, Gorshkova LB, Gorokhovets NV, Makarov VA, Reddy VP, Aliev G, Zamyatnin AA Jr. Prophylactic Admission of an In Vitro Reconstructed Complexes of Human Recombinant Heat Shock Proteins and Melanoma Antigenic Peptides Activates Anti-Melanoma Responses in Mice. Current molecular medicine. 2015; 15(5); 462-468. [PubMed: 26122656].
  1853. Sawada et al., 2012: Sawada Y, Yoshikawa T, Nobuoka D, Shirakawa H, Kuronuma T, Motomura Y, Mizuno S, Ishii H, Nakachi K, Konishi M, Nakagohri T, Takahashi S, Gotohda N, Takayama T, Yamao K, Uesaka K, Furuse J, Kinoshita T, Nakatsura T. Phase I Trial of a Glypican-3-Derived Peptide Vaccine for Advanced Hepatocellular Carcinoma: Immunologic Evidence and Potential for Improving Overall Survival. Clinical cancer research : an official journal of the American Association for Cancer Research. 2012; 18(13); 3686-3696. [PubMed: 22577059].
  1854. Sawada et al., 2013: Sawada Y, Yoshikawa T, Fujii S, Mitsunaga S, Nobuoka D, Mizuno S, Takahashi M, Yamauchi C, Endo I, Nakatsura T. Remarkable tumor lysis in a hepatocellular carcinoma patient immediately following glypican-3-derived peptide vaccination: an autopsy case. Human vaccines & immunotherapeutics. 2013; 9(6); 1228-1233. [PubMed: 23466818].
  1855. Saxena and Bhardwaj, 2018: Saxena M, Bhardwaj N. Re-Emergence of Dendritic Cell Vaccines for Cancer Treatment. Trends in cancer. 2018; 4(2); 119-137. [PubMed: 29458962].
  1856. Schaller and Sampson, 2017: Schaller TH, Sampson JH. Advances and challenges: dendritic cell vaccination strategies for glioblastoma. Expert review of vaccines. 2017; 16(1); 27-36. [PubMed: 27500911].
  1857. Schütz et al., 2001: Schütz A, Oertli D, Marti WR, Noppen C, Padovan E, Spagnoli GC, Heberer M, Zajac P. Immunogenicity of nonreplicating recombinant vaccinia expressing HLA-A201 targeted or complete MART-1/Melan-A antigen. Cancer gene therapy. 2001; 8(9); 655-661. [PubMed: 11593334].
  1858. Schleiss, 2009: Schleiss MR. VCL-CB01, an injectable bivalent plasmid DNA vaccine for potential protection against CMV disease and infection. Current opinion in molecular therapeutics. 2009; 11(5); 572-578. [PubMed: 19806506].
  1859. Schmitz-Winnenthal et al., 2018: Schmitz-Winnenthal FH, Hohmann N, Schmidt T, Podola L, Friedrich T, Lubenau H, Springer M, Wieckowski S, Breiner KM, Mikus G, Büchler MW, Keller AV, Koc R, Springfeld C, Knebel P, Bucur M, Grenacher L, Haefeli WE, Beckhove P. A phase 1 trial extension to assess immunologic efficacy and safety of prime-boost vaccination with VXM01, an oral T cell vaccine against VEGFR2, in patients with advanced pancreatic cancer. Oncoimmunology. 2018; 7(4); e1303584. [PubMed: 29632710].
  1860. Schneble et al., 2014: Schneble EJ, Berry JS, Trappey FA, Clifton GT, Ponniah S, Mittendorf E, Peoples GE. The HER2 peptide nelipepimut-S (E75) vaccine (NeuVax™) in breast cancer patients at risk for recurrence: correlation of immunologic data with clinical response. Immunotherapy. 2014; 6(5); 519-531. [PubMed: 24896623].
  1861. Schoof et al., 1998: Schoof DD, Smith JW 2nd, Disis ML, Brant-Zawadski P, Wood W, Doran T, Johnson E, Urba WJ. Immunization of metastatic breast cancer patients with CD80-modified breast cancer cells and GM-CSF. Advances in experimental medicine and biology. 1998; 451; 511-518. [PubMed: 10026920].
  1862. Schuler et al., 2014: Schuler PJ, Harasymczuk M, Visus C, Deleo A, Trivedi S, Lei Y, Argiris A, Gooding W, Butterfield LH, Whiteside TL, Ferris RL. Phase I dendritic cell p53 peptide vaccine for head and neck cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2014; 20(9); 2433-2444. [PubMed: 24583792].
  1863. Schwartzentruber et al., 2011: Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J, Gailani F, Riley L, Conlon K, Pockaj B, Kendra KL, White RL, Gonzalez R, Kuzel TM, Curti B, Leming PD, Whitman ED, Balkissoon J, Reintgen DS, Kaufman H, Marincola FM, Merino MJ, Rosenberg SA, Choyke P, Vena D, Hwu P. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. The New England journal of medicine. 2011; 364(22); 2119-2127. [PubMed: 21631324].
  1864. Sears et al., 2011: Sears AK, Perez SA, Clifton GT, Benavides LC, Gates JD, Clive KS, Holmes JP, Shumway NM, Van Echo DC, Carmichael MG, Ponniah S, Baxevanis CN, Mittendorf EA, Papamichail M, Peoples GE. AE37: a novel T-cell-eliciting vaccine for breast cancer. Expert opinion on biological therapy. 2011; 11(11); 1543-1550. [PubMed: 21895539].
  1865. Seavey et al., 2009: Seavey MM, Maciag PC, Al-Rawi N, Sewell D, Paterson Y. An anti-vascular endothelial growth factor receptor 2/fetal liver kinase-1 Listeria monocytogenes anti-angiogenesis cancer vaccine for the treatment of primary and metastatic Her-2/neu+ breast tumors in a mouse model. Journal of immunology (Baltimore, Md. : 1950). 2009; 182(9); 5537-5546. [PubMed: 19380802].
  1866. Seino et al., 1997: Seino K, Kayagaki N, Okumura K, Yagita H. Antitumor effect of locally produced CD95 ligand. Nature medicine. 1997; 3(2); 165-170. [PubMed: 9018234].
  1867. Senzer et al., 2012: Senzer N, Barve M, Kuhn J, Melnyk A, Beitsch P, Lazar M, Lifshitz S, Magee M, Oh J, Mill SW, Bedell C, Higgs C, Kumar P, Yu Y, Norvell F, Phalon C, Taquet N, Rao DD, Wang Z, Jay CM, Pappen BO, Wallraven G, Brunicardi FC, Shanahan DM, Maples PB, Nemunaitis J. Phase I trial of "bi-shRNAi(furin)/GMCSF DNA/autologous tumor cell" vaccine (FANG) in advanced cancer. Molecular therapy : the journal of the American Society of Gene Therapy. 2012; 20(3); 679-686. [PubMed: 22186789].
  1868. Seo et al., 2011: Seo SH, Kim KS, Park SH, Suh YS, Kim SJ, Jeun SS, Sung YC. The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene therapy. 2011; 18(5); 488-495. [PubMed: 21228885].
  1869. Shang et al., 2004: Shang XY, Chen HS, Zhang HG, Pang XW, Qiao H, Peng JR, Qin LL, Fei R, Mei MH, Leng XS, Gnjatic S, Ritter G, Simpson AJ, Old LJ, Chen WF. The spontaneous CD8+ T-cell response to HLA-A2-restricted NY-ESO-1b peptide in hepatocellular carcinoma patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2004; 10(20); 6946-6955. [PubMed: 15501973].
  1870. Shapiro et al., 1993: Shapiro DN, Sublett JE, Li B, Downing JR, Naeve CW. Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer research. 1993; 53(21); 5108-5112. [PubMed: 8221646].
  1871. Sharma et al., 2012: Sharma A, Koldovsky U, Xu S, Mick R, Roses R, Fitzpatrick E, Weinstein S, Nisenbaum H, Levine BL, Fox K, Zhang P, Koski G, Czerniecki BJ. HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer. 2012; 118(17); 4354-4362. [PubMed: 22252842].
  1872. Shore et al., 2017: Shore ND, Boorjian SA, Canter DJ, Ogan K, Karsh LI, Downs TM, Gomella LG, Kamat AM, Lotan Y, Svatek RS, Bivalacqua TJ, Grubb RL 3rd, Krupski TL, Lerner SP, Woods ME, Inman BA, Milowsky MI, Boyd A, Treasure FP, Gregory G, Sawutz DG, Yla-Herttuala S, Parker NR, Dinney CPN. Intravesical rAd-IFNα/Syn3 for Patients With High-Grade, Bacillus Calmette-Guerin-Refractory or Relapsed Non-Muscle-Invasive Bladder Cancer: A Phase II Randomized Study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2017; 35(30); 3410-3416. [PubMed: 28834453].
  1873. Shore et al., 2020: Shore ND, Morrow MP, McMullan T, Kraynyak KA, Sylvester A, Bhatt K, Cheung J, Boyer JD, Liu L, Sacchetta B, Rosencranz S, Heath EI, Nordquist L, Cheng HH, Tagawa ST, Appleman LJ, Tutrone R, Garcia JA, Whang YE, Kelly WK, Weiner DB, Bagarazzi ML, Skolnik JM. CD8(+) T Cells Impact Rising PSA in Biochemically Relapsed Cancer Patients Using Immunotherapy Targeting Tumor-Associated Antigens. Molecular therapy : the journal of the American Society of Gene Therapy. 2020; 28(5); 1238-1250. [PubMed: 32208168].
  1874. show: [https://clinicaltrials.gov/show/]
  1875. Siegel et al., 2001: Siegel F, Lu M, Roggendorf M. Coadministration of gamma interferon with DNA vaccine expressing woodchuck hepatitis virus (WHV) core antigen enhances the specific immune response and protects against WHV infection. Journal of virology. 2001; 75(11); 5036-5042. [PubMed: 11333883].
  1876. Simons and Sacks, 2006: Simons JW, Sacks N. Granulocyte-macrophage colony-stimulating factor-transduced allogeneic cancer cellular immunotherapy: the GVAX vaccine for prostate cancer. Urologic oncology. 2006; 24(5); 419-424. [PubMed: 16962494].
  1877. Sirisinha and Eisen, 1971: Sirisinha S, Eisen HN. Autoimmune-like antibodies to the ligand-binding sites of myeloma proteins. Proceedings of the National Academy of Sciences of the United States of America. 1971; 68(12); 3130-3135. [PubMed: 4108872].
  1878. Siurala et al., 2015: Siurala M, Bramante S, Vassilev L, Hirvinen M, Parviainen S, Tähtinen S, Guse K, Cerullo V, Kanerva A, Kipar A, Vähä-Koskela M, Hemminki A. Oncolytic adenovirus and doxorubicin-based chemotherapy results in synergistic antitumor activity against soft-tissue sarcoma. International journal of cancer. 2015; 136(4); 945-954. [PubMed: 24975392].
  1879. Slingluff et al., 2003: Slingluff CL Jr, Petroni GR, Yamshchikov GV, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, Hibbitts S, Teates D, Neese PY, Grosh WW, Chianese-Bullock KA, Woodson EM, Wiernasz CJ, Merrill P, Gibson J, Ross M, Engelhard VH. Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2003; 21(21); 4016-4026. [PubMed: 14581425].
  1880. Slingluff et al., 2008: Slingluff CL Jr, Petroni GR, Olson W, Czarkowski A, Grosh WW, Smolkin M, Chianese-Bullock KA, Neese PY, Deacon DH, Nail C, Merrill P, Fink R, Patterson JW, Rehm PK. Helper T-cell responses and clinical activity of a melanoma vaccine with multiple peptides from MAGE and melanocytic differentiation antigens. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2008; 26(30); 4973-4980. [PubMed: 18809608].
  1881. Slingluff et al., 2011: Slingluff CL Jr, Petroni GR, Chianese-Bullock KA, Smolkin ME, Ross MI, Haas NB, von Mehren M, Grosh WW. Randomized multicenter trial of the effects of melanoma-associated helper peptides and cyclophosphamide on the immunogenicity of a multipeptide melanoma vaccine. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2011; 29(21); 2924-2932. [PubMed: 21690475].
  1882. Slingluff et al., 2013: Slingluff CL Jr, Lee S, Zhao F, Chianese-Bullock KA, Olson WC, Butterfield LH, Whiteside TL, Leming PD, Kirkwood JM. A randomized phase II trial of multiepitope vaccination with melanoma peptides for cytotoxic T cells and helper T cells for patients with metastatic melanoma (E1602). Clinical cancer research : an official journal of the American Association for Cancer Research. 2013; 19(15); 4228-4238. [PubMed: 23653149].
  1883. Slovin et al., 2005: Slovin SF, Ragupathi G, Fernandez C, Jefferson MP, Diani M, Wilton AS, Powell S, Spassova M, Reis C, Clausen H, Danishefsky S, Livingston P, Scher HI. A bivalent conjugate vaccine in the treatment of biochemically relapsed prostate cancer: a study of glycosylated MUC-2-KLH and Globo H-KLH conjugate vaccines given with the new semi-synthetic saponin immunological adjuvant GPI-0100 OR QS-21. Vaccine. 2005; 23(24); 3114-3122. [PubMed: 15837210].
  1884. Small et al., 2014: Small EJ, Higano CS, Kantoff PW, Whitmore JB, Frohlich MW, Petrylak DP. Time to disease-related pain and first opioid use in patients with metastatic castration-resistant prostate cancer treated with sipuleucel-T. Prostate cancer and prostatic diseases. 2014; 17(3); 259-264. [PubMed: 24957547].
  1885. Smith et al., 2005: Smith CL, Dunbar PR, Mirza F, Palmowski MJ, Shepherd D, Gilbert SC, Coulie P, Schneider J, Hoffman E, Hawkins R, Harris AL, Cerundolo V. Recombinant modified vaccinia Ankara primes functionally activated CTL specific for a melanoma tumor antigen epitope in melanoma patients with a high risk of disease recurrence. International journal of cancer. Journal international du cancer. 2005; 113(2); 259-266. [PubMed: 15386406].
  1886. Smith et al., 2009: Smith FO, Klapper JA, Wunderlich JR, Rosenberg SA, Dudley ME. Impact of a recombinant fowlpox vaccine on the efficacy of adoptive cell therapy with tumor infiltrating lymphocytes in a patient with metastatic melanoma. Journal of immunotherapy (Hagerstown, Md. : 1997). 2009; 32(8); 870-874. [PubMed: 19752747].
  1887. Snape et al., 2010: Snape MD, Dawson T, Oster P, Evans A, John TM, Ohene-Kena B, Findlow J, Yu LM, Borrow R, Ypma E, Toneatto D, Pollard AJ. Immunogenicity of two investigational serogroup B meningococcal vaccines in the first year of life: a randomized comparative trial. The Pediatric infectious disease journal. 2010; 29(11); 71-79. [PubMed: 20844462].
  1888. Snook et al., 2008: Snook AE, Stafford BJ, Li P, Tan G, Huang L, Birbe R, Schulz S, Schnell MJ, Thakur M, Rothstein JL, Eisenlohr LC, Waldman SA. Guanylyl cyclase C-induced immunotherapeutic responses opposing tumor metastases without autoimmunity. Journal of the National Cancer Institute. 2008; 100(13); 950-961. [PubMed: 18577748].
  1889. Soares et al., 2001: Soares MM, Mehta V, Finn OJ. Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection. Journal of immunology (Baltimore, Md. : 1950). 2001; 166(11); 6555-6563. [PubMed: 11359807].
  1890. Soliman et al., 2018: Soliman H, Khambati F, Han HS, Ismail-Khan R, Bui MM, Sullivan DM, Antonia S. A phase-1/2 study of adenovirus-p53 transduced dendritic cell vaccine in combination with indoximod in metastatic solid tumors and invasive breast cancer. Oncotarget. 2018; 9(11); 10110-10117. [PubMed: 29515795].
  1891. Sondak and Sosman, 2003: Sondak VK, Sosman JA. Results of clinical trials with an allogenic melanoma tumor cell lysate vaccine: Melacine. Seminars in cancer biology. 2003; 13(6); 409-415. [PubMed: 15001159].
  1892. Song et al., 2011: Song GY, Srivastava T, Ishizaki H, Lacey SF, Diamond DJ, Ellenhorn JD. Recombinant modified vaccinia virus ankara (MVA) expressing wild-type human p53 induces specific antitumor CTL expansion. Cancer investigation. 2011; 29(8); 501-510. [PubMed: 21843052].
  1893. Sonpavde et al., 2017: Sonpavde G, McMannis JD, Bai Y, Seethammagari MR, Bull JMC, Hawkins V, Dancsak TK, Lapteva N, Levitt JM, Moseley A, Spencer DM, Slawin KM. Phase I trial of antigen-targeted autologous dendritic cell-based vaccine with in vivo activation of inducible CD40 for advanced prostate cancer. Cancer immunology, immunotherapy : CII. 2017; 66(10); 1345-1357. [PubMed: 28608115].
  1894. Sosman et al., 2008: Sosman JA, Carrillo C, Urba WJ, Flaherty L, Atkins MB, Clark JI, Dutcher J, Margolin KA, Mier J, Gollob J, Kirkwood JM, Panka DJ, Crosby NA, O'Boyle K, LaFleur B, Ernstoff MS. Three phase II cytokine working group trials of gp100 (210M) peptide plus high-dose interleukin-2 in patients with HLA-A2-positive advanced melanoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2008; 26(14); 2292-2298. [PubMed: 18467720].
  1895. Speiser et al., 2010: Speiser DE, Schwarz K, Baumgaertner P, Manolova V, Devevre E, Sterry W, Walden P, Zippelius A, Conzett KB, Senti G, Voelter V, Cerottini JP, Guggisberg D, Willers J, Geldhof C, Romero P, Kündig T, Knuth A, Dummer R, Trefzer U, Bachmann MF. Memory and effector CD8 T-cell responses after nanoparticle vaccination of melanoma patients. Journal of immunotherapy (Hagerstown, Md. : 1997). 2010; 33(8); 848-858. [PubMed: 20842051].
  1896. Stadtmauer et al., 2011: Stadtmauer EA, Vogl DT, Luning Prak E, Boyer J, Aqui NA, Rapoport AP, McDonald KR, Hou X, Murphy H, Bhagat R, Mangan PA, Chew A, Veloso EA, Levine BL, Vonderheide RH, Jawad AF, June CH, Sullivan KE. Transfer of influenza vaccine-primed costimulated autologous T cells after stem cell transplantation for multiple myeloma leads to reconstitution of influenza immunity: results of a randomized clinical trial. Blood. 2011; 117(1); 63-71. [PubMed: 20864577].
  1897. Stahl et al., 1992: Stahl M, Wilke HJ, Seeber S, Schmoll HJ. Cytokines and cytotoxic agents in renal cell carcinoma: a review. Seminars in oncology. 1992; 19(2 Suppl 4); 70-79. [PubMed: 1553577].
  1898. Stebbing et al., 2012: Stebbing J, Dalgleish A, Gifford-Moore A, Martin A, Gleeson C, Wilson G, Brunet LR, Grange J, Mudan S. An intra-patient placebo-controlled phase I trial to evaluate the safety and tolerability of intradermal IMM-101 in melanoma. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2012; 23(5); 1314-1319. [PubMed: 21930686].
  1899. Steitz and Tüting, 2013: Steitz J, Tüting T. Biolistic DNA vaccination against melanoma. Methods in molecular biology (Clifton, N.J.). 2013; 940; 317-337. [PubMed: 23104352].
  1900. Stern and Wiley, 1994: Stern LJ, Wiley DC. Antigenic peptide binding by class I and class II histocompatibility proteins. Behring Institute Mitteilungen. 1994; (94); 1-10. [PubMed: 7998902].
  1901. Steuerwald et al., 2016: Steuerwald MT, Gabbard SR, Beauchamp GA, Riddle MK, Otten EJ. Administration of CroFab Antivenom by a Helicopter Emergency Medical Service Team. Air medical journal. 2016; 35(6); 371-373. [PubMed: 27894563].
  1902. Stevenson et al., 2004: Stevenson FK, Ottensmeier CH, Johnson P, Zhu D, Buchan SL, McCann KJ, Roddick JS, King AT, McNicholl F, Savelyeva N, Rice J. DNA vaccines to attack cancer. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101 Suppl 2; 14646-14652. [PubMed: 15292504].
  1903. Storm et al., 1979: Storm FK, Sparks FC, Morton DL. Treatment for melanoma of the lower extremity with intralesional injection of bacille Calmette Guérin and hyperthermic perfusion. Surgery, gynecology & obstetrics. 1979; 149(1); 17-21. [PubMed: 451822].
  1904. Sugiyama, 2005: Sugiyama H. Cancer immunotherapy targeting Wilms' tumor gene WT1 product. Expert review of vaccines. 2005; 4(4); 503-512. [PubMed: 16117707].
  1905. Sugiyama, 2017: Sugiyama H. WT1 peptide cancer vaccine. Nihon rinsho. Japanese journal of clinical medicine. 2017; 75(2); 263-269. [PubMed: 30562862].
  1906. Sun et al., 2002: Sun X, Hodge LM, Jones HP, Tabor L, Simecka JW. Co-expression of granulocyte-macrophage colony-stimulating factor with antigen enhances humoral and tumor immunity after DNA vaccination. Vaccine. 2002; 20(9-10); 1466-1474. [PubMed: 11818167].
  1907. Sun et al., 2015: Sun P, Dong L, MacDonald AI, Akbari S, Edward M, Hodgins MB, Johnstone SR, Graham SV. HPV16 E6 Controls the Gap Junction Protein Cx43 in Cervical Tumour Cells. Viruses. 2015; 7(10); 5243-5256. [PubMed: 26445057].
  1908. Sun et al., 2018: Sun L, Hao Y, Wang Z, Zeng Y. Constructing TC-1-GLUC-LMP2 Model Tumor Cells to Evaluate the Anti-Tumor Effects of LMP2-Related Vaccines. Viruses. 2018; 10(4); . [PubMed: 29570629].
  1909. Suriano et al., 2013: Suriano R, Rajoria S, L George A, Geliebter J, Wallack M, Tiwari RK. Ex vivo derived primary melanoma cells: implications for immunotherapeutic vaccines. Journal of Cancer. 2013; 4(5); 371-382. [PubMed: 23833682].
  1910. Suso et al., 2011: Suso EM, Dueland S, Rasmussen AM, Vetrhus T, Aamdal S, Kvalheim G, Gaudernack G. hTERT mRNA dendritic cell vaccination: complete response in a pancreatic cancer patient associated with response against several hTERT epitopes. Cancer immunology, immunotherapy : CII. 2011; 60(6); 809-818. [PubMed: 21365467].
  1911. Suzuki et al., 2017: Suzuki N, Hazama S, Iguchi H, Uesugi K, Tanaka H, Hirakawa K, Aruga A, Hatori T, Ishizaki H, Umeda Y, Fujiwara T, Ikemoto T, Shimada M, Yoshimatsu K, Shimizu R, Hayashi H, Sakata K, Takenouchi H, Matsui H, Shindo Y, Iida M, Koki Y, Arima H, Furukawa H, Ueno T, Yoshino S, Nakamura Y, Oka M, Nagano H. Phase II clinical trial of peptide cocktail therapy for patients with advanced pancreatic cancer: VENUS-PC study. Cancer science. 2017; 108(1); 73-80. [PubMed: 27783849].
  1912. Suzuki et al., 2019: Suzuki S, Osato R, Wajima T, Hasebe T, Ishikawa H, Mitsumori H, Nakaminami H, Noguchi N. Impact of the introduction of a 13-valent pneumococcal vaccine on pneumococcal serotypes in non-invasive isolates from 2007 to 2016 at a teaching hospital in Japan. Journal of medical microbiology. 2019; 68(6); 903-909. [PubMed: 31090535].
  1913. Svane et al., 2004: Svane IM, Pedersen AE, Johnsen HE, Nielsen D, Kamby C, Gaarsdal E, Nikolajsen K, Buus S, Claesson MH. Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer immunology, immunotherapy : CII. 2004; 53(7); 633-641. [PubMed: 14985857].
  1914. Svatek et al., 2018: Svatek RS, Tangen C, Delacroix S, Lowrance W, Lerner SP. Background and Update for S1602 "A Phase III Randomized Trial to Evaluate the Influence of BCG Strain Differences and T Cell Priming with Intradermal BCG Before Intravesical Therapy for BCG-naïve High-grade Non-muscle-invasive Bladder Cancer. European urology focus. 2018; 4(4); 522-524. [PubMed: 30197040].
  1915. Syrengelas et al., 1996: Syrengelas AD, Chen TT, Levy R. DNA immunization induces protective immunity against B-cell lymphoma. Nature medicine. 1996; 2(9); 1038-1041. [PubMed: 8782465].
  1916. Tagawa et al., 2003: Tagawa ST, Lee P, Snively J, Boswell W, Ounpraseuth S, Lee S, Hickingbottom B, Smith J, Johnson D, Weber JS. Phase I study of intranodal delivery of a plasmid DNA vaccine for patients with Stage IV melanoma. Cancer. 2003; 98(1); 144-154. [PubMed: 12833467].
  1917. Takeda et al., 2018: Takeda K, Kitaura K, Suzuki R, Owada Y, Muto S, Okabe N, Hasegawa T, Osugi J, Hoshino M, Tsunoda T, Okumura K, Suzuki H. Quantitative T-cell repertoire analysis of peripheral blood mononuclear cells from lung cancer patients following long-term cancer peptide vaccination. Cancer immunology, immunotherapy : CII. 2018; 67(6); 949-964. [PubMed: 29568993].
  1918. Tamanaka et al., 2012: Tamanaka T, Oka Y, Fujiki F, Tsuboi A, Katsuhara A, Nakajima H, Hosen N, Nishida S, Lin YH, Tachino S, Akatsuka Y, Kuzushima K, Oji Y, Kumanogoh A, Sugiyama H. Recognition of a natural WT1 epitope by a modified WT1 peptide-specific T-cell receptor. Anticancer research. 2012; 32(12); 5201-5209. [PubMed: 23225417].
  1919. Tamminga et al., 1985: Tamminga CA, Foster NL, Chase TN. Reduced brain somatostatin levels in Alzheimer's disease. The New England journal of medicine. 1985; 313(20); 1294-1295. [PubMed: 2865676].
  1920. Tan et al., 2007: Tan GH, Li YN, Huang FY, Wang H, Bai RZ, Jang J. Combination of recombinant xenogeneic endoglin DNA and protein vaccination enhances anti-tumor effects. Immunological investigations. 2007; 36(4); 423-440. [PubMed: 17691024].
  1921. Tan et al., 2013: Tan C, Reddy V, Dannull J, Ding E, Nair SK, Tyler DS, Pruitt SK, Lee WT. Impact of anti-CD25 monoclonal antibody on dendritic cell-tumor fusion vaccine efficacy in a murine melanoma model. Journal of translational medicine. 2013; 11; 148. [PubMed: 23768240].
  1922. Tanaka et al., 2011: Tanaka A, Jensen JD, Prado R, Riemann H, Shellman YG, Norris DA, Chin L, Yee C, Fujita M. Whole recombinant yeast vaccine induces antitumor immunity and improves survival in a genetically engineered mouse model of melanoma. Gene therapy. 2011; 18(8); 827-834. [PubMed: 21390072].
  1923. Tanaka et al., 2012: Tanaka K, Ishikawa S, Matsui Y, Kawanishi T, Tamesada M, Harashima N, Harada M. Combining a peptide vaccine with oral ingestion of Lentinula edodes mycelia extract enhances anti-tumor activity in B16 melanoma-bearing mice. Cancer immunology, immunotherapy : CII. 2012; ; . [PubMed: 22588648].
  1924. Tang et al., 2007: Tang Y, Lin Z, Ni B, Wei J, Han J, Wang H, Wu Y. An altered peptide ligand for naïve cytotoxic T lymphocyte epitope of TRP-2(180-188) enhanced immunogenicity. Cancer immunology, immunotherapy : CII. 2007; 56(3); 319-329. [PubMed: 16906394].
  1925. Tang et al., 2017: Tang Y, Cui X, Xiao H, Qi S, Hu X, Yu Q, Shi G, Zhang X, Gu J, Yu Y, Wang L, Li Y. Binding of circulating anti-MUC1 antibody and serum MUC1 antigen in stage IV breast cancer. Molecular medicine reports. 2017; 15(5); 2659-2664. [PubMed: 28447743].
  1926. Tarhini et al., 2012: Tarhini AA, Butterfield LH, Shuai Y, Gooding WE, Kalinski P, Kirkwood JM. Differing patterns of circulating regulatory T cells and myeloid-derived suppressor cells in metastatic melanoma patients receiving anti-CTLA4 antibody and interferon-α or TLR-9 agonist and GM-CSF with peptide vaccination. Journal of immunotherapy (Hagerstown, Md. : 1997). 2012; 35(9); 702-710. [PubMed: 23090079].
  1927. Tarhini et al., 2012: Tarhini AA, Leng S, Moschos SJ, Yin Y, Sander C, Lin Y, Gooding WE, Kirkwood JM. Safety and immunogenicity of vaccination with MART-1 (26-35, 27L), gp100 (209-217, 210M), and tyrosinase (368-376, 370D) in adjuvant with PF-3512676 and GM-CSF in metastatic melanoma. Journal of immunotherapy (Hagerstown, Md. : 1997). 2012; 35(4); 359-366. [PubMed: 22495394].
  1928. Tashani et al., 2016: Tashani M, Alfelali M, Barasheed O, Alqahtani AS, Heron L, Wong M, Rashid H, Booy R. Effect of Tdap when administered before, with or after the 13-valent pneumococcal conjugate vaccine (coadministered with the quadrivalent meningococcal conjugate vaccine) in adults: A randomised controlled trial. Vaccine. 2016; 34(48); 5929-5937. [PubMed: 27780630].
  1929. Teplensky et al., 2021: Teplensky MH, Dittmar JW, Qin L, Wang S, Evangelopoulos M, Zhang B, Mirkin CA. Spherical Nucleic Acid Vaccine Structure Markedly Influences Adaptive Immune Responses of Clinically Utilized Prostate Cancer Targets. Advanced healthcare materials. 2021; 10(22); e2101262. [PubMed: 34494382].
  1930. Thatcher and Crowther, 1977: Thatcher N, Crowther D. Effects of BCG and Corynebacterium parvum on immune reactivity in melanoma patients. Developments in biological standardization. 1977; 38; 449-453. [PubMed: 608536].
  1931. Thirdborough et al., 2002: Thirdborough SM, Radcliffe JN, Friedmann PS, Stevenson FK. Vaccination with DNA encoding a single-chain TCR fusion protein induces anticlonotypic immunity and protects against T-cell lymphoma. Cancer research. 2002; 62(6); 1757-1760. [PubMed: 11912151].
  1932. Thomas et al., 2018: Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, Decock J. NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Frontiers in immunology. 2018; 9; 947. [PubMed: 29770138].
  1933. Thompson et al., 2004: Thompson LW, Garbee CF, Hibbitts S, Brinckerhoff LH, Pierce RA, Chianese-Bullock KA, Deacon DH, Engelhard VH, Slingluff CL Jr. Competition among peptides in melanoma vaccines for binding to MHC molecules. Journal of immunotherapy (Hagerstown, Md. : 1997). 2004; 27(6); 425-431. [PubMed: 15534486].
  1934. Thurner et al., 1999: Thurner B, Haendle I, Röder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P, Bröcker EB, Steinman RM, Enk A, Kämpgen E, Schuler G. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. The Journal of experimental medicine. 1999; 190(11); 1669-1678. [PubMed: 10587357].
  1935. Timmerman et al., 2002: Timmerman JM, Singh G, Hermanson G, Hobart P, Czerwinski DK, Taidi B, Rajapaksa R, Caspar CB, Van Beckhoven A, Levy R. Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B-cell lymphoma. Cancer research. 2002; 62(20); 5845-5852. [PubMed: 12384547].
  1936. Timmerman et al., 2009: Timmerman JM, Vose JM, Czerwinski DK, Weng WK, Ingolia D, Mayo M, Denney DW, Levy R. Tumor-specific recombinant idiotype immunisation after chemotherapy as initial treatment for follicular non-Hodgkin lymphoma. Leukemia & lymphoma. 2009; 50(1); 37-46. [PubMed: 19125383].
  1937. Tolcher et al., 2006: Tolcher AW, Hao D, de Bono J, Miller A, Patnaik A, Hammond LA, Smetzer L, Van Wart Hood J, Merritt J, Rowinsky EK, Takimoto C, Von Hoff D, Eckhardt SG. Phase I, pharmacokinetic, and pharmacodynamic study of intravenously administered Ad5CMV-p53, an adenoviral vector containing the wild-type p53 gene, in patients with advanced cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2006; 24(13); 2052-2058. [PubMed: 16648505].
  1938. Tomillero and Moral, 2009: Tomillero A, Moral MA. Gateways to clinical trials. Methods and findings in experimental and clinical pharmacology. 2009; 31(10); 661-700. [PubMed: 20140276].
  1939. Tomita et al., 2014: Tomita Y, Yuno A, Tsukamoto H, Senju S, Kuroda Y, Hirayama M, Imamura Y, Yatsuda J, Sayem MA, Irie A, Hamada A, Jono H, Yoshida K, Tsunoda T, Daigo Y, Kohrogi H, Yoshitake Y, Nakamura Y, Shinohara M, Nishimura Y. Identification of immunogenic LY6K long peptide encompassing both CD4+ and CD8+ T-cell epitopes and eliciting CD4+ T-cell immunity in patients with malignant disease. Oncoimmunology. 2014; 3; e28100. [PubMed: 25340007].
  1940. Toretsky et al., 1995: Toretsky JA, Neckers L, Wexler LH. Detection of (11;22)(q24;q12) translocation-bearing cells in peripheral blood progenitor cells of patients with Ewing's sarcoma family of tumors. Journal of the National Cancer Institute. 1995; 87(5); 385-386. [PubMed: 7853420].
  1941. Toso et al., 2002: Toso JF, Lapointe R, Hwu P. CD40 ligand and lipopolysaccharide enhance the in vitro generation of melanoma-reactive T-cells. Journal of immunological methods. 2002; 259(1-2); 181-190. [PubMed: 11730853].
  1942. Toyoda et al., 2020: Toyoda T, Kamata T, Tanaka K, Ihara F, Takami M, Suzuki H, Nakajima T, Ikeuchi T, Kawasaki Y, Hanaoka H, Nakayama T, Yoshino I, Motohashi S. Phase II study of α-galactosylceramide-pulsed antigen-presenting cells in patients with advanced or recurrent non-small cell lung cancer. Journal for immunotherapy of cancer. 2020; 8(1); . [PubMed: 32188702].
  1943. Trakatelli et al., 2006: Trakatelli M, Toungouz M, Blocklet D, Dodoo Y, Gordower L, Laporte M, Vereecken P, Sales F, Mortier L, Mazouz N, Lambermont M, Goldman S, Coulie P, Goldman M, Velu T. A new dendritic cell vaccine generated with interleukin-3 and interferon-beta induces CD8+ T cell responses against NA17-A2 tumor peptide in melanoma patients. Cancer immunology, immunotherapy : CII. 2006; 55(4); 469-474. [PubMed: 16133111].
  1944. Trepiakas et al., 2010: Trepiakas R, Berntsen A, Hadrup SR, Bjørn J, Geertsen PF, Straten PT, Andersen MH, Pedersen AE, Soleimani A, Lorentzen T, Johansen JS, Svane IM. Vaccination with autologous dendritic cells pulsed with multiple tumor antigens for treatment of patients with malignant melanoma: results from a phase I/II trial. Cytotherapy. 2010; 12(6); 721-734. [PubMed: 20429791].
  1945. Trimble et al., 2009: Trimble CL, Peng S, Kos F, Gravitt P, Viscidi R, Sugar E, Pardoll D, Wu TC. A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009; 15(1); 361-367. [PubMed: 19118066].
  1946. Trimble et al., 2015: Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, Edwards L, Parker RL, Denny L, Giffear M, Brown AS, Marcozzi-Pierce K, Shah D, Slager AM, Sylvester AJ, Khan A, Broderick KE, Juba RJ, Herring TA, Boyer J, Lee J, Sardesai NY, Weiner DB, Bagarazzi ML. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet (London, England). 2015; 386(10008); 2078-2088. [PubMed: 26386540].
  1947. Triozzi et al., 2005: Triozzi PL, Allen KO, Carlisle RR, Craig M, LoBuglio AF, Conry RM. Phase I study of the intratumoral administration of recombinant canarypox viruses expressing B7.1 and interleukin 12 in patients with metastatic melanoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2005; 11(11); 4168-4175. [PubMed: 15930353].
  1948. Triozzi et al., 2005: Triozzi PL, Bolger GB, Neidhart J, Rinehart JJ, Saleh M, Allen KO, Sellers S, Waddell MJ. Effect of docetaxel chemotherapy on the activity of a gonadotropin releasing hormone vaccine in patients with advanced prostate cancer. The Prostate. 2005; 65(4); 316-321. [PubMed: 16015596].
  1949. Trück et al., 2014: Trück J, Snape MD, Tatangeli F, Voysey M, Yu LM, Faust SN, Heath PT, Finn A, Pollard AJ. Pneumococcal serotype-specific antibodies persist through early childhood after infant immunization: follow-up from a randomized controlled trial. PloS one. 2014; 9(3); e91413. [PubMed: 24618837].
  1950. Tsang et al., 1995: Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. Journal of the National Cancer Institute. 1995; 87(13); 982-990. [PubMed: 7629885].
  1951. Tsang et al., 2005: Tsang KY, Palena C, Yokokawa J, Arlen PM, Gulley JL, Mazzara GP, Gritz L, Yafal AG, Ogueta S, Greenhalgh P, Manson K, Panicali D, Schlom J. Analyses of recombinant vaccinia and fowlpox vaccine vectors expressing transgenes for two human tumor antigens and three human costimulatory molecules. Clinical cancer research : an official journal of the American Association for Cancer Research. 2005; 11(4); 1597-1607. [PubMed: 15746065].
  1952. Tummers et al., 2016: Tummers QR, Hoogstins CE, Gaarenstroom KN, de Kroon CD, van Poelgeest MI, Vuyk J, Bosse T, Smit VT, van de Velde CJ, Cohen AF, Low PS, Burggraaf J, Vahrmeijer AL. Intraoperative imaging of folate receptor alpha positive ovarian and breast cancer using the tumor specific agent EC17. Oncotarget. 2016; 7(22); 32144-32155. [PubMed: 27014973].
  1953. Turner et al., 1970: Turner GS, Squires EJ, Murray HG. Inactivated smallpox vaccine. A comparison of inactivation methods. The Journal of hygiene. 1970; 68(2); 197-210. [PubMed: 4988047].
  1954. Tykodi and Thompson, 2008: Tykodi SS, Thompson JA. Development of modified vaccinia Ankara-5T4 as specific immunotherapy for advanced human cancer. Expert opinion on biological therapy. 2008; 8(12); 1947-1953. [PubMed: 18990081].
  1955. Ueda et al., 2010: Ueda R, Ohkusu-Tsukada K, Fusaki N, Soeda A, Kawase T, Kawakami Y, Toda M. Identification of HLA-A2- and A24-restricted T-cell epitopes derived from SOX6 expressed in glioma stem cells for immunotherapy. International journal of cancer. 2010; 126(4); 919-929. [PubMed: 19728337].
  1956. Ullenhag et al., 2008: Ullenhag GJ, Spendlove I, Watson NF, Kallmeyer C, Pritchard-Jones K, Durrant LG. T-cell responses in osteosarcoma patients vaccinated with an anti-idiotypic antibody, 105AD7, mimicking CD55. Clinical immunology (Orlando, Fla.). 2008; 128(2); 148-154. [PubMed: 18508409].
  1957. Unfer et al., 2003: Unfer RC, Hellrung D, Link CJ Jr. Immunity to the alpha(1,3)galactosyl epitope provides protection in mice challenged with colon cancer cells expressing alpha(1,3)galactosyl-transferase: a novel suicide gene for cancer gene therapy. Cancer research. 2003; 63(5); 987-993. [PubMed: 12615713].
  1958. van et al., 1991: van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science (New York, N.Y.). 1991; 254(5038); 1643-1647. [PubMed: 1840703].
  1959. van et al., 2002: van der Burg SH, Menon AG, Redeker A, Bonnet MC, Drijfhout JW, Tollenaar RA, van de Velde CJ, Moingeon P, Kuppen PJ, Offringa R, Melief CJ. Induction of p53-specific immune responses in colorectal cancer patients receiving a recombinant ALVAC-p53 candidate vaccine. Clinical cancer research : an official journal of the American Association for Cancer Research. 2002; 8(5); 1019-1027. [PubMed: 12006514].
  1960. van et al., 2005: van Baren N, Bonnet MC, Dréno B, Khammari A, Dorval T, Piperno-Neumann S, Liénard D, Speiser D, Marchand M, Brichard VG, Escudier B, Négrier S, Dietrich PY, Maraninchi D, Osanto S, Meyer RG, Ritter G, Moingeon P, Tartaglia J, van der Bruggen P, Coulie PG, Boon T. Tumoral and immunologic response after vaccination of melanoma patients with an ALVAC virus encoding MAGE antigens recognized by T cells. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005; 23(35); 9008-9021. [PubMed: 16061912].
  1961. Van et al., 2015: Van Damme P, Olsson SE, Block S, Castellsague X, Gray GE, Herrera T, Huang LM, Kim DS, Pitisuttithum P, Chen J, Christiano S, Maansson R, Moeller E, Sun X, Vuocolo S, Luxembourg A. Immunogenicity and Safety of a 9-Valent HPV Vaccine. Pediatrics. 2015; 136(1); e28-39. [PubMed: 26101366].
  1962. van et al., 2015: van der Waart AB, Fredrix H, van der Voort R, Schaap N, Hobo W, Dolstra H. siRNA silencing of PD-1 ligands on dendritic cell vaccines boosts the expansion of minor histocompatibility antigen-specific CD8(+) T cells in NOD/SCID/IL2Rg(null) mice. Cancer immunology, immunotherapy : CII. 2015; 64(5); 645-654. [PubMed: 25724840].
  1963. Van et al., 2016: Van Damme P, Bonanni P, Bosch FX, Joura E, Kjaer SK, Meijer CJ, Petry KU, Soubeyrand B, Verstraeten T, Stanley M. Use of the nonavalent HPV vaccine in individuals previously fully or partially vaccinated with bivalent or quadrivalent HPV vaccines. Vaccine. 2016; 34(6); 757-761. [PubMed: 26772631].
  1964. Vardas et al., 2010: Vardas E, Kaleebu P, Bekker LG, Hoosen A, Chomba E, Johnson PR, Anklesaria P, Birungi J, Barin B, Boaz M, Cox J, Lehrman J, Stevens G, Gilmour J, Tarragona T, Hayes P, Lowenbein S, Kizito E, Fast P, Heald AE, Schmidt C. A phase 2 study to evaluate the safety and immunogenicity of a recombinant HIV type 1 vaccine based on adeno-associated virus. AIDS research and human retroviruses. 2010; 26(8); 933-942. [PubMed: 20666584].
  1965. Varella et al., 1981: Varella AD, Bandiera DC, de Amorim AR Sr, Calvis LA, Santos IO, Escaleira N, Gentil F. Treatment of disseminated malignant melanoma with high-dose oral BCG. Cancer. 1981; 48(6); 1353-1362. [PubMed: 7023654].
  1966. Veltman et al., 2010: Veltman JD, Lambers ME, van Nimwegen M, de Jong S, Hendriks RW, Hoogsteden HC, Aerts JG, Hegmans JP. Low-dose cyclophosphamide synergizes with dendritic cell-based immunotherapy in antitumor activity. Journal of biomedicine & biotechnology. 2010; 2010; 798467. [PubMed: 20508851].
  1967. Vence et al., 2013: Vence LM, Wang C, Pappu H, Anson RE, Patel TA, Miller P, Bassett R, Lizee G, Overwijk WW, Komanduri K, Benjamin C, Alvarado G, Patel SP, Kim K, Papadopoulos NE, Bedikian AY, Homsi J, Hwu WJ, Boyd R, Radvanyi L, Hwu P. Chemical castration of melanoma patients does not increase the frequency of tumor-specific CD4 and CD8 T cells after peptide vaccination. Journal of immunotherapy (Hagerstown, Md. : 1997). 2013; 36(4); 276-286. [PubMed: 23603862].
  1968. Vesikari et al., 2015: Vesikari T, Brodszki N, van Damme P, Diez-Domingo J, Icardi G, Petersen LK, Tran C, Thomas S, Luxembourg A, Baudin M. A Randomized, Double-Blind, Phase III Study of the Immunogenicity and Safety of a 9-Valent Human Papillomavirus L1 Virus-Like Particle Vaccine (V503) Versus Gardasil® in 9-15-Year-Old Girls. The Pediatric infectious disease journal. 2015; 34(9); 992-998. [PubMed: 26090572].
  1969. Vici et al., 2016: Vici P, Pizzuti L, Mariani L, Zampa G, Santini D, Di Lauro L, Gamucci T, Natoli C, Marchetti P, Barba M, Maugeri-Saccà M, Sergi D, Tomao F, Vizza E, Di Filippo S, Paolini F, Curzio G, Corrado G, Michelotti A, Sanguineti G, Giordano A, De Maria R, Venuti A. Targeting immune response with therapeutic vaccines in premalignant lesions and cervical cancer: hope or reality from clinical studies. Expert review of vaccines. 2016; 15(10); 1327-1336. [PubMed: 27063030].
  1970. Vivier et al., 2008: Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nature immunology. 2008; 9(5); 503-510. [PubMed: 18425107].
  1971. Vogel et al., 2010: Vogel TU, Visan L, Ljutic B, Gajewska B, Caterini J, Salha D, Wen T, He L, Parrington M, Cao SX, McNeil B, Sandhu D, Scollard N, Zhang L, Bradley B, Tang M, Lovitt C, Oomen R, Dunn P, Tartaglia J, Berinstein NL. Preclinical qualification of a new multi-antigen candidate vaccine for metastatic melanoma. Journal of immunotherapy (Hagerstown, Md. : 1997). 2010; 33(8); 743-758. [PubMed: 20842062].
  1972. Vollmer et al., 1999: Vollmer CM Jr, Eilber FC, Butterfield LH, Ribas A, Dissette VB, Koh A, Montejo LD, Lee MC, Andrews KJ, McBride WH, Glaspy JA, Economou JS. Alpha-fetoprotein-specific genetic immunotherapy for hepatocellular carcinoma. Cancer research. 1999; 59(13); 3064-3067. [PubMed: 10397245].
  1973. Volz et al., 2016: Volz B, Schmidt M, Heinrich K, Kapp K, Schroff M, Wittig B. Design and characterization of the tumor vaccine MGN1601, allogeneic fourfold gene-modified vaccine cells combined with a TLR-9 agonist. Molecular therapy oncolytics. 2016; 3; 15023. [PubMed: 27119114].
  1974. von et al., 2001: von Mehren M, Arlen P, Gulley J, Rogatko A, Cooper HS, Meropol NJ, Alpaugh RK, Davey M, McLaughlin S, Beard MT, Tsang KY, Schlom J, Weiner LM. The influence of granulocyte macrophage colony-stimulating factor and prior chemotherapy on the immunological response to a vaccine (ALVAC-CEA B7.1) in patients with metastatic carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2001; 7(5); 1181-1191. [PubMed: 11350882].
  1975. Vonderheide et al., 2021: Vonderheide RH, Kraynyak KA, Shields AF, McRee AJ, Johnson JM, Sun W, Chintakuntlawar AV, Pawlicki J, Sylvester AJ, McMullan T, Samuels R, Kim JJ, Weiner D, Boyer JD, Morrow MP, Humeau L, Skolnik JM. Phase 1 study of safety, tolerability and immunogenicity of the human telomerase (hTERT)-encoded DNA plasmids INO-1400 and INO-1401 with or without IL-12 DNA plasmid INO-9012 in adult patients with solid tumors. Journal for immunotherapy of cancer. 2021; 9(7); . [PubMed: 34230114].
  1976. Wada et al., 2005: Wada S, Tsunoda T, Baba T, Primus FJ, Kuwano H, Shibuya M, Tahara H. Rationale for antiangiogenic cancer therapy with vaccination using epitope peptides derived from human vascular endothelial growth factor receptor 2. Cancer research. 2005; 65(11); 4939-4946. [PubMed: 15930316].
  1977. Wagner et al., 2000: Wagner SN, Wagner C, Lührs P, Weimann TK, Kutil R, Goos M, Stingl G, Schneeberger A. Intracutaneous genetic immunization with autologous melanoma-associated antigen Pmel17/gp100 induces T cell-mediated tumor protection in vivo. The Journal of investigative dermatology. 2000; 115(6); 1082-1087. [PubMed: 11121145].
  1978. Wagner et al., 2001: Wagner U, Köhler S, Reinartz S, Giffels P, Huober J, Renke K, Schlebusch H, Biersack HJ, Möbus V, Kreienberg R, Bauknecht T, Krebs D, Wallwiener D. Immunological consolidation of ovarian carcinoma recurrences with monoclonal anti-idiotype antibody ACA125: immune responses and survival in palliative treatment. See The biology behind: K. A. Foon and M. Bhattacharya-Chatterjee, Are solid tumor anti-idiotype vaccines ready for prime time? Clin. Cancer Res., 7:1112-1115, 2001. Clinical cancer research : an official journal of the American Association for Cancer Research. 2001; 7(5); 1154-1162. [PubMed: 11350879].
  1979. Wagner et al., 2007: Wagner S, Jasinska J, Breiteneder H, Kundi M, Pehamberger H, Scheiner O, Zielinski CC, Wiedermann U. Delayed tumor onset and reduced tumor growth progression after immunization with a Her-2/neu multi-peptide vaccine and IL-12 in c-neu transgenic mice. Breast cancer research and treatment. 2007; 106(1); 29-38. [PubMed: 17203384].
  1980. Wallack et al., 1986: Wallack MK, McNally K, Michaelides M, Bash J, Bartolucci A, Siegler H, Balch C, Wanebo H. A phase I/II SECSG (Southeastern Cancer Study Group) pilot study of surgical adjuvant immunotherapy with vaccinia melanoma oncolysates (VMO). The American surgeon. 1986; 52(3); 148-151. [PubMed: 3513682].
  1981. Wallack et al., 1987: Wallack MK, Bash JA, McNally KR, Leftheriotis E. Serological evaluation of melanoma patients in a phase I/II trial of vaccinia melanoma oncolysate (VMO) immunotherapy. Cancer detection and prevention. Supplement : official publication of the International Society for Preventive Oncology, Inc. 1987; 1; 351-359. [PubMed: 3155379].
  1982. Walter et al., 2012: Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, Staehler M, Brugger W, Dietrich PY, Mendrzyk R, Hilf N, Schoor O, Fritsche J, Mahr A, Maurer D, Vass V, Trautwein C, Lewandrowski P, Flohr C, Pohla H, Stanczak JJ, Bronte V, Mandruzzato S, Biedermann T, Pawelec G, Derhovanessian E, Yamagishi H, Miki T, Hongo F, Takaha N, Hirakawa K, Tanaka H, Stevanovic S, Frisch J, Mayer-Mokler A, Kirner A, Rammensee HG, Reinhardt C, Singh-Jasuja H. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nature medicine. 2012; 18(8); 1254-1261. [PubMed: 22842478].
  1983. Wang et al., 2003: Wang T, Fan L, Watanabe Y, McNeill PD, Moulton GG, Bangur C, Fanger GR, Okada M, Inoue Y, Persing DH, Reed SG. L523S, an RNA-binding protein as a potential therapeutic target for lung cancer. British journal of cancer. 2003; 88(6); 887-894. [PubMed: 12644826].
  1984. Wang et al., 2003: Wang XY, Chen X, Manjili MH, Repasky E, Henderson R, Subjeck JR. Targeted immunotherapy using reconstituted chaperone complexes of heat shock protein 110 and melanoma-associated antigen gp100. Cancer research. 2003; 63(10); 2553-2560. [PubMed: 12750279].
  1985. Wang et al., 2008: Wang YJ, Hou Y, Huang H, Liu GR, White AP, Liu SL. Two oral HBx vaccines delivered by live attenuated Salmonella: both eliciting effective anti-tumor immunity. Cancer letters. 2008; 263(1); 67-76. [PubMed: 18226855].
  1986. Wang et al., 2013: Wang J, Wang X, Chen Y, Wan M, Xiang Z, Wu X, Wei H, Wang L, Zhang P, Wang L, Yu Y. Immunization with a HSP65-HER2 fusion peptide selectively eliminates HER2(+) B16 melanoma cells in a xenograft tumor mouse model. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2013; 34(1); 193-201. [PubMed: 23055194].
  1987. Wang et al., 2013: Wang Z, You H, Song S. [Inhibiting effect of IL-10 in tumor microenvironment on anti-tumor activity of SOCS1-silenced DC vaccine]. Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology. 2013; 29(4); 379-383. [PubMed: 23643168].
  1988. Wang et al., 2022: Wang J, Weiss T, Neidert MC, Toussaint NC, Naghavian R, Sellés Moreno C, Foege M, Tomas Ojer P, Medici G, Jelcic I, Schulz D, Rushing E, Dettwiler S, Schrörs B, Shin JH, McKay R, Wu CJ, Lutterotti A, Sospedra M, Moch H, Greiner EF, Bodenmiller B, Regli L, Weller M, Roth P, Martin R. Vaccination with Designed Neopeptides Induces Intratumoral, Cross-reactive CD4+ T-cell Responses in Glioblastoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2022; 28(24); 5368-5382. [PubMed: 36228153].
  1989. Wang et al., 2024: Wang Y, Cho JW, Kastrunes G, Buck A, Razimbaud C, Culhane AC, Sun J, Braun DA, Choueiri TK, Wu CJ, Jones K, Nguyen QD, Zhu Z, Wei K, Zhu Q, Signoretti S, Freeman GJ, Hemberg M, Marasco WA. Immune-restoring CAR-T cells display antitumor activity and reverse immunosuppressive TME in a humanized ccRCC mouse model. iScience. 2024; 27(2); 108879. [PubMed: 38327771].
  1990. Watson and Gilliam, 2001: Watson SA, Gilliam AD. G17DT--a new weapon in the therapeutic armoury for gastrointestinal malignancy. Expert opinion on biological therapy. 2001; 1(2); 309-317. [PubMed: 11727538].
  1991. Wätzig and Knopf, 1979: Wätzig V, Knopf B. [Clinical administration of BCG-immunotherapy in malignant melanoma (author's transl)]. Archiv fur Geschwulstforschung. 1979; 49(2); 140-145. [PubMed: 475550].
  1992. Weber et al., 1998: Weber LW, Bowne WB, Wolchok JD, Srinivasan R, Qin J, Moroi Y, Clynes R, Song P, Lewis JJ, Houghton AN. Tumor immunity and autoimmunity induced by immunization with homologous DNA. The Journal of clinical investigation. 1998; 102(6); 1258-1264. [PubMed: 9739060].
  1993. Weber et al., 2003: Weber J, Sondak VK, Scotland R, Phillip R, Wang F, Rubio V, Stuge TB, Groshen SG, Gee C, Jeffery GG, Sian S, Lee PP. Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected Stage II melanoma. Cancer. 2003; 97(1); 186-200. [PubMed: 12491520].
  1994. Weber et al., 2008: Weber J, Boswell W, Smith J, Hersh E, Snively J, Diaz M, Miles S, Liu X, Obrocea M, Qiu Z, Bot A. Phase 1 trial of intranodal injection of a Melan-A/MART-1 DNA plasmid vaccine in patients with stage IV melanoma. Journal of immunotherapy (Hagerstown, Md. : 1997). 2008; 31(2); 215-223. [PubMed: 18481391].
  1995. Weber et al., 2011: Weber JS, Vogelzang NJ, Ernstoff MS, Goodman OB, Cranmer LD, Marshall JL, Miles S, Rosario D, Diamond DC, Qiu Z, Obrocea M, Bot A. A phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors. Journal of immunotherapy (Hagerstown, Md. : 1997). 2011; 34(7); 556-567. [PubMed: 21760528].
  1996. Weber et al., 2013: Weber JS, Kudchadkar RR, Yu B, Gallenstein D, Horak CE, Inzunza HD, Zhao X, Martinez AJ, Wang W, Gibney G, Kroeger J, Eysmans C, Sarnaik AA, Chen YA. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013; 31(34); 4311-4318. [PubMed: 24145345].
  1997. Wei et al., 2013: Wei H, Bera TK, Wayne AS, Xiang L, Colantonio S, Chertov O, Pastan I. A modified form of diphthamide causes immunotoxin resistance in a lymphoma cell line with a deletion of the WDR85 gene. The Journal of biological chemistry. 2013; 288(17); 12305-12312. [PubMed: 23486472].
  1998. Wei et al., 2019: Wei X, Chen F, Xin K, Wang Q, Yu L, Liu B, Liu Q. Cancer-Testis Antigen Peptide Vaccine for Cancer Immunotherapy: Progress and Prospects. Translational oncology. 2019; 12(5); 733-738. [PubMed: 30877975].
  1999. Weide et al., 2012: Weide B, Zelba H, Derhovanessian E, Pflugfelder A, Eigentler TK, Di Giacomo AM, Maio M, Aarntzen EH, de Vries IJ, Sucker A, Schadendorf D, Büttner P, Garbe C, Pawelec G. Functional T cells targeting NY-ESO-1 or Melan-A are predictive for survival of patients with distant melanoma metastasis. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2012; 30(15); 1835-1841. [PubMed: 22529253].
  2000. Weinstock et al., 2017: Weinstock M, Rosenblatt J, Avigan D. Dendritic Cell Therapies for Hematologic Malignancies. Molecular therapy. Methods & clinical development. 2017; 5; 66-75. [PubMed: 28480306].
  2001. Weller et al., 2017: Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, Ashby L, Mechtler L, Goldlust SA, Iwamoto F, Drappatz J, O'Rourke DM, Wong M, Hamilton MG, Finocchiaro G, Perry J, Wick W, Green J, He Y, Turner CD, Yellin MJ, Keler T, Davis TA, Stupp R, Sampson JH. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. The Lancet. Oncology. 2017; 18(10); 1373-1385. [PubMed: 28844499].
  2002. Wen et al., 2019: Wen PY, Reardon DA, Armstrong TS, Phuphanich S, Aiken RD, Landolfi JC, Curry WT, Zhu JJ, Glantz M, Peereboom DM, Markert JM, LaRocca R, O'Rourke DM, Fink K, Kim L, Gruber M, Lesser GJ, Pan E, Kesari S, Muzikansky A, Pinilla C, Santos RG, Yu JS. A Randomized Double-Blind Placebo-Controlled Phase II Trial of Dendritic Cell Vaccine ICT-107 in Newly Diagnosed Patients with Glioblastoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2019; 25(19); 5799-5807. [PubMed: 31320597].
  2003. Wentink et al., 2016: Wentink MQ, Hackeng TM, Tabruyn SP, Puijk WC, Schwamborn K, Altschuh D, Meloen RH, Schuurman T, Griffioen AW, Timmerman P. Targeted vaccination against the bevacizumab binding site on VEGF using 3D-structured peptides elicits efficient antitumor activity. Proceedings of the National Academy of Sciences of the United States of America. 2016; 113(44); 12532-12537. [PubMed: 27791128].
  2004. Wettendorff et al., 1989: Wettendorff M, Iliopoulos D, Tempero M, Kay D, DeFreitas E, Koprowski H, Herlyn D. Idiotypic cascades in cancer patients treated with monoclonal antibody CO17-1A. Proceedings of the National Academy of Sciences of the United States of America. 1989; 86(10); 3787-3791. [PubMed: 2786203].
  2005. Wiki: Cancer: Cancer [http://en.wikipedia.org/wiki/Cancer]
  2006. Wilgenhof et al., 2011: Wilgenhof S, Van Nuffel AM, Corthals J, Heirman C, Tuyaerts S, Benteyn D, De Coninck A, Van Riet I, Verfaillie G, Vandeloo J, Bonehill A, Thielemans K, Neyns B. Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. Journal of immunotherapy (Hagerstown, Md. : 1997). 2011; 34(5); 448-456. [PubMed: 21577140].
  2007. Wilgenhof et al., 2013: Wilgenhof S, Van Nuffel AM, Benteyn D, Corthals J, Aerts C, Heirman C, Van Riet I, Bonehill A, Thielemans K, Neyns B. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Annals of oncology : official journal of the European Society for Medical Oncology. 2013; 24(10); 2686-2693. [PubMed: 23904461].
  2008. Wilkinson et al., 2000: Wilkinson RW, Ross EL, Lee-MacAry AE, Laylor R, Burchell J, Taylor-Papadimitriou J, Snary D. A transgenic mouse model for tumour immunotherapy: induction of an anti-idiotype response to human MUC1. British journal of cancer. 2000; 83(9); 1202-1208. [PubMed: 11027434].
  2009. Williams et al., 2008: Williams BB, Wall M, Miao RY, Williams B, Bertoncello I, Kershaw MH, Mantamadiotis T, Haber M, Norris MD, Gautam A, Darcy PK, Ramsay RG. Induction of T cell-mediated immunity using a c-Myb DNA vaccine in a mouse model of colon cancer. Cancer immunology, immunotherapy : CII. 2008; 57(11); 1635-1645. [PubMed: 18386000].
  2010. Winthrop et al., 2018: Winthrop KL, Korman N, Abramovits W, Rottinghaus ST, Tan H, Gardner A, Mukwaya G, Kaur M, Valdez H. T-cell-mediated immune response to pneumococcal conjugate vaccine (PCV-13) and tetanus toxoid vaccine in patients with moderate-to-severe psoriasis during tofacitinib treatment. Journal of the American Academy of Dermatology. 2018; 78(6); 1149-1155.e1. [PubMed: 29080806].
  2011. Wolchok et al., 2010: Wolchok JD, Weber JS, Hamid O, Lebbé C, Maio M, Schadendorf D, de Pril V, Heller K, Chen TT, Ibrahim R, Hoos A, O'Day SJ. Ipilimumab efficacy and safety in patients with advanced melanoma: a retrospective analysis of HLA subtype from four trials. Cancer immunity. 2010; 10; 9. [PubMed: 20957980].
  2012. Wolfraim et al., 2013: Wolfraim LA, Takahara M, Viley AM, Shivakumar R, Nieda M, Maekawa R, Liu LN, Peshwa MV. Clinical scale electroloading of mature dendritic cells with melanoma whole tumor cell lysate is superior to conventional lysate co-incubation in triggering robust in vitro expansion of functional antigen-specific CTL. International immunopharmacology. 2013; 15(3); 488-497. [PubMed: 23474736].
  2013. Wood et al., 2016: Wood LV, Fojo A, Roberson BD, Hughes MS, Dahut W, Gulley JL, Madan RA, Arlen PM, Sabatino M, Stroncek DF, Castiello L, Trepel JB, Lee MJ, Parnes HL, Steinberg SM, Terabe M, Wilkerson J, Pastan I, Berzofsky JA. TARP vaccination is associated with slowing in PSA velocity and decreasing tumor growth rates in patients with Stage D0 prostate cancer. Oncoimmunology. 2016; 5(8); e1197459. [PubMed: 27622067].
  2014. Woods and Cebon, 2013: Woods K, Cebon J. Tumor-specific T-cell help is associated with improved survival in melanoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013; 19(15); 4021-4023. [PubMed: 23864163].
  2015. Wu et al., 2013: Wu H, Han Y, Qin Y, Cao C, Xia Y, Liu C, Wang Y. Whole-cell vaccine coated with recombinant calreticulin enhances activation of dendritic cells and induces tumour-specific immune responses. Oncology reports. 2013; 29(2); 529-534. [PubMed: 23166014].
  2016. Xiang et al., 2008: Xiang R, Luo Y, Niethammer AG, Reisfeld RA. Oral DNA vaccines target the tumor vasculature and microenvironment and suppress tumor growth and metastasis. Immunological reviews. 2008; 222; 117-128. [PubMed: 18363997].
  2017. Xie et al., 2013: Xie Y, Wang L, Freywald A, Qureshi M, Chen Y, Xiang J. A novel T cell-based vaccine capable of stimulating long-term functional CTL memory against B16 melanoma via CD40L signaling. Cellular & molecular immunology. 2013; 10(1); 72-77. [PubMed: 23042534].
  2018. Xing et al., 2018: Xing P, Wang H, Yang S, Han X, Sun Y, Shi Y. Therapeutic cancer vaccine: phase I clinical tolerance study of Hu-rhEGF-rP64k/Mont in patients with newly diagnosed advanced non-small cell lung cancer. BMC immunology. 2018; 19(1); 14. [PubMed: 29661145].
  2019. Xu et al., 2013: Xu G, Smith T, Grey F, Hill AB. Cytomegalovirus-based cancer vaccines expressing TRP2 induce rejection of melanoma in mice. Biochemical and biophysical research communications. 2013; 437(2); 287-291. [PubMed: 23811402].
  2020. Xu et al., 2013: Xu M, Xing Y, Zhou L, Yang X, Yao W, Xiao W, Ge C, Ma Y, Yang J, Wu J, Cao R, Li T, Liu J. Improved efficacy of therapeutic vaccination with viable human umbilical vein endothelial cells against murine melanoma by introduction of OK432 as adjuvant. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2013; 34(3); 1399-1408. [PubMed: 23456765].
  2021. Yaddanapudi and Eaton, 2012: Yaddanapudi K, Eaton JW. Multi-peptide immunotherapeutic vaccine for renal cell carcinoma: getting the troops all worked up. Translational andrology and urology. 2012; 1(4); 229-233. [PubMed: 25221745].
  2022. Yang et al., 1995: Yang G, Hellström KE, Hellström I, Chen L. Antitumor immunity elicited by tumor cells transfected with B7-2, a second ligand for CD28/CTLA-4 costimulatory molecules. Journal of immunology (Baltimore, Md. : 1950). 1995; 154(6); 2794-2800. [PubMed: 7533183].
  2023. Yang et al., 2002: Yang S, Linette GP, Longerich S, Haluska FG. Antimelanoma activity of CTL generated from peripheral blood mononuclear cells after stimulation with autologous dendritic cells pulsed with melanoma gp100 peptide G209-2M is correlated to TCR avidity. Journal of immunology (Baltimore, Md. : 1950). 2002; 169(1); 531-539. [PubMed: 12077285].
  2024. Yano et al., 2016: Yano S, Takehara K, Tazawa H, Kishimoto H, Urata Y, Kagawa S, Fujiwara T, Hoffman RM. Efficacy of a Cell-Cycle Decoying Killer Adenovirus on 3-D Gelfoam®-Histoculture and Tumor-Sphere Models of Chemo-Resistant Stomach Carcinomatosis Visualized by FUCCI Imaging. PloS one. 2016; 11(9); e0162991. [PubMed: 27673332].
  2025. Yoo et al., 2009: Yoo GH, Moon J, Leblanc M, Lonardo F, Urba S, Kim H, Hanna E, Tsue T, Valentino J, Ensley J, Wolf G. A phase 2 trial of surgery with perioperative INGN 201 (Ad5CMV-p53) gene therapy followed by chemoradiotherapy for advanced, resectable squamous cell carcinoma of the oral cavity, oropharynx, hypopharynx, and larynx: report of the Southwest Oncology Group. Archives of otolaryngology--head & neck surgery. 2009; 135(9); 869-874. [PubMed: 19770418].
  2026. Yost, 1985: Yost WA. Click stimuli do produce masking-level differences, sometimes. The Journal of the Acoustical Society of America. 1985; 77(6); 2191-2192. [PubMed: 4019903].
  2027. Yu et al., 2004: Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer research. 2004; 64(14); 4973-4979. [PubMed: 15256471].
  2028. Yu et al., 2013: Yu X, Guo C, Yi H, Qian J, Fisher PB, Subjeck JR, Wang XY. A multifunctional chimeric chaperone serves as a novel immune modulator inducing therapeutic antitumor immunity. Cancer research. 2013; 73(7); 2093-2103. [PubMed: 23333935].
  2029. Yuan et al., 2008: Yuan J, Gnjatic S, Li H, Powel S, Gallardo HF, Ritter E, Ku GY, Jungbluth AA, Segal NH, Rasalan TS, Manukian G, Xu Y, Roman RA, Terzulli SL, Heywood M, Pogoriler E, Ritter G, Old LJ, Allison JP, Wolchok JD. CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proceedings of the National Academy of Sciences of the United States of America. 2008; 105(51); 20410-20415. [PubMed: 19074257].
  2030. Zachariae et al., 1991: Zachariae H, Aslam HM, Bjerring P, Søgaard H, Zachariae E, Heickendorff L. Serum aminoterminal propeptide of type III procollagen in psoriasis and psoriatic arthritis: relation to liver fibrosis and arthritis. Journal of the American Academy of Dermatology. 1991; 25(1 Pt 1); 50-53. [PubMed: 1880254].
  2031. Zaidi et al., 2019: Zaidi N, Quezada SA, Kuroiwa JMY, Zhang L, Jaffee EM, Steinman RM, Wang B. Anti-CTLA-4 synergizes with dendritic cell-targeted vaccine to promote IL-3-dependent CD4+ effector T cell infiltration into murine pancreatic tumors. Annals of the New York Academy of Sciences. 2019; 1445(1); 62-73. [PubMed: 30945313].
  2032. Zajac et al., 2003: Zajac P, Oertli D, Marti W, Adamina M, Bolli M, Guller U, Noppen C, Padovan E, Schultz-Thater E, Heberer M, Spagnoli G. Phase I/II clinical trial of a nonreplicative vaccinia virus expressing multiple HLA-A0201-restricted tumor-associated epitopes and costimulatory molecules in metastatic melanoma patients. Human gene therapy. 2003; 14(16); 1497-1510. [PubMed: 14577912].
  2033. Zandberg et al., 2015: Zandberg DP, Rollins S, Goloubeva O, Morales RE, Tan M, Taylor R, Wolf JS, Schumaker LM, Cullen KJ, Zimrin A, Ord R, Lubek JE, Suntharalingam M, Papadimitriou JC, Mann D, Strome SE, Edelman MJ. A phase I dose escalation trial of MAGE-A3- and HPV16-specific peptide immunomodulatory vaccines in patients with recurrent/metastatic (RM) squamous cell carcinoma of the head and neck (SCCHN). Cancer immunology, immunotherapy : CII. 2015; 64(3); 367-379. [PubMed: 25537079].
  2034. Zanetti, 2003: Zanetti M. Protocol #0207-545: a phase I/II, escalating dose, open-label evaluation of safety, feasibility, and tolerability of transgenic lymphocyte immunization (TLI) vaccine subjects with histologically proven prostate adenocarcinoma. Human gene therapy. 2003; 14(3); 301-302. [PubMed: 12653092].
  2035. Zangwill et al., 2008: Zangwill KM, Eriksen E, Lee M, Lee J, Marcy SM, Friedland LR, Weston W, Howe B, Ward JI. A population-based, postlicensure evaluation of the safety of a combination diphtheria, tetanus, acellular pertussis, hepatitis B, and inactivated poliovirus vaccine in a large managed care organization. Pediatrics. 2008; 122(6); 1179-1185. [PubMed: 19047220].
  2036. Zebertavage et al., 2019: Zebertavage L, Bambina S, Shugart J, Alice A, Zens KD, Lauer P, Hanson B, Gough MJ, Crittenden MR, Bahjat KS. A microbial-based cancer vaccine for induction of EGFRvIII-specific CD8+ T cells and anti-tumor immunity. PloS one. 2019; 14(1); e0209153. [PubMed: 30601871].
  2037. Zhai et al., 1996: Zhai Y, Yang JC, Kawakami Y, Spiess P, Wadsworth SC, Cardoza LM, Couture LA, Smith AE, Rosenberg SA. Antigen-specific tumor vaccines. Development and characterization of recombinant adenoviruses encoding MART1 or gp100 for cancer therapy. Journal of immunology (Baltimore, Md. : 1950). 1996; 156(2); 700-710. [PubMed: 8543823].
  2038. Zhai et al., 2011: Zhai SQ, Guo W, Hu YY, Yu N, Chen Q, Wang JZ, Fan M, Yang WY. Protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion. The Journal of laryngology and otology. 2011; 125(5); 449-454. [PubMed: 21078216].
  2039. Zhang et al., 2005: Zhang M, Obata C, Hisaeda H, Ishii K, Murata S, Chiba T, Tanaka K, Li Y, Furue M, Chou B, Imai T, Duan X, Himeno K. A novel DNA vaccine based on ubiquitin-proteasome pathway targeting 'self'-antigens expressed in melanoma/melanocyte. Gene therapy. 2005; 12(13); 1049-1057. [PubMed: 15800663].
  2040. Zhang et al., 2007: Zhang X, Yu C, Zhao J, Fu L, Yi S, Liu S, Yu T, Chen W. Vaccination with a DNA vaccine based on human PSCA and HSP70 adjuvant enhances the antigen-specific CD8+ T-cell response and inhibits the PSCA+ tumors growth in mice. The journal of gene medicine. 2007; 9(8); 715-726. [PubMed: 17595048].
  2041. Zhang et al., 2012: Zhang H, Wang Y, Liu C, Zhang L, Xia Q, Zhang Y, Wu J, Jiang C, Chen Y, Wu Y, Zha X, Yu X, Kong W. DNA and adenovirus tumor vaccine expressing truncated survivin generates specific immune responses and anti-tumor effects in a murine melanoma model. Cancer immunology, immunotherapy : CII. 2012; ; . [PubMed: 22706381].
  2042. Zhang et al., 2017: Zhang X, Sharma PK, Peter Goedegebuure S, Gillanders WE. Personalized cancer vaccines: Targeting the cancer mutanome. Vaccine. 2017; 35(7); 1094-1100. [PubMed: 27449681].
  2043. Zhi et al., 2002: Zhi H, Han L, Ren J, Tian H, Luo W, Liang Y, Ruan L. [Construction of recombinant vaccinia virus co-expressing mutant E6 plus E7 proteins and detection of its immunogenicity and antitumor response]. Zhonghua shi yan he lin chuang bing du xue za zhi = Zhonghua shiyan he linchuang bingduxue zazhi = Chinese journal of experimental and clinical virology. 2002; 16(4); 341-344. [PubMed: 12665900].
  2044. Zhu et al., 2013: Zhu Y, Zheng Y, Mei L, Liu M, Li S, Xiao H, Zhu H, Wu S, Chen H, Huang L. Enhanced immunotherapeutic effect of modified HPV16 E7-pulsed dendritic cell vaccine by an adeno-shRNA-SOCS1 virus. International journal of oncology. 2013; 43(4); 1151-1159. [PubMed: 23877655].

Canine adenovirus type 1

  1. Fu et al., 2022: Fu Y, Sun J, Lian S, Deng X, Zhang L, Shao J, Yu H, Yan X, Zhu Y. Immunogenicity of an Inactivated Canine Adenovirus Type 1 Vaccine for Foxes. Frontiers in veterinary science. 2022; 9; 678671. [PubMed: 35242832].
  2. Merck Vet Manual: Infectious Canine Hepatitis: Merck Veterinary Manual- Infectious Canine Hepatitis: Introduction [http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/57200.htm]

Canine Adenovirus Type 2

  1. Buonavoglia and Martella, 2007: Buonavoglia C, Martella V. Canine respiratory viruses. Veterinary research. 2007; 38(2); 355-373. [PubMed: 17296161].

Canine coronavirus

  1. Pardo et al., 1999: Pardo MC, M. Mackowiak. Efficacy of a new canine-origin, modified-live virus vaccine against canine coronavirus. Canine Practice. 1999; 24; 6-8.
  2. Qiao et al., 2005: Qiao J, Xia XZ, Yang ST, Hu GX, Xie ZJ. [Construction of recombinant canine adenovirus type 2 expressing Canine coronavirus spike glycoprotein and its immunogenicity]. Wei sheng wu xue bao = Acta microbiologica Sinica. 2005; 45(4); 588-592. [PubMed: 16245877].
  3. Wiki: Canine coronavirus: Canine coronavirus [http://en.wikipedia.org/wiki/Canine_coronavirus]

Canine distemper virus

  1. Fischer et al., 2002: Fischer L, Tronel JP, Pardo-David C, Tanner P, Colombet G, Minke J, Audonnet JC. Vaccination of puppies born to immune dams with a canine adenovirus-based vaccine protects against a canine distemper virus challenge. Vaccine. 2002; 20(29-30); 3485-3497. [PubMed: 12297394].
  2. Jensen et al., 2009: Jensen TH, Nielsen L, Aasted B, Blixenkrone-Møller M. Early life DNA vaccination with the H gene of Canine distemper virus induces robust protection against distemper. Vaccine. 2009; 27(38); 5178-5183. [PubMed: 19596418].
  3. Welter et al., 2000: Welter J, Taylor J, Tartaglia J, Paoletti E, Stephensen CB. Vaccination against canine distemper virus infection in infant ferrets with and without maternal antibody protection, using recombinant attenuated poxvirus vaccines. Journal of virology. 2000; 74(14); 6358-6367. [PubMed: 10864646].
  4. Wiki: Canine distemper virus: Canine distemper virus [http://en.wikipedia.org/wiki/Canine_distemper_virus]

Canine parainfluenza virus

  1. Buonavoglia and Martella, 2007: Buonavoglia C, Martella V. Canine respiratory viruses. Veterinary research. 2007; 38(2); 355-373. [PubMed: 17296161].

Canine parvovirus

  1. Jiang et al., 1998: Jiang W, Baker HJ, Swango LJ, Schorr J, Self MJ, Smith BF. Nucleic acid immunization protects dogs against challenge with virulent canine parvovirus. Vaccine. 1998; 16(6); 601-607. [PubMed: 9569471].
  2. Langeveld et al., 2001: Langeveld JP, Brennan FR, Martínez-Torrecuadrada JL, Jones TD, Boshuizen RS, Vela C, Casal JI, Kamstrup S, Dalsgaard K, Meloen RH, Bendig MM, Hamilton WD. Inactivated recombinant plant virus protects dogs from a lethal challenge with canine parvovirus. Vaccine. 2001; 19(27); 3661-3670. [PubMed: 11395200].
  3. Wiki: Canine parvovirus: Canine parvovirus [http://en.wikipedia.org/wiki/Canine_parvovirus]

Caprine herpesvirus type 1 (CpHV-1)

  1. Donofrio et al., 2013: Donofrio G, Franceschi V, Lovero A, Capocefalo A, Camero M, Losurdo M, Cavirani S, Marinaro M, Grandolfo E, Buonavoglia C, Tempesta M. Clinical protection of goats against CpHV-1 induced genital disease with a BoHV-4-based vector expressing CpHV-1 gD. PloS one. 2013; 8(1); e52758. [PubMed: 23300989].
  2. Marinaro et al., 2012: Marinaro M, Rezza G, Del Giudice G, Colao V, Tarsitano E, Camero M, Losurdo M, Buonavoglia C, Tempesta M. A caprine herpesvirus 1 vaccine adjuvanted with MF59â„¢ protects against vaginal infection and interferes with the establishment of latency in goats. PloS one. 2012; 7(4); e34913. [PubMed: 22511971].

Chicken Anemia Virus

  1. Merck Vet Manual: Chicken Anemia Virus Infection: Merck Vet Manual: Chicken Anemia Virus Infection [http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/200200.htm]
  2. Sawant et al., 2015: Sawant PM, Dhama K, Rawool DB, Wani MY, Tiwari R, Singh SD, Singh RK. Development of a DNA vaccine for chicken infectious anemia and its immunogenicity studies using high mobility group box 1 protein as a novel immunoadjuvant indicated induction of promising protective immune responses. Vaccine. 2015; 33(2); 333-340. [PubMed: 25448094].
  3. Zhang et al., 2015: Zhang X, Wu B, Liu Y, Chen W, Dai Z, Bi Y, Xie Q. Assessing the efficacy of an inactivated chicken anemia virus vaccine. Vaccine. 2015; 33(16); 1916-1922. [PubMed: 25758933].

chikungunya virus

  1. Brandler et al., 2013: Brandler S, Ruffié C, Combredet C, Brault JB, Najburg V, Prevost MC, Habel A, Tauber E, Desprès P, Tangy F. A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Vaccine. 2013; 31(36); 3718-3725. [PubMed: 23742993].
  2. García-Arriaza et al., 2014: García-Arriaza J, Cepeda V, Hallengärd D, Sorzano CÓ, Kümmerer BM, Liljeström P, Esteban M. A novel poxvirus-based vaccine, MVA-CHIKV, is highly immunogenic and protects mice against chikungunya infection. Journal of virology. 2014; 88(6); 3527-3547. [PubMed: 24403588].
  3. Lam et al., 2015: Lam S, Nyo M, Phuektes P, Yew CW, Tan YJ, Chu JJ. A potent neutralizing IgM mAb targeting the N218 epitope on E2 protein protects against Chikungunya virus pathogenesis. mAbs. 2015; 7(6); 1178-1194. [PubMed: 26305993].
  4. Ramsauer et al., 2015: Ramsauer K, Schwameis M, Firbas C, Müllner M, Putnak RJ, Thomas SJ, Desprès P, Tauber E, Jilma B, Tangy F. Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: a randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial. The Lancet. Infectious diseases. 2015; 15(5); 519-527. [PubMed: 25739878].
  5. Reisinger et al., 2019: Reisinger EC, Tschismarov R, Beubler E, Wiedermann U, Firbas C, Loebermann M, Pfeiffer A, Muellner M, Tauber E, Ramsauer K. Immunogenicity, safety, and tolerability of the measles-vectored chikungunya virus vaccine MV-CHIK: a double-blind, randomised, placebo-controlled and active-controlled phase 2 trial. Lancet (London, England). 2019; 392(10165); 2718-2727. [PubMed: 30409443].
  6. Rossi et al., 2019: Rossi SL, Comer JE, Wang E, Azar SR, Lawrence WS, Plante JA, Ramsauer K, Schrauf S, Weaver SC. Immunogenicity and Efficacy of a Measles Virus-Vectored Chikungunya Vaccine in Nonhuman Primates. The Journal of infectious diseases. 2019; 220(5); 735-742. [PubMed: 31053842].
  7. Wang et al., 2011: Wang D, Suhrbier A, Penn-Nicholson A, Woraratanadharm J, Gardner J, Luo M, Le TT, Anraku I, Sakalian M, Einfeld D, Dong JY. A complex adenovirus vaccine against chikungunya virus provides complete protection against viraemia and arthritis. Vaccine. 2011; 29(15); 2803-2809. [PubMed: 21320541].

Chlamydia muridarum

  1. Faludi et al., 2009: Faludi I, Burian K, Csanadi A, Miczak A, Lu X, Kakkar VV, Gonczol E, Endresz V. Adjuvant modulation of the immune response of mice against the LcrE protein of Chlamydophila pneumoniae. International journal of medical microbiology : IJMM. 2009; 299(7); 520-528. [PubMed: 19451031].
  2. McNeilly et al., 2007: McNeilly CL, Beagley KW, Moore RJ, Haring V, Timms P, Hafner LM. Expression library immunization confers partial protection against Chlamydia muridarum genital infection. Vaccine. 2007; 25(14); 2643-2655. [PubMed: 17239501].
  3. Mosolygó et al., 2014: Mosolygó T, Szabó AM, Balogh EP, Faludi I, Virók DP, Endrész V, Samu A, Krenács T, Burián K. Protection promoted by pGP3 or pGP4 against Chlamydia muridarum is mediated by CD4(+) cells in C57BL/6N mice. Vaccine. 2014; 32(40); 5228-5233. [PubMed: 25077421].
  4. Skelding et al., 2006: Skelding KA, Hickey DK, Horvat JC, Bao S, Roberts KG, Finnie JM, Hansbro PM, Beagley KW. Comparison of intranasal and transcutaneous immunization for induction of protective immunity against Chlamydia muridarum respiratory tract infection. Vaccine. 2006; 24(3); 355-366. [PubMed: 16153755].
  5. Tifrea et al., 2016: Tifrea DF, Barta ML, Pal S, Hefty PS, de la Maza LM. Computational modeling of TC0583 as a putative component of the Chlamydia muridarum V-type ATP synthase complex and assessment of its protective capabilities as a vaccine antigen. Microbes and infection. 2016; 18(4); 245-253. [PubMed: 26706820].
  6. Wang et al., 2009: Wang J, Chen L, Chen F, Zhang X, Zhang Y, Baseman J, Perdue S, Yeh IT, Shain R, Holland M, Bailey R, Mabey D, Yu P, Zhong G. A chlamydial type III-secreted effector protein (Tarp) is predominantly recognized by antibodies from humans infected with Chlamydia trachomatis and induces protective immunity against upper genital tract pathologies in mice. Vaccine. 2009; 27(22); 2967-2980. [PubMed: 19428908].
  7. Wiki: Chlamydia muridarum: Chlamydia muridarum [http://en.wikipedia.org/wiki/Chlamydia_muridarum]
  8. Yu et al., 2009: Yu H, Jiang X, Shen C, Karunakaran KP, Brunham RC. Novel Chlamydia muridarum T cell antigens induce protective immunity against lung and genital tract infection in murine models. Journal of immunology (Baltimore, Md. : 1950). 2009; 182(3); 1602-1608. [PubMed: 19155509].
  9. Yu et al., 2009: Yu H, Jiang X, Shen C, Karunakaran KP, Brunham RC. Novel Chlamydia muridarum T cell antigens induce protective immunity against lung and genital tract infection in murine models. Journal of immunology (Baltimore, Md. : 1950). 2009; 182(3); 1602-1608. [PubMed: 19155509].
  10. Yu et al., 2010: Yu H, Jiang X, Shen C, Karunakaran KP, Jiang J, Rosin NL, Brunham RC. Chlamydia muridarum T-cell antigens formulated with the adjuvant DDA/TDB induce immunity against infection that correlates with a high frequency of gamma interferon (IFN-gamma)/tumor necrosis factor alpha and IFN-gamma/interleukin-17 double-positive CD4+ T cells. Infection and immunity. 2010; 78(5); 2272-2282. [PubMed: 20231405].
  11. Yu et al., 2014: Yu H, Karunakaran KP, Jiang X, Brunham RC. Evaluation of a multisubunit recombinant polymorphic membrane protein and major outer membrane protein T cell vaccine against Chlamydia muridarum genital infection in three strains of mice. Vaccine. 2014; 32(36); 4672-4680. [PubMed: 24992718].

Chlamydia trachomatis

  1. Bartolini et al., 2013: Bartolini E, Ianni E, Frigimelica E, Petracca R, Galli G, Berlanda Scorza F, Norais N, Laera D, Giusti F, Pierleoni A, Donati M, Cevenini R, Finco O, Grandi G, Grifantini R. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro. Journal of extracellular vesicles. 2013; 2; . [PubMed: 24009891].
  2. Chen et al., 1998: Chen I, Finn TM, Yanqing L, Guoming Q, Rappuoli R, Pizza M. A recombinant live attenuated strain of Vibrio cholerae induces immunity against tetanus toxin and Bordetella pertussis tracheal colonization factor. Infection and immunity. 1998; 66(4); 1648-1653. [PubMed: 9529093].
  3. Darville and Hiltke, 2010: Darville T, Hiltke TJ. Pathogenesis of genital tract disease due to Chlamydia trachomatis. The Journal of infectious diseases. 2010; 201 Suppl 2; S114-125. [PubMed: 20524234].
  4. Eko et al., 2011: Eko FO, Okenu DN, Singh UP, He Q, Black C, Igietseme JU. Evaluation of a broadly protective Chlamydia-cholera combination vaccine candidate. Vaccine. 2011; 29(21); 3802-3810. [PubMed: 21421002].
  5. Gervassi et al., 2004: Gervassi AL, Grabstein KH, Probst P, Hess B, Alderson MR, Fling SP. Human CD8+ T cells recognize the 60-kDa cysteine-rich outer membrane protein from Chlamydia trachomatis. Journal of immunology (Baltimore, Md. : 1950). 2004; 173(11); 6905-6913. [PubMed: 15557186].
  6. Goodall et al., 2001: Goodall JC, Yeo G, Huang M, Raggiaschi R, Gaston JS. Identification of Chlamydia trachomatis antigens recognized by human CD4+ T lymphocytes by screening an expression library. European journal of immunology. 2001; 31(5); 1513-1522. [PubMed: 11465108].
  7. Jiang et al., 2017: Jiang P, Cai Y, Chen J, Ye X, Mao S, Zhu S, Xue X, Chen S, Zhang L. Evaluation of tandem Chlamydia trachomatis MOMP multi-epitopes vaccine in BALB/c mice model. Vaccine. 2017; 35(23); 3096-3103. [PubMed: 28456528].
  8. Macmillan et al., 2007: Macmillan L, Ifere GO, He Q, Igietseme JU, Kellar KL, Okenu DM, Eko FO. A recombinant multivalent combination vaccine protects against Chlamydia and genital herpes. FEMS immunology and medical microbiology. 2007; 49(1); 46-55. [PubMed: 17094789].
  9. Paes et al., 2016: Paes W, Brown N, Brzozowski AM, Coler R, Reed S, Carter D, Bland M, Kaye PM, Lacey CJN. Recombinant polymorphic membrane protein D in combination with a novel, second-generation lipid adjuvant protects against intra-vaginal Chlamydia trachomatis infection in mice. Vaccine. 2016; 34(35); 4123-4131. [PubMed: 27389169].
  10. Pal et al., 1997: Pal S, Theodor I, Peterson EM, de la Maza LM. Immunization with an acellular vaccine consisting of the outer membrane complex of Chlamydia trachomatis induces protection against a genital challenge. Infection and immunity. 1997; 65(8); 3361-3369. [PubMed: 9234798].
  11. Patel et al., 2014: Patel AL, Mishra PK, Sachdev D, Chaudhary U, Patton DL, Saluja D. Seroprevalence of antibodies against Pkn1, a novel potential immunogen, in Chlamydia trachomatis-infected Macaca nemestrina and human patients. BioMed research international. 2014; 2014; 245483. [PubMed: 25032212].
  12. Schautteet et al., 2011: Schautteet K, Stuyven E, Beeckman DS, Van Acker S, Carlon M, Chiers K, Cox E, Vanrompay D. Protection of pigs against Chlamydia trachomatis challenge by administration of a MOMP-based DNA vaccine in the vaginal mucosa. Vaccine. 2011; 29(7); 1399-1407. [PubMed: 21195805].
  13. Skwor et al., 2010: Skwor T, Kandel RP, Basravi S, Khan A, Sharma B, Dean D. Characterization of humoral immune responses to chlamydial HSP60, CPAF, and CT795 in inflammatory and severe trachoma. Investigative ophthalmology & visual science. 2010; 51(10); 5128-5136. [PubMed: 20463311].
  14. Starnbach et al., 2003: Starnbach MN, Loomis WP, Ovendale P, Regan D, Hess B, Alderson MR, Fling SP. An inclusion membrane protein from Chlamydia trachomatis enters the MHC class I pathway and stimulates a CD8+ T cell response. Journal of immunology (Baltimore, Md. : 1950). 2003; 171(9); 4742-4749. [PubMed: 14568950].
  15. Tsai et al., 2007: Tsai PY, Hsu MC, Huang CT, Li SY. Human antibody and antigen response to IncA antibody of Chlamydia trachomatis. International journal of immunopathology and pharmacology. 2007; 20(1); 156-161. [PubMed: 17346439].
  16. Wang et al., 2009: Wang J, Chen L, Chen F, Zhang X, Zhang Y, Baseman J, Perdue S, Yeh IT, Shain R, Holland M, Bailey R, Mabey D, Yu P, Zhong G. A chlamydial type III-secreted effector protein (Tarp) is predominantly recognized by antibodies from humans infected with Chlamydia trachomatis and induces protective immunity against upper genital tract pathologies in mice. Vaccine. 2009; 27(22); 2967-2980. [PubMed: 19428908].
  17. Zhong et al., 1993: Zhong G, Toth I, Reid R, Brunham RC. Immunogenicity evaluation of a lipidic amino acid-based synthetic peptide vaccine for Chlamydia trachomatis. Journal of immunology (Baltimore, Md. : 1950). 1993; 151(7); 3728-3736. [PubMed: 7690812].

Chlamydophila abortus

  1. Bandholtz et al., 2002: Bandholtz L, Kreuger MR, Svanholm C, Wigzell H, Rottenberg ME. Adjuvant modulation of the immune responses and the outcome of infection with Chlamydia pneumoniae. Clinical and experimental immunology. 2002; 130(3); 393-403. [PubMed: 12452828].
  2. Chalmers et al., 1997: Chalmers WS, Simpson J, Lee SJ, Baxendale W. Use of a live chlamydial vaccine to prevent ovine enzootic abortion. The Veterinary record. 1997; 141(3); 63-67. [PubMed: 9257434].
  3. Héchard et al., 2002: Héchard C, Grépinet O, Rodolakis A. Protection evaluation against Chlamydophila abortus challenge by DNA vaccination with a dnaK-encoding plasmid in pregnant and non-pregnant mice. Veterinary research. 2002; 33(3); 313-326. [PubMed: 12056482].
  4. Héchard et al., 2003: Héchard C, Grépinet O, Rodolakis A. Evaluation of protection against Chlamydophila abortus challenge after DNA immunization with the major outer-membrane protein-encoding gene in pregnant and non-pregnant mice. Journal of medical microbiology. 2003; 52(Pt 1); 35-40. [PubMed: 12488563].
  5. Héchard et al., 2004: Héchard C, Grépinet O, Rodolakis A. Molecular cloning of the Chlamydophila abortus groEL gene and evaluation of its protective efficacy in a murine model by genetic vaccination. Journal of medical microbiology. 2004; 53(Pt 9); 861-868. [PubMed: 15314192].
  6. Stemke-Hale et al., 2005: Stemke-Hale K, Kaltenboeck B, DeGraves FJ, Sykes KF, Huang J, Bu CH, Johnston SA. Screening the whole genome of a pathogen in vivo for individual protective antigens. Vaccine. 2005; 23(23); 3016-3025. [PubMed: 15811648].
  7. Wiki: Chlamydophila abortus: Chlamydophila abortus [http://en.wikipedia.org/wiki/Chlamydophila_abortus]

Chlamydophila pneumoniae

  1. Atanu et al., 2013: Atanu FO, Oviedo-Orta E, Watson KA. A novel transport mechanism for MOMP in Chlamydophila pneumoniae and its putative role in immune-therapy. PloS one. 2013; 8(4); e61139. [PubMed: 23637791].
  2. Faludi and Szabó, 2011: Faludi I, Szabó ÁM. Vaccination with DNA vector expressing chlamydial low calcium response protein E (LcrE) against Chlamydophila pneumoniae infection. Acta microbiologica et immunologica Hungarica. 2011; 58(2); 123-134. [PubMed: 21715282].
  3. Faludi et al., 2009: Faludi I, Burian K, Csanadi A, Miczak A, Lu X, Kakkar VV, Gonczol E, Endresz V. Adjuvant modulation of the immune response of mice against the LcrE protein of Chlamydophila pneumoniae. International journal of medical microbiology : IJMM. 2009; 299(7); 520-528. [PubMed: 19451031].
  4. Finco et al., 2005: Finco O, Bonci A, Agnusdei M, Scarselli M, Petracca R, Norais N, Ferrari G, Garaguso I, Donati M, Sambri V, Cevenini R, Ratti G, Grandi G. Identification of new potential vaccine candidates against Chlamydia pneumoniae by multiple screenings. Vaccine. 2005; 23(9); 1178-1188. [PubMed: 15629361].
  5. Li et al., 2006: Li D, Borovkov A, Vaglenov A, Wang C, Kim T, Gao D, Sykes KF, Kaltenboeck B. Mouse model of respiratory Chlamydia pneumoniae infection for a genomic screen of subunit vaccine candidates. Vaccine. 2006; 24(15); 2917-2927. [PubMed: 16434129].
  6. Lu et al., 2012: Lu X, Xia M, Endresz V, Faludi I, Szabo A, Gonczol E, Mundkur L, Chen D, Kakkar V. Impact of multiple antigenic epitopes from ApoB100, hHSP60 and Chlamydophila pneumoniae on atherosclerotic lesion development in Apob(tm2Sgy)Ldlr(tm1Her)J mice. Atherosclerosis. 2012; 225(1); 56-68. [PubMed: 22959702].
  7. Penttilä et al., 2000: Penttilä T, Vuola JM, Puurula V, Anttila M, Sarvas M, Rautonen N, Mäkelä PH, Puolakkainen M. Immunity to Chlamydia pneumoniae induced by vaccination with DNA vectors expressing a cytoplasmic protein (Hsp60) or outer membrane proteins (MOMP and Omp2). Vaccine. 2000; 19(9-10); 1256-1265. [PubMed: 11137265].
  8. Svanholm et al., 2000: Svanholm C, Bandholtz L, Castaños-Velez E, Wigzell H, Rottenberg ME. Protective DNA immunization against Chlamydia pneumoniae. Scandinavian journal of immunology. 2000; 51(4); 345-353. [PubMed: 10736106].
  9. Tammiruusu et al., 2007: Tammiruusu A, Penttilä T, Lahesmaa R, Sarvas M, Puolakkainen M, Vuola JM. Intranasal administration of chlamydial outer protein N (CopN) induces protection against pulmonary Chlamydia pneumoniae infection in a mouse model. Vaccine. 2007; 25(2); 283-290. [PubMed: 16949182].
  10. Tammiruusu et al., 2007: Tammiruusu A, Penttilä T, Lahesmaa R, Sarvas M, Puolakkainen M, Vuola JM. Intranasal administration of chlamydial outer protein N (CopN) induces protection against pulmonary Chlamydia pneumoniae infection in a mouse model. Vaccine. 2007; 25(2); 283-290. [PubMed: 16949182].
  11. Wiki: Chlamydophila pneumoniae: Chlamydophila pneumoniae [http://en.wikipedia.org/wiki/Chlamydophila_pneumoniae]

Chlamydophila psittaci

  1. Harkinezhad et al., 2009: Harkinezhad T, Schautteet K, Vanrompay D. Protection of budgerigars (Melopsittacus undulatus) against Chlamydophila psittaci challenge by DNA vaccination. Veterinary research. 2009; 40(6); 61. [PubMed: 19640395].
  2. Verminnen et al., 2010: Verminnen K, Beeckman DS, Sanders NN, De Smedt S, Vanrompay DC. Vaccination of turkeys against Chlamydophila psittaci through optimised DNA formulation and administration. Vaccine. 2010; 28(18); 3095-3105. [PubMed: 20199760].
  3. Wiki: Chlamydophila psittaci: Chlamydophila psittaci [http://en.wikipedia.org/wiki/Chlamydophila_psittaci]
  4. Zhang et al., 2009: Zhang X, Yuan Z, Duan Q, Zhu H, Yu H, Wang Q. Mucosal immunity in mice induced by orally administered transgenic rice. Vaccine. 2009; 27(10); 1596-1600. [PubMed: 19146896].
  5. Zhang et al., 2013: Zhang XX, Yu H, Wang XH, Li XZ, Zhu YP, Li HX, Luo SJ, Yuan ZG. Protective efficacy against Chlamydophila psittaci by oral immunization based on transgenic rice expressing MOMP in mice. Vaccine. 2013; 31(4); 698-703. [PubMed: 23196208].

Classical swine fever virus

  1. Fernandez-Sainz et al., 2009: Fernandez-Sainz I, Holinka LG, Gavrilov BK, Prarat MV, Gladue D, Lu Z, Jia W, Risatti GR, Borca MV. Alteration of the N-linked glycosylation condition in E1 glycoprotein of Classical Swine Fever Virus strain Brescia alters virulence in swine. Virology. 2009; 386(1); 210-216. [PubMed: 19203774].
  2. Hammond et al., 2001: Hammond JM, Jansen ES, Morrissy CJ, Goff WV, Meehan GC, Williamson MM, Lenghaus C, Sproat KW, Andrew ME, Coupar BE, Johnson MA. A prime-boost vaccination strategy using naked DNA followed by recombinant porcine adenovirus protects pigs from classical swine fever. Veterinary microbiology. 2001; 80(2); 101-119. [PubMed: 11295331].
  3. Hulst et al., 1993: Hulst MM, Westra DF, Wensvoort G, Moormann RJ. Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera. Journal of virology. 1993; 67(9); 5435-5442. [PubMed: 8350404].
  4. König et al., 1995: König M, Lengsfeld T, Pauly T, Stark R, Thiel HJ. Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins. Journal of virology. 1995; 69(10); 6479-6486. [PubMed: 7666549].
  5. Lin et al., 2009: Lin GJ, Liu TY, Tseng YY, Chen ZW, You CC, Hsuan SL, Chien MS, Huang C. Yeast-expressed classical swine fever virus glycoprotein E2 induces a protective immune response. Veterinary microbiology. 2009; 139(3-4); 369-374. [PubMed: 19625145].
  6. Maurer et al., 2005: Maurer R, Stettler P, Ruggli N, Hofmann MA, Tratschin JD. Oronasal vaccination with classical swine fever virus (CSFV) replicon particles with either partial or complete deletion of the E2 gene induces partial protection against lethal challenge with highly virulent CSFV. Vaccine. 2005; 23(25); 3318-3328. [PubMed: 15837238].
  7. Moormann et al., 2000: Moormann RJ, Bouma A, Kramps JA, Terpstra C, De Smit HJ. Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Veterinary microbiology. 2000; 73(2-3); 209-219. [PubMed: 10785329].
  8. Sainz et al., 2008: Sainz IF, Holinka LG, Lu Z, Risatti GR, Borca MV. Removal of a N-linked glycosylation site of classical swine fever virus strain Brescia Erns glycoprotein affects virulence in swine. Virology. 2008; 370(1); 122-129. [PubMed: 17904607].
  9. Sun et al., 2013: Sun Y, Tian DY, Li S, Meng QL, Zhao BB, Li Y, Li D, Ling LJ, Liao YJ, Qiu HJ. Comprehensive evaluation of the adenovirus/alphavirus-replicon chimeric vector-based vaccine rAdV-SFV-E2 against classical swine fever. Vaccine. 2013; 31(3); 538-544. [PubMed: 23153441].
  10. Tarradas et al., 2011: Tarradas J, ÃÂlvarez B, Fraile L, Rosell R, Muñoz M, Galindo-Cardiel I, Domingo M, Dominguez J, Ezquerra A, Sobrino F, Ganges L. Immunomodulatory effect of swine CCL20 chemokine in DNA vaccination against CSFV. Veterinary immunology and immunopathology. 2011; 142(3-4); 243-251. [PubMed: 21684019].
  11. van, 2003: van Aarle P. Suitability of an E2 subunit vaccine of classical swine fever in combination with the E(rns)-marker-test for eradication through vaccination. Developments in biologicals. 2003; 114; 193-200. [PubMed: 14677689].
  12. Voigt et al., 2007: Voigt H, Merant C, Wienhold D, Braun A, Hutet E, Le Potier MF, Saalmüller A, Pfaff E, Büttner M. Efficient priming against classical swine fever with a safe glycoprotein E2 expressing Orf virus recombinant (ORFV VrV-E2). Vaccine. 2007; 25(31); 5915-5926. [PubMed: 17600594].
  13. Wan et al., 2010: Wan C, Yi L, Yang Z, Yang J, Shao H, Zhang C, Pan Z. The Toll-like receptor adaptor molecule TRIF enhances DNA vaccination against classical swine fever. Veterinary immunology and immunopathology. 2010; 137(1-2); 47-53. [PubMed: 20466439].
  14. Wang et al., 2008: Wang YH, Li PH, Zhang MT, Zhang YM. [Construction of recombinant fowlpox virus expressing E0 gene of classical swine fever virus shimen strain and the animal immunity experiment]. Bing du xue bao = Chinese journal of virology / [bian ji, Bing du xue bao bian ji wei yuan hui]. 2008; 24(1); 59-63. [PubMed: 18320824].
  15. Wiki: Classical swine fever: Classical swine fever [http://en.wikipedia.org/wiki/Classical_swine_fever_virus]

Clostridium botulinum

  1. Arimitsu et al., 2004: Arimitsu H, Lee JC, Sakaguchi Y, Hayakawa Y, Hayashi M, Nakaura M, Takai H, Lin SN, Mukamoto M, Murphy T, Oguma K. Vaccination with recombinant whole heavy chain fragments of Clostridium botulinum Type C and D neurotoxins. Clinical and diagnostic laboratory immunology. 2004 May; 11(3); 496-502. [PubMed: 15138174].
  2. Arnon et al., 2001: Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O'Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K. Botulinum toxin as a biological weapon: medical and public health management. JAMA : the journal of the American Medical Association. 2001 Feb 28; 285(8); 1059-70. [PubMed: 11209178 ].
  3. Baldwin et al., 2005: Baldwin MR, Tepp WH, Pier CL, Bradshaw M, Ho M, Wilson BA, Fritz RB, Johnson EA, Barbieri JT. Characterization of the antibody response to the receptor binding domain of botulinum neurotoxin serotypes A and E. Infection and immunity. 2005; 73(10); 6998-7005. [PubMed: 16177380].
  4. Bennett et al., 2003: Bennett AM, Perkins SD, Holley JL. DNA vaccination protects against botulinum neurotoxin type F. Vaccine. 2003 Jul 4; 21(23); 3110-7. [PubMed: 12804837 ].
  5. Boles et al., 2006: Boles J, West M, Montgomery V, Tammariello R, Pitt ML, Gibbs P, Smith L, LeClaire RD. Recombinant C fragment of botulinum neurotoxin B serotype (rBoNTB (HC)) immune response and protection in the rhesus monkey. Toxicon : official journal of the International Society on Toxinology. 2006 Jun 15; 47(8); 877-84. [PubMed: 16730042 ].
  6. Byrne et al., 1998: Byrne MP, Smith TJ, Montgomery VA, Smith LA. Purification, potency, and efficacy of the botulinum neurotoxin type A binding domain from Pichia pastoris as a recombinant vaccine candidate. Infection and immunity. 1998 Oct; 66(10); 4817-22. [PubMed: 9746584].
  7. Byrne et al., 2000: Byrne MP, Smith LA. Development of vaccines for prevention of botulism. Biochimie. 2000 Sep-Oct; 82(9-10); 955-66. [PubMed: 11086225].
  8. Clayton et al., 1995: Clayton MA, Clayton JM, Brown DR, Middlebrook JL. Protective vaccination with a recombinant fragment of Clostridium botulinum neurotoxin serotype A expressed from a synthetic gene in Escherichia coli. Infection and immunity. 1995; 63(7); 2738-2742. [PubMed: 7790092].
  9. Gil et al., 2013: Gil LA, da Cunha CE, Moreira GM, Salvarani FM, Assis RA, Lobato FC, Mendonça M, Dellagostin OA, Conceição FR. Production and evaluation of a recombinant chimeric vaccine against clostridium botulinum neurotoxin types C and D. PloS one. 2013; 8(7); e69692. [PubMed: 23936080].
  10. Jathoul et al., 2004: Jathoul AP, Holley JL, Garmory HS. Efficacy of DNA vaccines expressing the type F botulinum toxin Hc fragment using different promoters. Vaccine. 2004 Sep 28; 22(29-30); 3942-6. [PubMed: 15364442].
  11. Johnson, 1997: Johnson S. Antibody responses to clostridial infection in humans. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 1997 Sep; 25 Suppl 2; S173-7. [PubMed: 9310668].
  12. Lee et al., 2001: Lee JS, Pushko P, Parker MD, Dertzbaugh MT, Smith LA, Smith JF. Candidate vaccine against botulinum neurotoxin serotype A derived from a Venezuelan equine encephalitis virus vector system. Infection and immunity. 2001; 69(9); 5709-5715. [PubMed: 11500447].
  13. Lee et al., 2006: Lee JS, Groebner JL, Hadjipanayis AG, Negley DL, Schmaljohn AL, Welkos SL, Smith LA, Smith JF. Multiagent vaccines vectored by Venezuelan equine encephalitis virus replicon elicits immune responses to Marburg virus and protection against anthrax and botulinum neurotoxin in mice. Vaccine. 2006 Nov 17; 24(47-48); 6886-92. [PubMed: 16828936].
  14. Lohenry et al., 2006: Lohenry K, Foulke K. Botulism: rare, but deadly. JAAPA : official journal of the American Academy of Physician Assistants. 2006 Nov; 19(11); 41-5. [PubMed: 17124790 ].
  15. Martinez et al., 1999: Martinez R, Wobeser G. Immunization of ducks for type C botulism. Journal of wildlife diseases. 1999 Oct; 35(4); 710-5. [PubMed: 10574530 ].
  16. NCBI: Entrez Gene [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene]
  17. PathPort: Virginia Bioinformatics Institute [http://pathport.vbi.vt.edu/pathinfo/pathogens/Clostridium_botulinum_Info.shtml]
  18. Prisilla et al., 2016: Prisilla A, Prathiviraj R, Sasikala R, Chellapandi P. Structural constraints-based evaluation of immunogenic avirulent toxins from Clostridium botulinum C2 and C3 toxins as subunit vaccines. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2016; 44; 17-27. [PubMed: 27320793].
  19. Rubin et al., 1982: Rubin LG, Dezfulian M, Yolken RH. Serum antibody response to Clostridium botulinum toxin in infant botulism. Journal of clinical microbiology. 1982 Oct; 16(4); 770-1. [PubMed: 7153329].
  20. Siegel, 1988: Siegel LS. Human immune response to botulinum pentavalent (ABCDE) toxoid determined by a neutralization test and by an enzyme-linked immunosorbent assay. Journal of clinical microbiology. 1988 Nov; 26(11); 2351-6. [PubMed: 3235662].
  21. Webb et al., 2009: Webb RP, Smith TJ, Wright P, Brown J, Smith LA. Production of catalytically inactive BoNT/A1 holoprotein and comparison with BoNT/A1 subunit vaccines against toxin subtypes A1, A2, and A3. Vaccine. 2009; 27(33); 4490-4497. [PubMed: 19450643].
  22. Webb et al., 2017: Webb RP, Smith TJ, Smith LA, Wright PM, Guernieri RL, Brown JL, Skerry JC. Recombinant Botulinum Neurotoxin Hc Subunit (BoNT Hc) and Catalytically Inactive Clostridium botulinum Holoproteins (ciBoNT HPs) as Vaccine Candidates for the Prevention of Botulism. Toxins. 2017; 9(9); . [PubMed: 28869522].
  23. Yu et al., 2008: Yu YZ, Li N, Wang RL, Zhu HQ, Wang S, Yu WY, Sun ZW. Evaluation of a recombinant Hc of Clostridium botulinum neurotoxin serotype F as an effective subunit vaccine. Clinical and vaccine immunology : CVI. 2008; 15(12); 1819-1823. [PubMed: 18845829].
  24. Yu et al., 2009: Yu Y, Yu J, Li N, Wang S, Yu W, Sun Z. Individual and bivalent vaccines against botulinum neurotoxin serotypes A and B using DNA-based Semliki Forest virus vectors. Vaccine. 2009; 27(44); 6148-6153. [PubMed: 19712769].
  25. Zeng et al., 2007: Zeng M, Xu Q, Elias M, Pichichero ME, Simpson LL, Smith LA. Protective immunity against botulism provided by a single dose vaccination with an adenovirus-vectored vaccine. Vaccine. 2007; 25(43); 7540-7548. [PubMed: 17897756].

Clostridium perfringens

  1. Songer, 2010: Songer JG. Clostridia as agents of zoonotic disease. Veterinary microbiology. 2010; 140(3-4); 399-404. [PubMed: 19682805].
  2. Wiki: C. perfringens: Wiki: C. perfringens [http://en.wikipedia.org/wiki/C._perfringens]

Clostridium tetani

  1. Anderson et al., 1997: Anderson R, Gao XM, Papakonstantinopoulou A, Fairweather N, Roberts M, Dougan G. Immunization of mice with DNA encoding fragment C of tetanus toxin. Vaccine. 1997; 15(8); 827-829. [PubMed: 9234525].
  2. Brook, 2008: Brook I. Current concepts in the management of Clostridium tetani infection. Expert review of anti-infective therapy. 2008; 6(3); 327-336. [PubMed: 18588497].
  3. FDA Boostrix: FDA Boostrix [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm172925.htm]
  4. FDA Decavac: FDA Decavac [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094067.htm]
  5. FDA Infanrix: FDA Infanrix [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm101568.htm]
  6. FDA: Adacel: FDA: Adacel [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm172481.htm]
  7. FDA: DAPTACEL: FDA: DAPTACEL [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm101572.htm]
  8. FDA: dttadLB: FDA: Diphtheria and Tetanus Toxoids Adsorbed USP [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094012.htm]
  9. FDA: KINRIX: FDA: KINRIX [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM241453.pdf]
  10. FDA: Pediarix: FDA: Pediarix [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm146759.htm]
  11. FDA: Pentacel: FDA: Pentacel Vaccine [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM109810.pdf]
  12. FDA: Quadracel: FDA: Quadracel vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM439903.pdf]
  13. FDA: Tenivac: FDA: Tenivac [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM152826.pdf]
  14. FDA: Tetanus and Diptheria Toxoids Adsorbed: FDA: Tetanus and Diphtheria Toxoids Adsorbed vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM164127.pdf]
  15. FDA: Tetanus Toxoid: FDA: Tetanus Toxoid [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm166863.htm]
  16. FDA: Tetanus Toxoid Adsorbed by Sanofi Pasteur Inc: FDA: Tetanus Toxoid Adsorbed by Sanofi Pasteur Inc [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094068.htm]
  17. FDA: Tripedia: FDA: Tripedia [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm101565.htm]
  18. GSK: Boostrix-Polio: GSK: Boostrix-Polio vaccine information [https://ca.gsk.com/media/589683/boostrix-polio.pdf]
  19. GSK: Infanrix-hexa: GSK: Infanrix-hexa vaccine information [http://ca.gsk.com/media/537989/infanrix-hexa.pdf]
  20. GSK: Infanrix-IPV: GSK: Infanrix-IPV vaccine information [http://ca.gsk.com/media/590851/infanrix-ipv.pdf]
  21. GSK: Infanrix-IPV/Hib: GSK: Infanrix-IPV/Hib vaccine information [http://ca.gsk.com/media/590970/infanrix-ipv-hib.pdf]
  22. Gupta and Siber, 1994: Gupta RK, Siber GR. Comparison of adjuvant activities of aluminium phosphate, calcium phosphate and stearyl tyrosine for tetanus toxoid. Biologicals : journal of the International Association of Biological Standardization. 1994; 22(1); 53-63. [PubMed: 8068314].
  23. He et al., 2000: He HJ, He ZY, Shi HJ, Zhu W, Yang GZ, Yuan QS, Wu XF. Cloning and Expression of Tetanus Toxin Fragment C in E.coli. Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica. 2000; 32(4); 322-326. [PubMed: 12075415].
  24. Medaglini et al., 2001: Medaglini D, Ciabattini A, Spinosa MR, Maggi T, Marcotte H, Oggioni MR, Pozzi G. Immunization with recombinant Streptococcus gordonii expressing tetanus toxin fragment C confers protection from lethal challenge in mice. Vaccine. 2001; 19(15-16); 1931-1939. [PubMed: 11228363].
  25. Product Monograph: Adacel-Polio: Product Monograph: Adacel-Polio vaccine information [https://www.vaccineshoppecanada.com/document.cfm?file=adacel-polio_e.pdf]
  26. Product Monograph: Pediacel: Product Monograph: Pediacel vaccine information [https://www.vaccineshoppecanada.com/document.cfm?file=Pediacel_E.pdf]
  27. Product Monograph: Td Adsorbed: Product Monograph: Td Adsorbed vaccine information [https://www.vaccineshoppecanada.com/document.cfm?file=td_adsorbed_e.pdf]
  28. Product Monograph: Td Polio Adsorbed: Product Monograph: Td Polio Adsorbed vaccine information [https://www.vaccineshoppecanada.com/document.cfm?file=td_polio_adsorbed_e.pdf]

Coccidioides spp.

  1. Awasthi et al., 2005: Awasthi S, Awasthi V, Magee DM, Coalson JJ. Efficacy of antigen 2/proline-rich antigen cDNA-transfected dendritic cells in immunization of mice against Coccidioides posadasii. Journal of immunology (Baltimore, Md. : 1950). 2005; 175(6); 3900-3906. [PubMed: 16148136].
  2. Delgado et al., 2003: Delgado N, Xue J, Yu JJ, Hung CY, Cole GT. A recombinant beta-1,3-glucanosyltransferase homolog of Coccidioides posadasii protects mice against coccidioidomycosis. Infection and immunity. 2003; 71(6); 3010-3019. [PubMed: 12761077].
  3. Hung et al., 2007: Hung CY, Xue J, Cole GT. Virulence mechanisms of coccidioides. Annals of the New York Academy of Sciences. 2007; 1111; 225-235. [PubMed: 17513466].
  4. Ivey et al., 2003: Ivey FD, Magee DM, Woitaske MD, Johnston SA, Cox RA. Identification of a protective antigen of Coccidioides immitis by expression library immunization. Vaccine. 2003; 21(27-30); 4359-4367. [PubMed: 14505918].
  5. Kirkland et al., 1998: Kirkland TN, Thomas PW, Finley F, Cole GT. Immunogenicity of a 48-kilodalton recombinant T-cell-reactive protein of Coccidioides immitis. Infection and immunity. 1998; 66(2); 424-431. [PubMed: 9453590].
  6. Li et al., 2001: Li K, Yu JJ, Hung CY, Lehmann PF, Cole GT. Recombinant urease and urease DNA of Coccidioides immitis elicit an immunoprotective response against coccidioidomycosis in mice. Infection and immunity. 2001; 69(5); 2878-2887. [PubMed: 11292702].
  7. Orsborn et al., 2006: Orsborn KI, Shubitz LF, Peng T, Kellner EM, Orbach MJ, Haynes PA, Galgiani JN. Protein expression profiling of Coccidioides posadasii by two-dimensional differential in-gel electrophoresis and evaluation of a newly recognized peroxisomal matrix protein as a recombinant vaccine candidate. Infection and immunity. 2006; 74(3); 1865-1872. [PubMed: 16495561].
  8. Tarcha et al., 2006a: Tarcha EJ, Basrur V, Hung CY, Gardner MJ, Cole GT. A recombinant aspartyl protease of Coccidioides posadasii induces protection against pulmonary coccidioidomycosis in mice. Infection and immunity. 2006; 74(1); 516-527. [PubMed: 16369008].
  9. Tarcha et al., 2006b: Tarcha EJ, Basrur V, Hung CY, Gardner MJ, Cole GT. Multivalent recombinant protein vaccine against coccidioidomycosis. Infection and immunity. 2006; 74(10); 5802-5813. [PubMed: 16988258].

Corynebacterium diphtheriae

  1. Adacel: Adacel [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm172481.htm]
  2. Boostrix: Boostrix [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm172925.htm]
  3. CDC: Diphtheria: CDC: Diphtheria general information [http://www.cdc.gov/ncidod/dbmd/diseaseinfo/diptheria_t.htm]
  4. FDA: DAPTACEL: FDA: DAPTACEL Vaccine [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm101572.htm]
  5. FDA: Decavac: Decavac [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094067.htm]
  6. FDA: Diphtheria and Tetanus Toxoids Adsorbed: FDA: Diphtheria and Tetanus Toxoids Adsorbed [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM142732.pdf]
  7. FDA: INFANRIX: FDA: INFANRIX [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm101568.htm]
  8. FDA: KINRIX: FDA: KINRIX Vaccine [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM241453.pdf]
  9. FDA: Menactra: FDA: Menactra Vaccine [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm176044.htm]
  10. FDA: Pediarix: FDA: Pediarix [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm146759.htm]
  11. FDA: Pentacel: FDA: Pentacel Vaccine [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM109810.pdf]
  12. FDA: Quadracel: FDA: Quadracel vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM439903.pdf]
  13. FDA: TENIVAC: FDA: TENIVAC vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM152826.pdf]
  14. FDA: Tetanus and Diphtheria Toxoids Adsorbed: FDA: Tetanus and Diphtheria Toxoids Adsorbed vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM164127.pdf]
  15. FDA: Tripedia: FDA: Tripedia [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm101565.htm]
  16. GSK: Boostrix-Polio: GSK:Boostrix-Polio vaccine information [https://ca.gsk.com/media/589683/boostrix-polio.pdf]
  17. GSK: Infanrix-hexa: GSK: Infanrix-hexa vaccine information [http://ca.gsk.com/media/537989/infanrix-hexa.pdf]
  18. GSK: Infanrix-IPV: GSK: Infanrix-IPV vaccine information [http://ca.gsk.com/media/590851/infanrix-ipv.pdf]
  19. GSK: Infanrix-IPV/Hib: GSK: Infanrix-IPV/Hib vaccine information [http://ca.gsk.com/media/590970/infanrix-ipv-hib.pdf]
  20. Holmes, 2000: Holmes RK. Biology and molecular epidemiology of diphtheria toxin and the tox gene. The Journal of infectious diseases. 2000; 181 Suppl 1; S156-167. [PubMed: 10657208].
  21. Khrustaleva et al., 2015: Khrustaleva TA, Khrustalev VV, Barkovsky EV, Kolodkina VL, Astapov AA. Structural and antigenic features of the synthetic SF23 peptide corresponding to the receptor binding fragment of diphtheria toxin. Molecular immunology. 2015; 63(2); 235-244. [PubMed: 25062832].
  22. MicrobeWiki: C. diphtheriae: MicrobeWiki: C. diphtheriae [http://microbewiki.kenyon.edu/index.php/Corynebacterium_diphtheriae]
  23. Product Monograph: Adacel-Polio: Product Monograph: Adacel-Polio vaccine information [https://www.vaccineshoppecanada.com/document.cfm?file=adacel-polio_e.pdf]
  24. Product Monograph: Pediacel: Product Monograph: Pediacel vaccine information [https://www.vaccineshoppecanada.com/document.cfm?file=Pediacel_E.pdf]
  25. Product Monograph: Td Adsorbed: Product Monograph: Td Adsorbed vaccine information [https://www.vaccineshoppecanada.com/document.cfm?file=td_adsorbed_e.pdf]
  26. Product Monograph: Td Polio Adsorbed: Product Monograph: Td Polio Adsorbed vaccine information [https://www.vaccineshoppecanada.com/document.cfm?file=td_polio_adsorbed_e.pdf]
  27. Textbook of Bacteriology: Diphtheria [http://textbookofbacteriology.net/diphtheria]

Corynebacterium pseudotuberculosis

  1. Hodgson et al., 1994: Hodgson AL, Tachedjian M, Corner LA, Radford AJ. Protection of sheep against caseous lymphadenitis by use of a single oral dose of live recombinant Corynebacterium pseudotuberculosis. Infection and immunity. 1994; 62(12); 5275-5280. [PubMed: 7960105].
  2. Umer et al., 2020: Umer M, Jesse FFA, Mohammed Saleh WM, Chung ELT, Haron AW, Saharee AA, Mohd Lila MA, Ariff AB, Mohammad K, Sharif A. Histopathological changes of reproductive organs of goats immunized with Corynebacterium pseudotuberculosis killed vaccine. Microbial pathogenesis. 2020; 149; 104539. [PubMed: 33007431].

Coxiella burnetii

  1. Ackland et al., 1994: Ackland JR, Worswick DA, Marmion BP. Vaccine prophylaxis of Q fever. A follow-up study of the efficacy of Q-Vax (CSL) 1985-1990. The Medical journal of Australia. 1994; 160(11); 704-708. [PubMed: 8202006 ].
  2. Akporiaye and Baca, 1983: Akporiaye ET, Baca OG. Superoxide anion production and superoxide dismutase and catalase activities in Coxiella burnetii. Journal of bacteriology. 1983; 154(1); 520-523. [PubMed: 6300038 ].
  3. Arricau-Bouvery et al., 2005: Arricau-Bouvery N, Souriau A, Bodier C, Dufour P, Rousset E, Rodolakis A. Effect of vaccination with phase I and phase II Coxiella burnetii vaccines in pregnant goats. Vaccine. 2005; 23(35); 4392-4402. [PubMed: 16005747 ].
  4. Bohai Wen,et al 2015: . Rickettsia rickettsii outer membrane protein YbgF induces protective immunity in C3H/HeN mice. . ; ; . [PubMed: 25714655].
  5. Brennan et al., 2004: Brennan RE, Russell K, Zhang G, Samuel JE. Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections. Infection and immunity. 2004; 72(11); 6666-6675. [PubMed: 15501800].
  6. Burton et al., 1971: Burton PR, Kordova N, Paretsky D. Electron microscopic studies of the rickettsia Coxiella burneti: entry, lysosomal response, and fate of rickettsial DNA in L-cells. Canadian journal of microbiology. 1971; 17(2); 143-150. [PubMed: 4100953].
  7. Burton et al., 1978: Burton PR, Stueckemann J, Welsh RM, Paretsky D. Some ultrastructural effects of persistent infections by the rickettsia Coxiella burnetii in mouse L cells and green monkey kidney (Vero) cells. Infection and immunity. 1978; 21(2); 556-566. [PubMed: 99368].
  8. Capo et al., 1999: Capo C, Lindberg FP, Meconi S, Zaffran Y, Tardei G, Brown EJ, Raoult D, Mege JL. Subversion of monocyte functions by coxiella burnetii: impairment of the cross-talk between alphavbeta3 integrin and CR3. Journal of immunology (Baltimore, Md. : 1950). 1999; 163(11); 6078-6085. [PubMed: 10570297].
  9. Fries et al., 1993: Fries LF, Waag DM, Williams JC. Safety and immunogenicity in human volunteers of a chloroform-methanol residue vaccine for Q fever. Infection and immunity. 1993; 61(4); 1251-1258. [PubMed: 8454328 ].
  10. Hackstadt and Williams, 1981: Hackstadt T, Williams JC. Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proceedings of the National Academy of Sciences of the United States of America. 1981; 78(5); 3240-3244. [PubMed: 6942430].
  11. Hackstadt et al., 1985: Hackstadt T, Peacock MG, Hitchcock PJ, Cole RL. Lipopolysaccharide variation in Coxiella burnetti: intrastrain heterogeneity in structure and antigenicity. Infection and immunity. 1985; 48(2); 359-365. [PubMed: 3988339 ].
  12. Jiao et al., 2014: Jiao J, Xiong X, Qi Y, Gong W, Duan C, Yang X, Wen B. Serological characterization of surface-exposed proteins of Coxiella burnetii. Microbiology (Reading, England). 2014; 160(Pt 12); 2718-2731. [PubMed: 25298245].
  13. Johnson et al., 1977: Johnson JW, McLeod CG, Stookey JL, Higbee GA, Pedersen CE Jr. Lesions in guinea pigs infected with Coxiella burnetii strain M-44. The Journal of infectious diseases. 1977; 135(6); 995-998. [PubMed: 864292 ].
  14. Langley et al., 2003: Langley JM, Marrie TJ, Leblanc JC, Almudevar A, Resch L, Raoult D. Coxiella burnetii seropositivity in parturient women is associated with adverse pregnancy outcomes. American journal of obstetrics and gynecology. 2003; 189(1); 228-232. [PubMed: 12861167 ].
  15. Li et al., 2005: Li Q, Niu D, Wen B, Chen M, Qiu L, Zhang J. Protective immunity against Q fever induced with a recombinant P1 antigen fused with HspB of Coxiella burnetii. Annals of the New York Academy of Sciences. 2005; 1063; 130-142. [PubMed: 16481504 ].
  16. Mege et al., 1997: Mege JL, Maurin M, Capo C, Raoult D. Coxiella burnetii: the 'query' fever bacterium. A model of immune subversion by a strictly intracellular microorganism. FEMS microbiology reviews. 1997; 19(4); 209-217. [PubMed: 9167255 ].
  17. Ohkuma and Poole, 1978: Ohkuma S, Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proceedings of the National Academy of Sciences of the United States of America. 1978; 75(7); 3327-3331. [PubMed: 28524].
  18. Ormsbee, 1969: Ormsbee RA. Rickettsiae (as organisms). Annual review of microbiology. 1969; 23; 275-292. [PubMed: 4899075].
  19. Palmer et al., 1983: Palmer NC, Kierstead M, Key DW, Williams JC, Peacock MG, Vellend H. Placentitis and Abortion in Goats and Sheep in Ontario Caused by Coxiella burnetii. The Canadian veterinary journal. La revue veterinaire canadienne. 1983; 24(2); 60-61. [PubMed: 17422227].
  20. Robinson and Hasty, 1974: Robinson DM, Hasty SE. Production of a potent vaccine from the attenuated M-44 strain of Coxiella burneti. Applied microbiology. 1974; 27(4); 777-783. [PubMed: 4825980 ].
  21. Shannon et al., 2005: Shannon JG, Howe D, Heinzen RA. Virulent Coxiella burnetii does not activate human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(24); 8722-8727. [PubMed: 15939879 ].
  22. Stoker and Marmion, 1955: Stoker MG, Marmion BP. The spread of Q fever from animals to man; the natural history of a rickettsial disease. Bulletin of the World Health Organization. 1955; 13(5); 781-806. [PubMed: 13284558 ].
  23. Tigertt et al., 1961: Tigertt WD, Beneson AS, Gochenour WS. Airborne Q fever. Bacteriological reviews. 1961; 25; 285-293. [PubMed: 13921201].
  24. Turco et al., 1984: Turco J, Thompson HA, Winkler HH. Interferon-gamma inhibits growth of Coxiella burnetii in mouse fibroblasts. Infection and immunity. 1984; 45(3); 781-783. [PubMed: 6432701 ].
  25. Waag et al., 1997: Waag DM, England MJ, Pitt ML. Comparative efficacy of a Coxiella burnetii chloroform:methanol residue (CMR) vaccine and a licensed cellular vaccine (Q-Vax) in rodents challenged by aerosol. Vaccine. 1997; 15(16); 1779-1783. [PubMed: 9364683 ].
  26. Waag et al., 2002: Waag DM, England MJ, Tammariello RF, Byrne WR, Gibbs P, Banfield CM, Pitt ML. Comparative efficacy and immunogenicity of Q fever chloroform:methanol residue (CMR) and phase I cellular (Q-Vax) vaccines in cynomolgus monkeys challenged by aerosol. Vaccine. 2002; 20(19-20); 2623-2634. [PubMed: 12057622 ].
  27. Waag, 2007: Waag DM. Coxiella burnetii: Host and bacterial responses to infection. Vaccine. 2007; 25(42); 7288-7295. [PubMed: 17825460 ].
  28. Waldhalm et al., 1978: Waldhalm DG, Stoenner HG, Simmons RE, Thomas LA. Abortion associated with Coxiella burnetii infection in dairy goats. Journal of the American Veterinary Medical Association. 1978; 173(12); 1580-1581. [PubMed: 748297 ].
  29. Wang et al., 2013: Wang X, Xiong X, Graves S, Stenos J, Wen B. Protein array of Coxiella burnetii probed with Q fever sera. Science China. Life sciences. 2013; 56(5); 453-459. [PubMed: 23633077].
  30. Williams and Cantrell, 1982: Williams JC, Cantrell JL. Biological and immunological properties of Coxiella burnetii vaccines in C57BL/10ScN endotoxin-nonresponder mice. Infection and immunity. 1982; 35(3); 1091-1102. [PubMed: 7068212].
  31. Williams and Thompson, 1991: Williams JC, Thompson HA. Methods for isolation, amplification, and purification of Coxiella burnetii. 73-115. Q Fever: The Biology of Coxiella burnetii. 1991. CRC Press, .
  32. Williams et al., 1990: Williams JC, Hoover TA, Waag DM, Banerjee-Bhatnagar N, Bolt CR, Scott GH. Antigenic structure of Coxiella burnetii. A comparison of lipopolysaccharide and protein antigens as vaccines against Q fever. Annals of the New York Academy of Sciences. 1990; 590; 370-380. [PubMed: 2378463].
  33. Xiong et al., 2014: Xiong X, Qi Y, Jiao J, Gong W, Duan C, Wen B. Exploratory study on Th1 epitope-induced protective immunity against Coxiella burnetii infection. PloS one. 2014; 9(1); e87206. [PubMed: 24498044].
  34. Zamboni et al., 2004: Zamboni DS, Campos MA, Torrecilhas AC, Kiss K, Samuel JE, Golenbock DT, Lauw FN, Roy CR, Almeida IC, Gazzinelli RT. Stimulation of toll-like receptor 2 by Coxiella burnetii is required for macrophage production of pro-inflammatory cytokines and resistance to infection. The Journal of biological chemistry. 2004; 279(52); 54405-54415. [PubMed: 15485838 ].

Crimean-Congo Haemorrhagic Fever (CCHF)

  1. Appelberg et al., 2022: Appelberg S, John L, Pardi N, Végvári Ã, Bereczky S, Ahlén G, Monteil V, Abdurahman S, Mikaeloff F, Beattie M, Tam Y, Sällberg M, Neogi U, Weissman D, Mirazimi A. Nucleoside-Modified mRNA Vaccines Protect IFNAR(-/-) Mice against Crimean-Congo Hemorrhagic Fever Virus Infection. Journal of virology. 2022; 96(3); e0156821. [PubMed: 34817199].
  2. Berber et al., 2021: Berber E, Çanakoğlu N, Tonbak Ş, Ozdarendeli A. Development of a protective inactivated vaccine against Crimean-Congo hemorrhagic fever infection. Heliyon. 2021; 7(10); e08161. [PubMed: 34703927].
  3. Buttigieg et al., 2014: Buttigieg KR, Dowall SD, Findlay-Wilson S, Miloszewska A, Rayner E, Hewson R, Carroll MW. A novel vaccine against Crimean-Congo Haemorrhagic Fever protects 100% of animals against lethal challenge in a mouse model. PloS one. 2014; 9(3); e91516. [PubMed: 24621656].
  4. Hawman et al., 2021: Hawman DW, Ahlén G, Appelberg KS, Meade-White K, Hanley PW, Scott D, Monteil V, Devignot S, Okumura A, Weber F, Feldmann H, Sällberg M, Mirazimi A. A DNA-based vaccine protects against Crimean-Congo haemorrhagic fever virus disease in a Cynomolgus macaque model. Nature microbiology. 2021; 6(2); 187-195. [PubMed: 33257849].
  5. Spengler et al., 2019: Spengler JR, Welch SR, Scholte FEM, Coleman-McCray JD, Harmon JR, Nichol ST, Bergeron É, Spiropoulou CF. Heterologous protection against Crimean-Congo hemorrhagic fever in mice after a single dose of replicon particle vaccine. Antiviral research. 2019; 170; 104573. [PubMed: 31377243].
  6. York, 2021: York A. A vaccine for Crimean-Congo haemorrhagic fever?. Nature reviews. Microbiology. 2021; 19(2); 75. [PubMed: 33303929].

Cryptosporidium parvum

  1. Askari et al., 2016: Askari N, Shayan P, Mokhber-Dezfouli MR, Ebrahimzadeh E, Lotfollahzadeh S, Rostami A, Amininia N, Ragh MJ. Evaluation of recombinant P23 protein as a vaccine for passive immunization of newborn calves against Cryptosporidium parvum. Parasite immunology. 2016; 38(5); 282-289. [PubMed: 27012710].
  2. Benitez et al., 2011: Benitez A, Priest JW, Ehigiator HN, McNair N, Mead JR. Evaluation of DNA encoding acidic ribosomal protein P2 of Cryptosporidium parvum as a potential vaccine candidate for cryptosporidiosis. Vaccine. 2011; 29(49); 9239-9245. [PubMed: 21968447].
  3. Bode et al., 2011: Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Expert review of vaccines. 2011; 10(4); 499-511. [PubMed: 21506647].
  4. Dubé et al., 2020: Dubé JY, McIntosh F, Zarruk JG, David S, Nigou J, Behr MA. Synthetic mycobacterial molecular patterns partially complete Freund's adjuvant. Scientific reports. 2020; 10(1); 5874. [PubMed: 32246076].
  5. Ehigiator et al., 2007: Ehigiator HN, Romagnoli P, Priest JW, Secor WE, Mead JR. Induction of murine immune responses by DNA encoding a 23-kDa antigen of Cryptosporidium parvum. Parasitology research. 2007; 101(4); 943-950. [PubMed: 17487508].
  6. Jenkins et al., 1999: Jenkins MC, O'Brien C, Trout J, Guidry A, Fayer R. Hyperimmune bovine colostrum specific for recombinant Cryptosporidium parvum antigen confers partial protection against cryptosporidiosis in immunosuppressed adult mice. Vaccine. 1999; 17(19); 2453-2460. [PubMed: 10392628].
  7. Liu et al., 2010: Liu K, Zai D, Zhang D, Wei Q, Han G, Gao H, Huang B. Divalent Cp15-23 vaccine enhances immune responses and protection against Cryptosporidium parvum infection. Parasite immunology. 2010; 32(5); 335-344. [PubMed: 20500662].
  8. Roche et al., 2013: Roche JK, Rojo AL, Costa LB, Smeltz R, Manque P, Woehlbier U, Bartelt L, Galen J, Buck G, Guerrant RL. Intranasal vaccination in mice with an attenuated Salmonella enterica Serovar 908htr A expressing Cp15 of Cryptosporidium: impact of malnutrition with preservation of cytokine secretion. Vaccine. 2013; 31(6); 912-918. [PubMed: 23246541].
  9. Vignali and Kuchroo, 2012: Vignali DA, Kuchroo VK. IL-12 family cytokines: immunological playmakers. Nature immunology. 2012; 13(8); 722-728. [PubMed: 22814351].
  10. Wang et al., 2010: Wang C, Luo J, Amer S, Guo Y, Hu Y, Lu Y, Wang H, Duan M, He H. Multivalent DNA vaccine induces protective immune responses and enhanced resistance against Cryptosporidium parvum infection. Vaccine. 2010; 29(2); 323-328. [PubMed: 21029808].
  11. Wiki: Cryptosporidium parvum: Cryptosporidium parvum [http://en.wikipedia.org/wiki/Cryptosporidium_parvum]
  12. Yao et al., 2007: Yao L, Yin J, Zhang X, Liu Q, Li J, Chen L, Zhao Y, Gong P, Liu C. Cryptosporidium parvum: identification of a new surface adhesion protein on sporozoite and oocyst by screening of a phage-display cDNA library. Experimental parasitology. 2007; 115(4); 333-338. [PubMed: 17097085].
  13. Yu et al., 2010: Yu Q, Li J, Zhang X, Gong P, Zhang G, Li S, Wang H. Induction of immune responses in mice by a DNA vaccine encoding Cryptosporidium parvum Cp12 and Cp21 and its effect against homologous oocyst challenge. Veterinary parasitology. 2010; 172(1-2); 1-7. [PubMed: 20541869].

Dengue Virus

  1. Azevedo et al., 2011: Azevedo AS, Yamamura AM, Freire MS, Trindade GF, Bonaldo M, Galler R, Alves AM. DNA vaccines against dengue virus type 2 based on truncate envelope protein or its domain III. PloS one. 2011; 6(7); e20528. [PubMed: 21779317].
  2. Biswal et al., 2019: Biswal S, Reynales H, Saez-Llorens X, Lopez P, Borja-Tabora C, Kosalaraksa P, Sirivichayakul C, Watanaveeradej V, Rivera L, Espinoza F, Fernando L, Dietze R, Luz K, Venâncio da Cunha R, Jimeno J, López-Medina E, Borkowski A, Brose M, Rauscher M, LeFevre I, Bizjajeva S, Bravo L, Wallace D. Efficacy of a Tetravalent Dengue Vaccine in Healthy Children and Adolescents. The New England journal of medicine. 2019; 381(21); 2009-2019. [PubMed: 31693803].
  3. Bray and Lai, 1991: Bray M, Lai CJ. Dengue virus premembrane and membrane proteins elicit a protective immune response. Virology. 1991; 185(1); 505-508. [PubMed: 1926792].
  4. Chen et al., 2007: Chen L, Ewing D, Subramanian H, Block K, Rayner J, Alterson KD, Sedegah M, Hayes C, Porter K, Raviprakash K. A heterologous DNA prime-Venezuelan equine encephalitis virus replicon particle boost dengue vaccine regimen affords complete protection from virus challenge in cynomolgus macaques. Journal of virology. 2007; 81(21); 11634-11639. [PubMed: 17715224].
  5. Costa et al., 2006: Costa SM, Paes MV, Barreto DF, Pinhão AT, Barth OM, Queiroz JL, Armôa GR, Freire MS, Alves AM. Protection against dengue type 2 virus induced in mice immunized with a DNA plasmid encoding the non-structural 1 (NS1) gene fused to the tissue plasminogen activator signal sequence. Vaccine. 2006; 24(2); 195-205. [PubMed: 16122850].
  6. Delenda et al., 1994: Delenda C, Frenkiel MP, Deubel V. Protective efficacy in mice of a secreted form of recombinant dengue-2 virus envelope protein produced in baculovirus infected insect cells. Archives of virology. 1994; 139(1-2); 197-207. [PubMed: 7826210].
  7. Hadinegoro et al., 2015: Hadinegoro SR, Arredondo-García JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, Muhammad Ismail HI, Reynales H, Limkittikul K, Rivera-Medina DM, Tran HN, Bouckenooghe A, Chansinghakul D, Cortés M, Fanouillere K, Forrat R, Frago C, Gailhardou S, Jackson N, Noriega F, Plennevaux E, Wartel TA, Zambrano B, Saville M. Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. The New England journal of medicine. 2015; 373(13); 1195-1206. [PubMed: 26214039].
  8. Hou et al., 2022: Hou R, Tomalin LE, Silva JP, Kim-Schulze S, Whitehead SS, Fernandez-Sesma A, Durbin AP, Suárez-Fariñas M. The innate immune response following multivalent dengue vaccination and implications for protection against dengue challenge. JCI insight. 2022; 7(11); . [PubMed: 35511431].
  9. Konishi et al., 2000: Konishi E, Yamaoka M, Kurane I, Mason PW. A DNA vaccine expressing dengue type 2 virus premembrane and envelope genes induces neutralizing antibody and memory B cells in mice. Vaccine. 2000; 18(11-12); 1133-1139. [PubMed: 10590335].
  10. Konishi et al., 2003: Konishi E, Terazawa A, Fujii A. Evidence for antigen production in muscles by dengue and Japanese encephalitis DNA vaccines and a relation to their immunogenicity in mice. Vaccine. 2003; 21(25-26); 3713-3720. [PubMed: 12922102].
  11. Konishi et al., 2006: Konishi E, Kosugi S, Imoto J. Dengue tetravalent DNA vaccine inducing neutralizing antibody and anamnestic responses to four serotypes in mice. Vaccine. 2006; 24(12); 2200-2207. [PubMed: 16316713].
  12. Lima et al., 2011: Lima DM, de Paula SO, França RF, Palma PV, Morais FR, Gomes-Ruiz AC, de Aquino MT, da Fonseca BA. A DNA vaccine candidate encoding the structural prM/E proteins elicits a strong immune response and protects mice against dengue-4 virus infection. Vaccine. 2011; 29(4); 831-838. [PubMed: 21115054].
  13. Lin et al., 2020: Lin TH, Chen HW, Hsiao YJ, Yan JY, Chiang CY, Chen MY, Hu HM, Wu SH, Pan CH. Immunodomination of Serotype-Specific CD4+ T-Cell Epitopes Contributed to the Biased Immune Responses Induced by a Tetravalent Measles-Vectored Dengue Vaccine. Frontiers in immunology. 2020; 11; 546. [PubMed: 32300346].
  14. Liu et al., 2006: Liu WT, Lin WT, Tsai CC, Chuang CC, Liao CL, Lin HC, Hung YW, Huang SS, Liang CC, Hsu HL, Wang HJ, Liu YT. Enhanced immune response by amphotericin B following NS1 protein prime-oral recombinant Salmonella vaccine boost vaccination protects mice from dengue virus challenge. Vaccine. 2006; 24(31-32); 5852-5861. [PubMed: 16759760].
  15. Manoff et al., 2019: Manoff SB, Sausser M, Falk Russell A, Martin J, Radley D, Hyatt D, Roberts CC, Lickliter J, Krishnarajah J, Bett A, Dubey S, Finn T, Coller BA. Immunogenicity and safety of an investigational tetravalent recombinant subunit vaccine for dengue: results of a Phase I randomized clinical trial in flavivirus-naïve adults. Human vaccines & immunotherapeutics. 2019; 15(9); 2195-2204. [PubMed: 30427741].
  16. Martina et al., 2009: Martina BE, Koraka P, Osterhaus AD. Dengue virus pathogenesis: an integrated view. Clinical microbiology reviews. 2009; 22(4); 564-581. [PubMed: 19822889].
  17. Porter et al., 1998: Porter KR, Kochel TJ, Wu SJ, Raviprakash K, Phillips I, Hayes CG. Protective efficacy of a dengue 2 DNA vaccine in mice and the effect of CpG immuno-stimulatory motifs on antibody responses. Archives of virology. 1998; 143(5); 997-991003. [PubMed: 9645204].
  18. Ramanathan et al., 2009: Ramanathan MP, Kuo YC, Selling BH, Li Q, Sardesai NY, Kim JJ, Weiner DB. Development of a novel DNA SynCon tetravalent dengue vaccine that elicits immune responses against four serotypes. Vaccine. 2009; 27(46); 6444-6453. [PubMed: 19580892].
  19. Raviprakash et al., 2000: Raviprakash K, Porter KR, Kochel TJ, Ewing D, Simmons M, Phillips I, Murphy GS, Weiss WR, Hayes CG. Dengue virus type 1 DNA vaccine induces protective immune responses in rhesus macaques. The Journal of general virology. 2000; 81(Pt 7); 1659-1667. [PubMed: 10859370].
  20. Raviprakash et al., 2001: Raviprakash K, Marques E, Ewing D, Lu Y, Phillips I, Porter KR, Kochel TJ, August TJ, Hayes CG, Murphy GS. Synergistic neutralizing antibody response to a dengue virus type 2 DNA vaccine by incorporation of lysosome-associated membrane protein sequences and use of plasmid expressing GM-CSF. Virology. 2001; 290(1); 74-82. [PubMed: 11883007].
  21. Raviprakash et al., 2006: Raviprakash K, Apt D, Brinkman A, Skinner C, Yang S, Dawes G, Ewing D, Wu SJ, Bass S, Punnonen J, Porter K. A chimeric tetravalent dengue DNA vaccine elicits neutralizing antibody to all four virus serotypes in rhesus macaques. Virology. 2006; 353(1); 166-173. [PubMed: 16814355].
  22. Raviprakash et al., 2008: Raviprakash K, Wang D, Ewing D, Holman DH, Block K, Woraratanadharm J, Chen L, Hayes C, Dong JY, Porter K. A tetravalent dengue vaccine based on a complex adenovirus vector provides significant protection in rhesus monkeys against all four serotypes of dengue virus. Journal of virology. 2008; 82(14); 6927-6934. [PubMed: 18480438].
  23. Thomas and Yoon, 2019: Thomas SJ, Yoon IK. A review of Dengvaxia®: development to deployment. Human vaccines & immunotherapeutics. 2019; 15(10); 2295-2314. [PubMed: 31589551].
  24. Torres-Flores et al., 2022: Torres-Flores JM, Reyes-Sandoval A, Salazar MI. Dengue Vaccines: An Update. BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy. 2022; 36(3); 325-336. [PubMed: 35608749].
  25. Villar et al., 2015: Villar L, Dayan GH, Arredondo-García JL, Rivera DM, Cunha R, Deseda C, Reynales H, Costa MS, Morales-Ramírez JO, Carrasquilla G, Rey LC, Dietze R, Luz K, Rivas E, Miranda Montoya MC, Cortés Supelano M, Zambrano B, Langevin E, Boaz M, Tornieporth N, Saville M, Noriega F. Efficacy of a tetravalent dengue vaccine in children in Latin America. The New England journal of medicine. 2015; 372(2); 113-123. [PubMed: 25365753].
  26. Wollner et al., 2021: Wollner CJ, Richner M, Hassert MA, Pinto AK, Brien JD, Richner JM. A Dengue Virus Serotype 1 mRNA-LNP Vaccine Elicits Protective Immune Responses. Journal of virology. 2021; 95(12); . [PubMed: 33762420].
  27. Wu et al., 2003: Wu SF, Liao CL, Lin YL, Yeh CT, Chen LK, Huang YF, Chou HY, Huang JL, Shaio MF, Sytwu HK. Evaluation of protective efficacy and immune mechanisms of using a non-structural protein NS1 in DNA vaccine against dengue 2 virus in mice. Vaccine. 2003; 21(25-26); 3919-3929. [PubMed: 12922127].

Diabetes

  1. Balasa et al., 2001: Balasa B, Boehm BO, Fortnagel A, Karges W, Van Gunst K, Jung N, Camacho SA, Webb SR, Sarvetnick N. Vaccination with glutamic acid decarboxylase plasmid DNA protects mice from spontaneous autoimmune diabetes and B7/CD28 costimulation circumvents that protection. Clinical immunology (Orlando, Fla.). 2001; 99(2); 241-252. [PubMed: 11318596].
  2. Bot et al., 2001: Bot A, Smith D, Bot S, Hughes A, Wolfe T, Wang L, Woods C, von Herrath M. Plasmid vaccination with insulin B chain prevents autoimmune diabetes in nonobese diabetic mice. Journal of immunology (Baltimore, Md. : 1950). 2001; 167(5); 2950-2955. [PubMed: 11509644].
  3. CDC - Basics about Diabetes: Basics about Diabetes [http://www.cdc.gov/diabetes/consumer/learn.htm]
  4. Filippova et al., 2001: Filippova M, Liu J, Escher A. Effects of plasmid DNA injection on cyclophosphamide-accelerated diabetes in NOD mice. DNA and cell biology. 2001; 20(3); 175-181. [PubMed: 11313020].
  5. Li et al., 2004: Li AF, Hough J, Henderson D, Escher A. Co-delivery of pro-apoptotic BAX with a DNA vaccine recruits dendritic cells and promotes efficacy of autoimmune diabetes prevention in mice. Vaccine. 2004; 22(13-14); 1751-1763. [PubMed: 15068859].
  6. Solvason et al., 2008: Solvason N, Lou YP, Peters W, Evans E, Martinez J, Ramirez U, Ocampo A, Yun R, Ahmad S, Liu E, Yu L, Eisenbarth G, Leviten M, Steinman L, Garren H. Improved efficacy of a tolerizing DNA vaccine for reversal of hyperglycemia through enhancement of gene expression and localization to intracellular sites. Journal of immunology (Baltimore, Md. : 1950). 2008; 181(12); 8298-8307. [PubMed: 19050246].
  7. Tisch et al., 2001: Tisch R, Wang B, Weaver DJ, Liu B, Bui T, Arthos J, Serreze DV. Antigen-specific mediated suppression of beta cell autoimmunity by plasmid DNA vaccination. Journal of immunology (Baltimore, Md. : 1950). 2001; 166(3); 2122-2132. [PubMed: 11160264].
  8. Urbanek-Ruiz et al., 2001: Urbanek-Ruiz I, Ruiz PJ, Paragas V, Garren H, Steinman L, Fathman CG. Immunization with DNA encoding an immunodominant peptide of insulin prevents diabetes in NOD mice. Clinical immunology (Orlando, Fla.). 2001; 100(2); 164-171. [PubMed: 11465945].
  9. Wolfe et al., 2002: Wolfe T, Bot A, Hughes A, Möhrle U, Rodrigo E, Jaume JC, Baekkeskov S, von Herrath M. Endogenous expression levels of autoantigens influence success or failure of DNA immunizations to prevent type 1 diabetes: addition of IL-4 increases safety. European journal of immunology. 2002; 32(1); 113-121. [PubMed: 11754351].

Duck enteritis virus

  1. Field Manual of Wildlife Diseases: Field Manual of Wildlife Diseases- Chapter 16 Duck Plague [http://www.nwhc.usgs.gov/publications/field_manual/chapter_16.pdf]
  2. Yang et al., 2021: Yang F, Liu P, Li X, Liu R, Gao L, Cui H, Zhang Y, Liu C, Qi X, Pan Q, Liu A, Wang X, Gao Y, Li K. Recombinant Duck Enteritis Virus-Vectored Bivalent Vaccine Effectively Protects Against Duck Hepatitis A Virus Infection in Ducks. Frontiers in microbiology. 2021; 12; 813010. [PubMed: 35003046].

Duck hepatitis virus 1

  1. Ding and Zhang, 2007: Ding C, Zhang D. Molecular analysis of duck hepatitis virus type 1. Virology. 2007; 361(1); 9-17. [PubMed: 17300822].
  2. Fu et al., 2012: Fu Y, Chen Z, Li C, Liu G. Protective immune responses in ducklings induced by a suicidal DNA vaccine of the VP1 gene of duck hepatitis virus type 1. Veterinary microbiology. 2012; 160(3-4); 314-318. [PubMed: 22819169].
  3. Merck Vet Manual: Duck Viral Hepatitis: Merck Vet Manual: Duck Viral Hepatitis [http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/202100.htm]
  4. Yang et al., 2021: Yang F, Liu P, Li X, Liu R, Gao L, Cui H, Zhang Y, Liu C, Qi X, Pan Q, Liu A, Wang X, Gao Y, Li K. Recombinant Duck Enteritis Virus-Vectored Bivalent Vaccine Effectively Protects Against Duck Hepatitis A Virus Infection in Ducks. Frontiers in microbiology. 2021; 12; 813010. [PubMed: 35003046].

Eastern Equine Encephalitis Virus

  1. Ma et al., 2014: Ma J, Wang H, Zheng X, Xue X, Wang B, Wu H, Zhang K, Fan S, Wang T, Li N, Zhao Y, Gao Y, Yang S, Xia X. CpG/Poly (I:C) mixed adjuvant priming enhances the immunogenicity of a DNA vaccine against eastern equine encephalitis virus in mice. International immunopharmacology. 2014; 19(1); 74-80. [PubMed: 24440303].
  2. Roy et al., 2013: Roy CJ, Adams AP, Wang E, Leal G, Seymour RL, Sivasubramani SK, Mega W, Frolov I, Didier PJ, Weaver SC. A chimeric Sindbis-based vaccine protects cynomolgus macaques against a lethal aerosol challenge of eastern equine encephalitis virus. Vaccine. 2013; 31(11); 1464-1470. [PubMed: 23333212].
  3. Wiki: Eastern Equine Encephalitis: Wiki: Eastern Equine Encephalitis Virus [http://en.wikipedia.org/wiki/Eastern_equine_encephalitis_virus]

Ebola virus

  1. Bergren et al., 2018: Bergren NA, Miller MR, Monath TP, Kading RC. Assessment of the ability of V920 recombinant vesicular stomatitis-Zaire ebolavirus vaccine to replicate in relevant arthropod cell cultures and vector species. Human vaccines & immunotherapeutics. 2018; 14(4); 994-991002. [PubMed: 29206076].
  2. Bukreyev et al., 2006: Bukreyev A, Yang L, Zaki SR, Shieh WJ, Rollin PE, Murphy BR, Collins PL, Sanchez A. A single intranasal inoculation with a paramyxovirus-vectored vaccine protects guinea pigs against a lethal-dose Ebola virus challenge. Journal of virology. 2006; 80(5); 2267-2279. [PubMed: 16474134].
  3. Falzarano et al., 2011: Falzarano D, Feldmann F, Grolla A, Leung A, Ebihara H, Strong JE, Marzi A, Takada A, Jones S, Gren J, Geisbert J, Jones SM, Geisbert TW, Feldmann H. Single immunization with a monovalent vesicular stomatitis virus-based vaccine protects nonhuman primates against heterologous challenge with Bundibugyo ebolavirus. The Journal of infectious diseases. 2011; 204 Suppl 3; S1082-1089. [PubMed: 21987745].
  4. Feldmann et al., 2003: Feldmann H, Jones S, Klenk HD, Schnittler HJ. Ebola virus: from discovery to vaccine. Nature reviews. Immunology. 2003 Aug; 3(8); 677-85. [PubMed: 12974482].
  5. Garbutt et al., 2004: Garbutt M, Liebscher R, Wahl-Jensen V, Jones S, Möller P, Wagner R, Volchkov V, Klenk HD, Feldmann H, Ströher U. Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses. Journal of virology. 2004; 78(10); 5458-5465. [PubMed: 15113924].
  6. Garufi et al., 2012: Garufi G, Wang YT, Oh SY, Maier H, Missiakas DM, Schneewind O. Sortase-conjugation generates a capsule vaccine that protects guinea pigs against Bacillus anthracis. Vaccine. 2012; 30(23); 3435-3444. [PubMed: 22449424].
  7. Geisbert et al., 2002: Geisbert TW, Pushko P, Anderson K, Smith J, Davis KJ, Jahrling PB. Evaluation in nonhuman primates of vaccines against Ebola virus. Emerging infectious diseases. 2002 May; 8(5); 503-7. [PubMed: 11996686].
  8. Hensley et al., 2010: Hensley LE, Mulangu S, Asiedu C, Johnson J, Honko AN, Stanley D, Fabozzi G, Nichol ST, Ksiazek TG, Rollin PE, Wahl-Jensen V, Bailey M, Jahrling PB, Roederer M, Koup RA, Sullivan NJ. Demonstration of cross-protective vaccine immunity against an emerging pathogenic Ebolavirus Species. PLoS pathogens. 2010; 6(5); e1000904. [PubMed: 20502688].
  9. Jones et al., 2005: Jones SM, Feldmann H, Ströher U, Geisbert JB, Fernando L, Grolla A, Klenk HD, Sullivan NJ, Volchkov VE, Fritz EA, Daddario KM, Hensley LE, Jahrling PB, Geisbert TW. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nature medicine. 2005; 11(7); 786-790. [PubMed: 15937495].
  10. Kobinger et al., 2006: Kobinger GP, Feldmann H, Zhi Y, Schumer G, Gao G, Feldmann F, Jones S, Wilson JM. Chimpanzee adenovirus vaccine protects against Zaire Ebola virus. Virology. 2006; 346(2); 394-401. [PubMed: 16356525].
  11. Ledgerwood et al., 2017: Ledgerwood JE, DeZure AD, Stanley DA, Coates EE, Novik L, Enama ME, Berkowitz NM, Hu Z, Joshi G, Ploquin A, Sitar S, Gordon IJ, Plummer SA, Holman LA, Hendel CS, Yamshchikov G, Roman F, Nicosia A, Colloca S, Cortese R, Bailer RT, Schwartz RM, Roederer M, Mascola JR, Koup RA, Sullivan NJ, Graham BS. Chimpanzee Adenovirus Vector Ebola Vaccine. The New England journal of medicine. 2017; 376(10); 928-938. [PubMed: 25426834].
  12. Martin et al., 2006: Martin JE, Sullivan NJ, Enama ME, Gordon IJ, Roederer M, Koup RA, Bailer RT, Chakrabarti BK, Bailey MA, Gomez PL, Andrews CA, Moodie Z, Gu L, Stein JA, Nabel GJ, Graham BS. A DNA vaccine for Ebola virus is safe and immunogenic in a phase I clinical trial. Clinical and vaccine immunology : CVI. 2006; 13(11); 1267-1277. [PubMed: 16988008].
  13. Marzi et al., 2011: Marzi A, Ebihara H, Callison J, Groseth A, Williams KJ, Geisbert TW, Feldmann H. Vesicular stomatitis virus-based Ebola vaccines with improved cross-protective efficacy. The Journal of infectious diseases. 2011; 204 Suppl 3; S1066-1074. [PubMed: 21987743].
  14. Melén et al., 2017: Melén K, Kakkola L, He F, Airenne K, Vapalahti O, Karlberg H, Mirazimi A, Julkunen I. Production, purification and immunogenicity of recombinant Ebola virus proteins - A comparison of Freund's adjuvant and adjuvant system 03. Journal of virological methods. 2017; 242; 35-45. [PubMed: 28025125].
  15. O'Brien et al., 2014: O'Brien LM, Stokes MG, Lonsdale SG, Maslowski DR, Smither SJ, Lever MS, Laws TR, Perkins SD. Vaccination with recombinant adenoviruses expressing Ebola virus glycoprotein elicits protection in the interferon alpha/beta receptor knock-out mouse. Virology. 2014; 452-453; 324-333. [PubMed: 24461913].
  16. Planty et al. 2020: Camille Planty 1, Guillaume Chevalier 2, Marie-Ève Duclos 2, Clémentine Chalmey 2, Catherine Thirion-Delalande 2, Cécile Sobry , Ann-Muriel Steff 3, Eric Destexhe 1. Nonclinical safety assessment of repeated administration and biodistribution of ChAd3-EBO-Z Ebola candidate vaccine. PubMed. 2020; ; . [PubMed: 31965598].
  17. Pratt et al., 2010: Pratt WD, Wang D, Nichols DK, Luo M, Woraratanadharm J, Dye JM, Holman DH, Dong JY. Protection of nonhuman primates against two species of Ebola virus infection with a single complex adenovirus vector. Clinical and vaccine immunology : CVI. 2010; 17(4); 572-581. [PubMed: 20181765].
  18. Pushko et al., 2000: Pushko P, Bray M, Ludwig GV, Parker M, Schmaljohn A, Sanchez A, Jahrling PB, Smith JF. Recombinant RNA replicons derived from attenuated Venezuelan equine encephalitis virus protect guinea pigs and mice from Ebola hemorrhagic fever virus. Vaccine. 2000 Aug 15; 19(1); 142-53. [PubMed: 10924796].
  19. Richardson et al., 2009: Richardson JS, Yao MK, Tran KN, Croyle MA, Strong JE, Feldmann H, Kobinger GP. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine. PloS one. 2009; 4(4); e5308. [PubMed: 19390586].
  20. Riemenschneider et al., 2003: Riemenschneider J, Garrison A, Geisbert J, Jahrling P, Hevey M, Negley D, Schmaljohn A, Lee J, Hart MK, Vanderzanden L, Custer D, Bray M, Ruff A, Ivins B, Bassett A, Rossi C, Schmaljohn C. Comparison of individual and combination DNA vaccines for B. anthracis, Ebola virus, Marburg virus and Venezuelan equine encephalitis virus. Vaccine. 2003; 21(25-26); 4071-4080. [PubMed: 12922144].
  21. Sheets et al., 2006: Sheets RL, Stein J, Manetz TS, Duffy C, Nason M, Andrews C, Kong WP, Nabel GJ, Gomez PL. Biodistribution of DNA plasmid vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile virus is similar, without integration, despite differing plasmid backbones or gene inserts. Toxicological sciences : an official journal of the Society of Toxicology. 2006; 91(2); 610-619. [PubMed: 16569729].
  22. Sullivan et al., 2000: Sullivan NJ, Sanchez A, Rollin PE, Yang ZY, Nabel GJ. Development of a preventive vaccine for Ebola virus infection in primates. Nature. 2000 Nov 30; 408(6812); 605-9. [PubMed: 11117750].
  23. Sullivan et al., 2003a: Sullivan N, Yang ZY, Nabel GJ. Ebola virus pathogenesis: implications for vaccines and therapies. Journal of virology. 2003 Sep; 77(18); 9733-7. [PubMed: 12941881].
  24. Sullivan et al., 2003b: Sullivan NJ, Geisbert TW, Geisbert JB, Xu L, Yang ZY, Roederer M, Koup RA, Jahrling PB, Nabel GJ. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature. 2003 Aug 7; 424(6949); 681-4. [PubMed: 12904795].
  25. Sullivan et al., 2006: Sullivan NJ, Geisbert TW, Geisbert JB, Shedlock DJ, Xu L, Lamoreaux L, Custers JH, Popernack PM, Yang ZY, Pau MG, Roederer M, Koup RA, Goudsmit J, Jahrling PB, Nabel GJ. Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified GPs. PLoS medicine. 2006; 3(6); e177. [PubMed: 16683867].
  26. Swenson et al., 2005: Swenson DL, Warfield KL, Negley DL, Schmaljohn A, Aman MJ, Bavari S. Virus-like particles exhibit potential as a pan-filovirus vaccine for both Ebola and Marburg viral infections. Vaccine. 2005; 23(23); 3033-3042. [PubMed: 15811650].
  27. Swenson et al., 2008: Swenson DL, Wang D, Luo M, Warfield KL, Woraratanadharm J, Holman DH, Dong JY, Pratt WD. Vaccine to confer to nonhuman primates complete protection against multistrain Ebola and Marburg virus infections. Clinical and vaccine immunology : CVI. 2008; 15(3); 460-467. [PubMed: 18216185].
  28. Tsuda et al., 2011: Tsuda Y, Caposio P, Parkins CJ, Botto S, Messaoudi I, Cicin-Sain L, Feldmann H, Jarvis MA. A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus. PLoS neglected tropical diseases. 2011; 5(8); e1275. [PubMed: 21858240].
  29. Vanderzanden et al., 1998: Vanderzanden L, Bray M, Fuller D, Roberts T, Custer D, Spik K, Jahrling P, Huggins J, Schmaljohn A, Schmaljohn C. DNA vaccines expressing either the GP or NP genes of Ebola virus protect mice from lethal challenge. Virology. 1998 Jun 20; 246(1); 134-44. [PubMed: 9657001].
  30. Venkatraman et al.: Navin Venkatraman 1, Birahim Pierre Ndiaye 2, Georgina Bowyer 1, Djibril Wade 2, Saranya Sridhar 1, Daniel Wright 1, Jonathan Powlson 1, Ibrahima Ndiaye 2, Siry Dièye 2, Craig Thompson 1, Momar Bakhoum 2, Richard Morter 1, Stefania Capone 3, Mariarosaria Del Sorbo 3, Sophie Jamieson 1, Tommy Rampling 1, Mehreen Datoo 1, Rachel Roberts 1, Ian Poulton 1, Oliver Griffiths 1, W Ripley Ballou 4, François Roman 4, David J M Lewis 5, Alison Lawrie 1, Egeruan Imoukhuede 1, Sarah C Gilbert 1, Tandakha N Dieye 2, Katie J Ewer 1, Souleymane Mboup 2, Adrian V S Hill 1. Safety and Immunogenicity of a Heterologous Prime-Boost Ebola Virus Vaccine Regimen in Healthy Adults in the United Kingdom and Senegal. . 2019; ; . [PubMed: 30407513].
  31. Wang et al., 2006: Wang D, Raja NU, Trubey CM, Juompan LY, Luo M, Woraratanadharm J, Deitz SB, Yu H, Swain BM, Moore KM, Pratt WD, Hart MK, Dong JY. Development of a cAdVax-based bivalent ebola virus vaccine that induces immune responses against both the Sudan and Zaire species of Ebola virus. Journal of virology. 2006; 80(6); 2738-2746. [PubMed: 16501083].
  32. Warfield et al., 2005: Warfield KL, Olinger G, Deal EM, Swenson DL, Bailey M, Negley DL, Hart MK, Bavari S. Induction of humoral and CD8+ T cell responses are required for protection against lethal Ebola virus infection. Journal of immunology (Baltimore, Md. : 1950). 2005; 175(2); 1184-1191. [PubMed: 16002721].
  33. Wilson and Hart, 2001: Wilson JA, Hart MK. Protection from Ebola virus mediated by cytotoxic T lymphocytes specific for the viral nucleoprotein. Journal of virology. 2001; 75(6); 2660-2664. [PubMed: 11222689].
  34. Wilson et al., 2001: Wilson JA, Bray M, Bakken R, Hart MK. Vaccine potential of Ebola virus VP24, VP30, VP35, and VP40 proteins. Virology. 2001 Aug 1; 286(2); 384-90. [PubMed: 11485406].
  35. Wong et al., 2015: Wong G, Richardson JS, Pillet S, Racine T, Patel A, Soule G, Ennis J, Turner J, Qiu X, Kobinger GP. Adenovirus-Vectored Vaccine Provides Postexposure Protection to Ebola Virus-Infected Nonhuman Primates. The Journal of infectious diseases. 2015; 212 Suppl 2(Suppl 2); S379-383. [PubMed: 25957963].
  36. Xu et al., 1998: Xu L, Sanchez A, Yang Z, Zaki SR, Nabel EG, Nichol ST, Nabel GJ. Immunization for Ebola virus infection. Nature medicine. 1998 Jan; 4(1); 37-42. [PubMed: 9427604].

Edwardsiella ictaluri

  1. Microgen: Microgen:Edwardsiella ictaluri [http://microgen.ouhsc.edu/e_ictal/e_ictal_home.htm]
  2. Russo et al., 2009: Russo R, Shoemaker CA, Panangala VS, Klesius PH. In vitro and in vivo interaction of macrophages from vaccinated and non-vaccinated channel catfish (Ictalurus punctatus) to Edwardsiella ictaluri. Fish & shellfish immunology. 2009; 26(3); 543-552. [PubMed: 19233291].
  3. Santander et al., 2011: Santander J, Mitra A, Curtiss R 3rd. Phenotype, virulence and immunogenicity of Edwardsiella ictaluri cyclic adenosine 3',5'-monophosphate receptor protein (Crp) mutants in catfish host. Fish & shellfish immunology. 2011; ; . [PubMed: 22015784].

Edwardsiella tarda

  1. Beck et al., 2017: Beck BR, Lee SH, Kim D, Park JH, Lee HK, Kwon SS, Lee KH, Lee JI, Song SK. A Lactococcus lactis BFE920 feed vaccine expressing a fusion protein composed of the OmpA and FlgD antigens from Edwardsiella tarda was significantly better at protecting olive flounder (Paralichthys olivaceus) from edwardsiellosis than single antigen vaccines. Fish & shellfish immunology. 2017; 68; 19-28. [PubMed: 28687358].
  2. Hu et al., 2012: Hu YH, Dang W, Deng T, Sun L. Edwardsiella tarda DnaK: expression, activity, and the basis for the construction of a bivalent live vaccine against E. tarda and Streptococcus iniae. Fish & shellfish immunology. 2012; 32(4); 616-620. [PubMed: 22281608].
  3. Jiao et al., 2009: Jiao XD, Zhang M, Hu YH, Sun L. Construction and evaluation of DNA vaccines encoding Edwardsiella tarda antigens. Vaccine. 2009; 27(38); 5195-5202. [PubMed: 19596416].
  4. Jiao et al., 2009: Jiao XD, Dang W, Hu YH, Sun L. Identification and immunoprotective analysis of an in vivo-induced Edwardsiella tarda antigen. Fish & shellfish immunology. 2009; 27(5); 633-638. [PubMed: 19706328].
  5. Jiao et al., 2010: Jiao XD, Zhang M, Cheng S, Sun L. Analysis of Edwardsiella tarda DegP, a serine protease and a protective immunogen. Fish & shellfish immunology. 2010; 28(4); 672-677. [PubMed: 20060910].
  6. Jiao et al., 2010: Jiao XD, Hu YH, Sun L. Dissection and localization of the immunostimulating domain of Edwardsiella tarda FliC. Vaccine. 2010; 28(34); 5635-5640. [PubMed: 20580470].
  7. Jin et al., 2012: Jin RP, Hu YH, Sun BG, Zhang XH, Sun L. Edwardsiella tarda sialidase: pathogenicity involvement and vaccine potential. Fish & shellfish immunology. 2012; 33(3); 514-521. [PubMed: 22705341].
  8. Lan et al., 2007: Lan MZ, Peng X, Xiang MY, Xia ZY, Bo W, Jie L, Li XY, Jun ZP. Construction and characterization of a live, attenuated esrB mutant of Edwardsiella tarda and its potential as a vaccine against the haemorrhagic septicaemia in turbot, Scophthamus maximus (L.). Fish & shellfish immunology. 2007; 23(3); 521-530. [PubMed: 17478097].
  9. Li et al., 2012: Li MF, Hu YH, Zheng WJ, Sun BG, Wang CL, Sun L. Inv1: an Edwardsiella tarda invasin and a protective immunogen that is required for host infection. Fish & shellfish immunology. 2012; 32(4); 586-592. [PubMed: 22289712].
  10. Liu et al., 2016: Liu F, Tang X, Sheng X, Xing J, Zhan W. DNA vaccine encoding molecular chaperone GroEL of Edwardsiella tarda confers protective efficacy against edwardsiellosis. Molecular immunology. 2016; 79; 55-65. [PubMed: 27701022].
  11. Liu et al., 2017: Liu F, Tang X, Sheng X, Xing J, Zhan W. Comparative study of the vaccine potential of six outer membrane proteins of Edwardsiella tarda and the immune responses of flounder (Paralichthys olivaceus) after vaccination. Veterinary immunology and immunopathology. 2017; 185; 38-47. [PubMed: 28242001].
  12. Liu et al., 2017: Liu F, Tang X, Sheng X, Xing J, Zhan W. Construction and evaluation of an Edwardsiella tarda DNA vaccine encoding outer membrane protein C. Microbial pathogenesis. 2017; 104; 238-247. [PubMed: 28137507].
  13. Ma et al., 2014: Ma J, Xu J, Guan L, Hu T, Liu Q, Xiao J, Zhang Y. Cell-penetrating peptides mediated protein cross-membrane delivery and its use in bacterial vector vaccine. Fish & shellfish immunology. 2014; 39(1); 8-16. [PubMed: 24746937].
  14. Microbe Wiki: E. tarda: Microbe Wiki: Edwardsiella tarda [http://microbewiki.kenyon.edu/index.php/Edwardsiella_tarda]
  15. Song et al., 2013: Song M, Xie J, Peng X, Li H. Identification of protective immunogens from extracellular secretome of Edwardsiella tarda. Fish & shellfish immunology. 2013; 35(6); 1932-1936. [PubMed: 24099803].
  16. Sun et al., 2010: Sun Y, Liu CS, Sun L. Identification of an Edwardsiella tarda surface antigen and analysis of its immunoprotective potential as a purified recombinant subunit vaccine and a surface-anchored subunit vaccine expressed by a fish commensal strain. Vaccine. 2010; 28(40); 6603-6608. [PubMed: 20673823].
  17. Sun et al., 2011: Sun Y, Liu CS, Sun L. Construction and analysis of the immune effect of an Edwardsiella tarda DNA vaccine encoding a D15-like surface antigen. Fish & shellfish immunology. 2011; 30(1); 273-279. [PubMed: 21059395].
  18. Sun et al., 2012: Sun Y, Zheng WJ, Hu YH, Sun BG, Sun L. Edwardsiella tarda Eta1, an in vivo-induced antigen that is involved in host infection. Infection and immunity. 2012; 80(8); 2948-2955. [PubMed: 22585967].
  19. Trung et al., 2014: Trung Cao T, Tsai MA, Yang CD, Wang PC, Kuo TY, Gabriel Chen HC, Chen SC. Vaccine efficacy of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Edwardsiella ictaluri against E. tarda in tilapia. The Journal of general and applied microbiology. 2014; 60(6); 241-250. [PubMed: 25742975].
  20. Wang et al., 2010: Wang B, Mo ZL, Xiao P, Li J, Zou YX, Hao B, Li GY. EseD, a putative T3SS translocon component of Edwardsiella tarda, contributes to virulence in fish and is a candidate for vaccine development. Marine biotechnology (New York, N.Y.). 2010; 12(6); 678-685. [PubMed: 20072793].
  21. Wang et al., 2013: Wang C, Hu YH, Chi H, Sun L. The major fimbrial subunit protein of Edwardsiella tarda: vaccine potential, adjuvant effect, and involvement in host infection. Fish & shellfish immunology. 2013; 35(3); 858-865. [PubMed: 23811351].
  22. Xiao et al., 2011: Xiao J, Chen T, Wang Q, Liu Q, Wang X, Lv Y, Wu H, Zhang Y. Search for live attenuated vaccine candidate against edwardsiellosis by mutating virulence-related genes of fish pathogen Edwardsiella tarda. Letters in applied microbiology. 2011; ; . [PubMed: 21777261].

Eimeria acervulina

  1. Zhu et al., 2012: Zhu H, Xu L, Yan R, Song X, Tang F, Wang S, Li X. Identification and characterization of a cDNA clone-encoding antigen of Eimeria acervulina. Parasitology. 2012; 139(13); 1711-1719. [PubMed: 23036233].

Eimeria maxima

  1. Huang et al., 2015: Huang J, Zhang Z, Li M, Song X, Yan R, Xu L, Li X. Immune protection of microneme 7 (EmMIC7) against Eimeria maxima challenge in chickens. Avian pathology : journal of the W.V.P.A. 2015; 44(5); 392-400. [PubMed: 26181095].
  2. Huang et al., 2015: Huang J, Zhang Z, Li M, Song X, Yan R, Xu L, Li X. Eimeria maxima microneme protein 2 delivered as DNA vaccine and recombinant protein induces immunity against experimental homogenous challenge. Parasitology international. 2015; 64(5); 408-416. [PubMed: 26072304].
  3. Jang et al., 2010: Jang SI, Lillehoj HS, Lee SH, Lee KW, Park MS, Cha SR, Lillehoj EP, Subramanian BM, Sriraman R, Srinivasan VA. Eimeria maxima recombinant Gam82 gametocyte antigen vaccine protects against coccidiosis and augments humoral and cell-mediated immunity. Vaccine. 2010; 28(17); 2980-2985. [PubMed: 20178868].
  4. Jang et al., 2010: Jang SI, Lillehoj HS, Lee SH, Lee KW, Park MS, Cha SR, Lillehoj EP, Subramanian BM, Sriraman R, Srinivasan VA. Eimeria maxima recombinant Gam82 gametocyte antigen vaccine protects against coccidiosis and augments humoral and cell-mediated immunity. Vaccine. 2010; 28(17); 2980-2985. [PubMed: 20178868].
  5. Smith et al., 1994: Smith NC, Wallach M, Miller CM, Morgenstern R, Braun R, Eckert J. Maternal transmission of immunity to Eimeria maxima: enzyme-linked immunosorbent assay analysis of protective antibodies induced by infection. Infection and immunity. 1994; 62(4); 1348-1357. [PubMed: 8132342].
  6. Smith et al., 2002: Smith AL, Hesketh P, Archer A, Shirley MW. Antigenic diversity in Eimeria maxima and the influence of host genetics and immunization schedule on cross-protective immunity. Infection and immunity. 2002; 70(5); 2472-2479. [PubMed: 11953384].
  7. Wallach, 1997: Wallach M. The importance of transmission-blocking immunity in the control of infections by apicomplexan parasites. International journal for parasitology. 1997; 27(10); 1159-1167. [PubMed: 9394186].
  8. Witcombe et al., 2004: Witcombe DM, Ferguson DJ, Belli SI, Wallach MG, Smith NC. Eimeria maxima TRAP family protein EmTFP250: subcellular localisation and induction of immune responses by immunisation with a recombinant C-terminal derivative. International journal for parasitology. 2004; 34(7); 861-872. [PubMed: 15157769].
  9. Xu et al., 2013: Xu J, Zhang Y, Tao J. Efficacy of a DNA Vaccine Carrying Eimeria maxima Gam56 Antigen Gene against Coccidiosis in Chickens. The Korean journal of parasitology. 2013; 51(2); 147-154. [PubMed: 23710081].
  10. Xu et al., 2013: Xu J, Zhang Y, Tao J. Efficacy of a DNA vaccine carrying Eimeria maxima Gam56 antigen gene against coccidiosis in chickens. The Korean journal of parasitology. 2013; 51(2); 147-154. [PubMed: 23710081].

Eimeria spp.

  1. Lillehoj et al., 2005: Lillehoj HS, Ding X, Quiroz MA, Bevensee E, Lillehoj EP. Resistance to intestinal coccidiosis following DNA immunization with the cloned 3-1E Eimeria gene plus IL-2, IL-15, and IFN-gamma. Avian diseases. 2005; 49(1); 112-117. [PubMed: 15839423].
  2. Min et al., 2001: Min W, Lillehoj HS, Burnside J, Weining KC, Staeheli P, Zhu JJ. Adjuvant effects of IL-1beta, IL-2, IL-8, IL-15, IFN-alpha, IFN-gamma TGF-beta4 and lymphotactin on DNA vaccination against Eimeria acervulina. Vaccine. 2001; 20(1-2); 267-274. [PubMed: 11567773].
  3. Shirley et al., 2005: Shirley MW, Smith AL, Tomley FM. The biology of avian Eimeria with an emphasis on their control by vaccination. Advances in parasitology. 2005; 60; 285-330. [PubMed: 16230106].
  4. Wiki: Eimeria: Eimeria [http://en.wikipedia.org/wiki/Eimeria]

Eimeria tenella

  1. Ding et al., 2005: Ding X, Lillehoj HS, Dalloul RA, Min W, Sato T, Yasuda A, Lillehoj EP. In ovo vaccination with the Eimeria tenella EtMIC2 gene induces protective immunity against coccidiosis. Vaccine. 2005; 23(28); 3733-3740. [PubMed: 15882535].
  2. Du and Wang, 2005: Du A, Wang S. Efficacy of a DNA vaccine delivered in attenuated Salmonella typhimurium against Eimeria tenella infection in chickens. International journal for parasitology. 2005; 35(7); 777-785. [PubMed: 15890351].
  3. Lai et al., 2011: Lai L, Bumstead J, Liu Y, Garnett J, Campanero-Rhodes MA, Blake DP, Palma AS, Chai W, Ferguson DJ, Simpson P, Feizi T, Tomley FM, Matthews S. The role of sialyl glycan recognition in host tissue tropism of the avian parasite Eimeria tenella. PLoS pathogens. 2011; 7(10); e1002296. [PubMed: 22022267].
  4. Miller et al., 1989: Miller GA, Bhogal BS, McCandliss R, Strausberg RL, Jessee EJ, Anderson AC, Fuchs CK, Nagle J, Likel MH, Strasser JM. Characterization and vaccine potential of a novel recombinant coccidial antigen. Infection and immunity. 1989; 57(7); 2014-2020. [PubMed: 2659532].
  5. Song et al., 2009: Song X, Xu L, Yan R, Huang X, Shah MA, Li X. The optimal immunization procedure of DNA vaccine pcDNA-TA4-IL-2 of Eimeria tenella and its cross-immunity to Eimeria necatrix and Eimeria acervulina. Veterinary parasitology. 2009; 159(1); 30-36. [PubMed: 19019543].
  6. Wang et al., 2009: Wang Q, Li J, Zhang X, Liu Q, Liu C, Ma G, Cao L, Gong P, Cai Y, Zhang G. Protective immunity of recombinant Mycobacterium bovis BCG expressing rhomboid gene against Eimeria tenella challenge. Veterinary parasitology. 2009; 160(3-4); 198-203. [PubMed: 19117681].
  7. Wiki: Eimeria tenella: Eimeria tenella [http://en.wikipedia.org/wiki/Eimeria_tenella]
  8. Williams, 2002: Williams RB. Fifty years of anticoccidial vaccines for poultry (1952-2002). Avian diseases. 2002; 46(4); 775-802. [PubMed: 12495038].
  9. Xu et al., 2006: Xu SZ, Chen T, Wang M. Protective immunity enhanced by chimeric DNA prime-protein booster strategy against Eimeria tenella challenge. Avian diseases. 2006; 50(4); 579-585. [PubMed: 17274297].

Entamoeba histolytica

  1. Carrero et al., 2010: Carrero JC, Contreras-Rojas A, Sánchez-Hernández B, Petrosyan P, Bobes RJ, Ortiz-Ortiz L, Laclette JP. Protection against murine intestinal amoebiasis induced by oral immunization with the 29kDa antigen of Entamoeba histolytica and cholera toxin. Experimental parasitology. 2010; ; . [PubMed: 20303954].
  2. He, 2012: He GZ. Entamoeba histolytica: cloning, expression and evaluation of the efficacy of a recombinant amebiasis cysteine proteinase gene (ACP1) antigen in minipig. Experimental parasitology. 2012; 130(2); 126-129. [PubMed: 22154977].
  3. Houpt et al., 2004: Houpt E, Barroso L, Lockhart L, Wright R, Cramer C, Lyerly D, Petri WA. Prevention of intestinal amebiasis by vaccination with the Entamoeba histolytica Gal/GalNac lectin. Vaccine. 2004; 22(5-6); 611-617. [PubMed: 14741152].
  4. Petri and Ravdin, 1991: Petri WA Jr, Ravdin JI. Protection of gerbils from amebic liver abscess by immunization with the galactose-specific adherence lectin of Entamoeba histolytica. Infection and immunity. 1991; 59(1); 97-9101. [PubMed: 1987067].
  5. Priest et al., 2010: Priest JW, Kwon JP, Montgomery JM, Bern C, Moss DM, Freeman AR, Jones CC, Arrowood MJ, Won KY, Lammie PJ, Gilman RH, Mead JR. Cloning and characterization of the acidic ribosomal protein P2 of Cryptosporidium parvum, a new 17-kilodalton antigen. Clinical and vaccine immunology : CVI. 2010; 17(6); 954-965. [PubMed: 20410328].
  6. Wiki: Entamoeba histolytica: Entamoeba histolytica [http://en.wikipedia.org/wiki/Entamoeba_histolytica]
  7. Zhang and Stanley, 1996: Zhang T, Stanley SL Jr. Oral immunization with an attenuated vaccine strain of Salmonella typhimurium expressing the serine-rich Entamoeba histolytica protein induces an antiamebic immune response and protects gerbils from amebic liver abscess. Infection and immunity. 1996; 64(5); 1526-1531. [PubMed: 8613356].

Equid herpesvirus

  1. Paillot et al., 2006: Paillot R, Ellis SA, Daly JM, Audonnet JC, Minke JM, Davis-Poynter N, Hannant D, Kydd JH. Characterisation of CTL and IFN-gamma synthesis in ponies following vaccination with a NYVAC-based construct coding for EHV-1 immediate early gene, followed by challenge infection. Vaccine. 2006; 24(10); 1490-1500. [PubMed: 16269205].
  2. Patel and Heldens, 2005: Patel JR, Heldens J. Equine herpesviruses 1 (EHV-1) and 4 (EHV-4)--epidemiology, disease and immunoprophylaxis: a brief review. Veterinary journal (London, England : 1997). 2005; 170(1); 14-23. [PubMed: 15993786].
  3. Slater et al., 1993: Slater JD, Gibson JS, Field HJ. Pathogenicity of a thymidine kinase-deficient mutant of equine herpesvirus 1 in mice and specific pathogen-free foals. The Journal of general virology. 1993; 74 ( Pt 5); 819-828. [PubMed: 8388018].
  4. Tsujimura et al., 2006: Tsujimura K, Yamanaka T, Kondo T, Fukushi H, Matsumura T. Pathogenicity and immunogenicity of equine herpesvirus type 1 mutants defective in either gI or gE gene in murine and hamster models. The Journal of veterinary medical science / the Japanese Society of Veterinary Science. 2006; 68(10); 1029-1038. [PubMed: 17085880].

Equine arteritis virus

  1. Balasuriya et al., 2002: Balasuriya UB, Heidner HW, Davis NL, Wagner HM, Hullinger PJ, Hedges JF, Williams JC, Johnston RE, David Wilson W, Liu IK, James MacLachlan N. Alphavirus replicon particles expressing the two major envelope proteins of equine arteritis virus induce high level protection against challenge with virulent virus in vaccinated horses. Vaccine. 2002; 20(11-12); 1609-1617. [PubMed: 11858869].
  2. Balasuriya et al., 2004: Balasuriya UB, Dobbe JC, Heidner HW, Smalley VL, Navarrette A, Snijder EJ, MacLachlan NJ. Characterization of the neutralization determinants of equine arteritis virus using recombinant chimeric viruses and site-specific mutagenesis of an infectious cDNA clone. Virology. 2004; 321(2); 235-246. [PubMed: 15051384].
  3. Hedges et al., 1998: Hedges JF, Balasuriya UB, Ahmad S, Timoney PJ, McCollum WH, Yilma T, MacLachlan NJ. Detection of antibodies to equine arteritis virus by enzyme linked immunosorbant assays utilizing G(L), M and N proteins expressed from recombinant baculoviruses. Journal of virological methods. 1998; 76(1-2); 127-137. [PubMed: 9923747].
  4. Wiki: Equine viral arteritis: Wiki: Equine viral arteritis [http://en.wikipedia.org/wiki/Equine_viral_arteritis]

Equine rotavirus

  1. AAEP: Rotaviral Diarrhea: AAEP: Rotaviral Diarrhea [http://www.aaep.org/rotaviral_diarrhea.htm]

Erysipelothrix rhusiopathiae

  1. Brooke and Riley, 1999: Brooke CJ, Riley TV. Erysipelothrix rhusiopathiae: bacteriology, epidemiology and clinical manifestations of an occupational pathogen. Journal of medical microbiology. 1999; 48(9); 789-799. [PubMed: 10482289].
  2. Chen et al., 2009: Chen KX, Li YJ, Zhang FC, Cao WY, Li JW. [Enhancement of antibodies to protective domain of surface protective antigen A of Erysipelothrix rhusiopathiae by DNA immunization with plasmids expressing spaA-chimeras]. Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology. 2009; 25(11); 984-986. [PubMed: 19900362].
  3. Wang et al., 2010: Wang Q, Chang BJ, Riley TV. Erysipelothrix rhusiopathiae. Veterinary microbiology. 2010; 140(3-4); 405-417. [PubMed: 19733019].

Escherichia coli

  1. Acheson et al., 1996: Acheson DW, Levine MM, Kaper JB, Keusch GT. Protective immunity to Shiga-like toxin I following oral immunization with Shiga-like toxin I B-subunit-producing Vibrio cholerae CVD 103-HgR. Infection and immunity. 1996; 64(1); 355-357. [PubMed: 8557364].
  2. Ahmed et al., 2014: Ahmed B, Loos M, Vanrompay D, Cox E. Oral immunization with Lactococcus lactis-expressing EspB induces protective immune responses against Escherichia coli O157:H7 in a murine model of colonization. Vaccine. 2014; 32(31); 3909-3916. [PubMed: 24877767].
  3. Alteri et al., 2009: Alteri CJ, Hagan EC, Sivick KE, Smith SN, Mobley HL. Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLoS pathogens. 2009; 5(9); e1000586. [PubMed: 19806177].
  4. Asadi et al., 2016: Asadi Karam MR, Habibi M, Bouzari S. Use of flagellin and cholera toxin as adjuvants in intranasal vaccination of mice to enhance protective immune responses against uropathogenic Escherichia coli antigens. Biologicals : journal of the International Association of Biological Standardization. 2016; 44(5); 378-386. [PubMed: 27461240].
  5. Berhanu et al., 2008: Berhanu A, Wilson RL, Kirkwood-Watts DL, King DS, Warren TK, Lund SA, Brown LL, Krupkin AK, Vandermay E, Weimers W, Honeychurch KM, Grosenbach DW, Jones KF, Hruby DE. Vaccination of BALB/c Mice with Escherichia coli-expressed Vaccinia Virus Proteins A27L, B5R, and D8L Protects Mice from Lethal Vaccinia Virus Challenge. Journal of virology. 2008; ; . [PubMed: 18199639].
  6. Bielaszewska et al., 1997: Bielaszewska M, Clarke I, Karmali MA, Petric M. Localization of intravenously administered verocytotoxins (Shiga-like toxins) 1 and 2 in rabbits immunized with homologous and heterologous toxoids and toxin subunits. Infection and immunity. 1997; 65(7); 2509-2516. [PubMed: 9199412].
  7. Billips et al., 2009: Billips BK, Yaggie RE, Cashy JP, Schaeffer AJ, Klumpp DJ. A live-attenuated vaccine for the treatment of urinary tract infection by uropathogenic Escherichia coli. The Journal of infectious diseases. 2009; 200(2); 263-272. [PubMed: 19522648].
  8. Bozic et al., 2006: Bozic F, Lackovic G, Kovsca-Janjatovic A, Smolec O, Valpotic I. Levamisole synergizes experimental F4ac+ Escherichia coli oral vaccine in stimulating ileal Peyer's patch T cells in weaned pigs. Journal of veterinary pharmacology and therapeutics. 2006 Jun; 29(3); 199-204. [PubMed: 16669864].
  9. Butterton et al., 1997: Butterton JR, Ryan ET, Acheson DW, Calderwood SB. Coexpression of the B subunit of Shiga toxin 1 and EaeA from enterohemorrhagic Escherichia coli in Vibrio cholerae vaccine strains. Infection and immunity. 1997; 65(6); 2127-2135. [PubMed: 9169742 ].
  10. Byrd and Cassels, 2006: Byrd W, Cassels FJ. The encapsulation of enterotoxigenic Escherichia coli colonization factor CS3 in biodegradable microspheres enhances the murine antibody response following intranasal administration. Microbiology (Reading, England). 2006; 152(Pt 3); 779-786. [PubMed: 16514157].
  11. Byrd et al., 2017: Byrd W, Ruiz-Perez F, Setty P, Zhu C, Boedeker EC. Secretion of the Shiga toxin B subunit (Stx1B) via an autotransporter protein optimizes the protective immune response to the antigen expressed in an attenuated E. coli (rEPEC E22?ler) vaccine strain. Veterinary microbiology. 2017; 211; 180-188. [PubMed: 29102116].
  12. Chen et al., 1994: Chen L, McGowan P, Ashe S, Johnston JV, Hellström I, Hellström KE. B7-1/CD80-transduced tumor cells elicit better systemic immunity than wild-type tumor cells admixed with Corynebacterium parvum. Cancer research. 1994; 54(20); 5420-5423. [PubMed: 7522958].
  13. Daley et al., 2007: Daley A, Randall R, Darsley M, Choudhry N, Thomas N, Sanderson IR, Croft N, Kelly P. Genetically modified enterotoxigenic escherichia coli vaccines induce mucosal immune responses without inflammation. Gut. 2007 Jun 12; ; . [PubMed: 17566016].
  14. Dean-Nystrom et al., 2002: Dean-Nystrom EA, Gansheroff LJ, Mills M, Moon HW, O'Brien AD. Vaccination of pregnant dams with intimin(O157) protects suckling piglets from Escherichia coli O157:H7 infection. Infection and immunity. 2002; 70(5); 2414-2418. [PubMed: 11953378].
  15. Durant et al., 2007: Durant L, Metais A, Soulama-Mouze C, Genevard JM, Nassif X, Escaich S. Identification of candidates for a subunit vaccine against extraintestinal pathogenic Escherichia coli. Infection and immunity. 2007 Apr; 75(4); 1916-25. [PubMed: 17145948 ].
  16. Durant et al., 2007: Durant L, Metais A, Soulama-Mouze C, Genevard JM, Nassif X, Escaich S. Identification of candidates for a subunit vaccine against extraintestinal pathogenic Escherichia coli. Infection and immunity. 2007; 75(4); 1916-1925. [PubMed: 17145948].
  17. Dziva et al., 2007: Dziva F, Vlisidou I, Crepin VF, Wallis TS, Frankel G, Stevens MP. Vaccination of calves with EspA, a key colonisation factor of Escherichia coli O157:H7, induces antigen-specific humoral responses but does not confer protection against intestinal colonisation. Veterinary microbiology. 2007; 123(1-3); 254-261. [PubMed: 17374460].
  18. ELBERG and FAUNCE, 1957: ELBERG SS, FAUNCE K Jr. Immunization against Brucella infection. VI. Immunity conferred on goats by a nondependent mutant from a streptomycin-dependent mutant strain of Brucella melitensis. Journal of bacteriology. 1957; 73(2); 211-217. [PubMed: 13416171].
  19. Fan et al., 2011: Fan HY, Wang L, Luo J, Long BG. Protection against Escherichia coli O157:H7 challenge by immunization of mice with purified Tir proteins. Molecular biology reports. 2011; ; . [PubMed: 21567195].
  20. Fujii et al., 2012: Fujii J, Naito M, Yutsudo T, Matsumoto S, Heatherly DP, Yamada T, Kobayashi H, Yoshida S, Obrig T. Protection by a recombinant Mycobacterium bovis Bacillus Calmette-Guerin vaccine expressing Shiga toxin 2 B subunit against Shiga toxin-producing Escherichia coli in mice. Clinical and vaccine immunology : CVI. 2012; 19(12); 1932-1937. [PubMed: 23035176].
  21. Ghaem-Maghami et al., 2001: Ghaem-Maghami M, Simmons CP, Daniell S, Pizza M, Lewis D, Frankel G, Dougan G. Intimin-specific immune responses prevent bacterial colonization by the attaching-effacing pathogen Citrobacter rodentium. Infection and immunity. 2001; 69(9); 5597-5605. [PubMed: 11500434 ].
  22. Habibi et al., 2015: Habibi M, Asadi Karam MR, Bouzari S. Evaluation of the effect of MPL and delivery route on immunogenicity and protectivity of different formulations of FimH and MrpH from uropathogenic Escherichia coli and Proteus mirabilis in a UTI mouse model. International immunopharmacology. 2015; 28(1); 70-78. [PubMed: 26033493].
  23. Hagan and Mobley, 2007: Hagan EC, Mobley HL. Uropathogenic Escherichia coli outer membrane antigens expressed during urinary tract infection. Infection and immunity. 2007; 75(8); 3941-3949. [PubMed: 17517861].
  24. Hancock et al., 2008: Hancock V, Ferrières L, Klemm P. The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious Escherichia coli in human urine. Microbiology (Reading, England). 2008; 154(Pt 1); 167-175. [PubMed: 18174135].
  25. Harris et al., 2011: Harris JA, Roy K, Woo-Rasberry V, Hamilton DJ, Kansal R, Qadri F, Fleckenstein JM. Directed evaluation of enterotoxigenic Escherichia coli autotransporter proteins as putative vaccine candidates. PLoS neglected tropical diseases. 2011; 5(12); e1428. [PubMed: 22163060].
  26. Horne et al., 2002: Horne C, Vallance BA, Deng W, Finlay BB. Current progress in enteropathogenic and enterohemorrhagic Escherichia coli vaccines. Expert review of vaccines. 2002; 1(4); 483-493. [PubMed: 12901587 ].
  27. Hu et al., 2009: Hu CX, Xu ZR, Li WF, Niu D, Lu P, Fu LL. Secretory expression of K88 (F4) fimbrial adhesin FaeG by recombinant Lactococcus lactis for oral vaccination and its protective immune response in mice. Biotechnology letters. 2009; 31(7); 991-997. [PubMed: 19277476].
  28. Hu et al., 2014: Hu JC, Mathias-Santos C, Greene CJ, King-Lyons ND, Rodrigues JF, Hajishengallis G, Ferreira LC, Connell TD. Intradermal administration of the Type II heat-labile enterotoxins LT-IIb and LT-IIc of enterotoxigenic Escherichia coli enhances humoral and CD8+ T cell immunity to a co-administered antigen. PloS one. 2014; 9(12); e113978. [PubMed: 25536061].
  29. Judge et al., 2004: Judge NA, Mason HS, O'Brien AD. Plant cell-based intimin vaccine given orally to mice primed with intimin reduces time of Escherichia coli O157:H7 shedding in feces. Infection and immunity. 2004 Jan; 72(1); 168-75. [PubMed: 14688094 ].
  30. Keller et al., 2010: Keller R, Hilton TD, Rios H, Boedeker EC, Kaper JB. Development of a live oral attaching and effacing Escherichia coli vaccine candidate using Vibrio cholerae CVD 103-HgR as antigen vector. Microbial pathogenesis. 2010; 48(1); 1-8. [PubMed: 19878715].
  31. Kumar et al., 2015: Kumar A, Hays M, Lim F, Foster LJ, Zhou M, Zhu G, Miesner T, Hardwidge PR. Protective Enterotoxigenic Escherichia coli Antigens in a Murine Intranasal Challenge Model. PLoS neglected tropical diseases. 2015; 9(8); e0003924. [PubMed: 26244636].
  32. Kwaga et al., 1994: Kwaga JK, Allan BJ, van der Hurk JV, Seida H, Potter AA. A carAB mutant of avian pathogenic Escherichia coli serogroup O2 is attenuated and effective as a live oral vaccine against colibacillosis in turkeys. Infection and immunity. 1994; 62(9); 3766-3772. [PubMed: 8063392].
  33. Langermann et al., 1997: Langermann S, Palaszynski S, Barnhart M, Auguste G, Pinkner JS, Burlein J, Barren P, Koenig S, Leath S, Jones CH, Hultgren SJ. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science (New York, N.Y.). 1997; 276(5312); 607-611. [PubMed: 9110982].
  34. Leyten et al., 2005: Leyten EM, Soonawala D, Schultsz C, Herzog C, Ligthelm RJ, Wijnands S, Visser LG. Analysis of efficacy of CVD 103-HgR live oral cholera vaccine against all-cause travellers' diarrhoea in a randomised, double-blind, placebo-controlled study. Vaccine. 2005; 23(43); 5120-5126. [PubMed: 15982790].
  35. Lin et al., 2013: Lin J, Mateo KS, Zhao M, Erickson AK, Garcia N, He D, Moxley RA, Francis DH. Protection of piglets against enteric colibacillosis by intranasal immunization with K88ac (F4ac) fimbriae and heat labile enterotoxin of Escherichia coli. Veterinary microbiology. 2013; 162(2-4); 731-739. [PubMed: 23089483].
  36. Lin et al., 2017: Lin R, Zhu B, Zhang Y, Bai Y, Zhi F, Long B, Li Y, Wu Y, Wu X, Fan H. Intranasal immunization with novel EspA-Tir-M fusion protein induces protective immunity against enterohemorrhagic Escherichia coli O157:H7 challenge in mice. Microbial pathogenesis. 2017; 105; 19-24. [PubMed: 28163157].
  37. Liu et al., 2009: Liu J, Sun Y, Feng S, Zhu L, Guo X, Qi C. Towards an attenuated enterohemorrhagic Escherichia coli O157:H7 vaccine characterized by a deleted ler gene and containing apathogenic Shiga toxins. Vaccine. 2009; 27(43); 5929-5935. [PubMed: 19682616].
  38. Liu et al., 2012: Liu C, Chen Z, Tan C, Liu W, Xu Z, Zhou R, Chen H. Immunogenic characterization of outer membrane porins OmpC and OmpF of porcine extraintestinal pathogenic Escherichia coli. FEMS microbiology letters. 2012; 337(2); 104-111. [PubMed: 23003111].
  39. Lu et al., 2014: Lu X, Skurnik D, Pozzi C, Roux D, Cywes-Bentley C, Ritchie JM, Munera D, Gening ML, Tsvetkov YE, Nifantiev NE, Waldor MK, Pier GB. A Poly-N-acetylglucosamine-Shiga toxin broad-spectrum conjugate vaccine for Shiga toxin-producing Escherichia coli. mBio. 2014; 5(2); 00974-00914. [PubMed: 24667709].
  40. Luo et al., 2016: Luo Q, Vickers TJ, Fleckenstein JM. Immunogenicity and Protective Efficacy against Enterotoxigenic Escherichia coli Colonization following Intradermal, Sublingual, or Oral Vaccination with EtpA Adhesin. Clinical and vaccine immunology : CVI. 2016; 23(7); 628-637. [PubMed: 27226279].
  41. Lynne et al., 2006: Lynne AM, Foley SL, Nolan LK. Immune response to recombinant Escherichia coli Iss protein in poultry. Avian diseases. 2006 Jun; 50(2); 273-6. [PubMed: 16863080].
  42. Marcato et al., 2001: Marcato P, Mulvey G, Read RJ, Vander Helm K, Nation PN, Armstrong GD. Immunoprophylactic potential of cloned Shiga toxin 2 B subunit. The Journal of infectious diseases. 2001; 183(3); 435-443. [PubMed: 11133375].
  43. Mason et al., 1998: Mason HS, Haq TA, Clements JD, Arntzen CJ. Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine. 1998; 16(13); 1336-1343. [PubMed: 9682399 ].
  44. McNeilly et al., 2015: McNeilly TN, Mitchell MC, Corbishley A, Nath M, Simmonds H, McAteer SP, Mahajan A, Low JC, Smith DG, Huntley JF, Gally DL. Optimizing the Protection of Cattle against Escherichia coli O157:H7 Colonization through Immunization with Different Combinations of H7 Flagellin, Tir, Intimin-531 or EspA. PloS one. 2015; 10(5); e0128391. [PubMed: 26020530].
  45. Melkebeek et al., 2007: Melkebeek V, Verdonck F, Goddeeris BM, Cox E. Comparison of immune responses in parenteral FaeG DNA primed pigs boosted orally with F4 protein or reimmunized with the DNA vaccine. Veterinary immunology and immunopathology. 2007 Apr 15; 116(3-4); 199-214. [PubMed: 17331591].
  46. Mobley and Alteri, 2015: Mobley HL, Alteri CJ. Development of a Vaccine against Escherichia coli Urinary Tract Infections. Pathogens (Basel, Switzerland). 2015; 5(1); . [PubMed: 26729174].
  47. Moravec et al., 2007: Moravec T, Schmidt MA, Herman EM, Woodford-Thomas T. Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine. Vaccine. 2007 Feb 19; 25(9); 1647-57. [PubMed: 17188785].
  48. Nesta et al., 2012: Nesta B, Spraggon G, Alteri C, Moriel DG, Rosini R, Veggi D, Smith S, Bertoldi I, Pastorello I, Ferlenghi I, Fontana MR, Frankel G, Mobley HL, Rappuoli R, Pizza M, Serino L, Soriani M. FdeC, a novel broadly conserved Escherichia coli adhesin eliciting protection against urinary tract infections. mBio. 2012; 3(2); . [PubMed: 22496310].
  49. Pascual et al., 1999: Pascual DW, Hone DM, Hall S, van Ginkel FW, Yamamoto M, Walters N, Fujihashi K, Powell RJ, Wu S, Vancott JL, Kiyono H, McGhee JR. Expression of recombinant enterotoxigenic Escherichia coli colonization factor antigen I by Salmonella typhimurium elicits a biphasic T helper cell response. Infection and immunity. 1999; 67(12); 6249-6256. [PubMed: 10569734 ].
  50. Pathport: Escherichia coli [http://pathport.vbi.vt.edu/pathinfo/]
  51. Potter et al., 2004: Potter AA, Klashinsky S, Li Y, Frey E, Townsend H, Rogan D, Erickson G, Hinkley S, Klopfenstein T, Moxley RA, Smith DR, Finlay BB. Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine. 2004; 22(3-4); 362-369. [PubMed: 14670317].
  52. Product Monograph: Dukoral: Product Monograph: Dukoral vaccine information [http://healthsensetravelclinic.ca/wp-content/uploads/dukoral.pdf]
  53. Pubmed: Protein search [http://www.ncbi.nlm.nih.gov.proxy.lib.umich.edu/sites/entrez?db=Protein]
  54. Russo et al., 2007: Russo TA, Beanan JM, Olson R, Genagon SA, MacDonald U, Cope JJ, Davidson BA, Johnston B, Johnson JR. A killed, genetically engineered derivative of a wild-type extraintestinal pathogenic E. coli strain is a vaccine candidate. Vaccine. 2007 May 10; 25(19); 3859-70. [PubMed: 17306426].
  55. Thankavel et al., 1997: Thankavel K, Madison B, Ikeda T, Malaviya R, Shah AH, Arumugam PM, Abraham SN. Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection. The Journal of clinical investigation. 1997; 100(5); 1123-1136. [PubMed: 9276729].
  56. Turner et al., 2006: Turner AK, Beavis JC, Stephens JC, Greenwood J, Gewert C, Thomas N, Deary A, Casula G, Daley A, Kelly P, Randall R, Darsley MJ. Construction and phase I clinical evaluation of the safety and immunogenicity of a candidate enterotoxigenic Escherichia coli vaccine strain expressing colonization factor antigen CFA/I. Infection and immunity. 2006 Feb; 74(2); 1062-71. [PubMed: 16428753].
  57. Van et al., 2005: Van Donkersgoed J, Hancock D, Rogan D, Potter AA. Escherichia coli O157:H7 vaccine field trial in 9 feedlots in Alberta and Saskatchewan. The Canadian veterinary journal. La revue veterinaire canadienne. 2005; 46(8); 724-728. [PubMed: 16187717].
  58. van et al., 2007: van Diemen PM, Dziva F, Abu-Median A, Wallis TS, van den Bosch H, Dougan G, Chanter N, Frankel G, Stevens MP. Subunit vaccines based on intimin and Efa-1 polypeptides induce humoral immunity in cattle but do not protect against intestinal colonisation by enterohaemorrhagic Escherichia coli O157:H7 or O26:H-. Veterinary immunology and immunopathology. 2007 Mar 15; 116(1-2); 47-58. [PubMed: 17258324].
  59. Van et al., 2017: Van Goor A, Stromberg ZR, Mellata M. A recombinant multi-antigen vaccine with broad protection potential against avian pathogenic Escherichia coli. PloS one. 2017; 12(8); e0183929. [PubMed: 28837660].
  60. Walker et al., 2007: Walker RI, Steele D, Aguado T. Analysis of strategies to successfully vaccinate infants in developing countries against enterotoxigenic E. coli (ETEC) disease. Vaccine. 2007 Mar 30; 25(14); 2545-66. [PubMed: 17224212].
  61. Wang et al., 2017: Wang X, Teng D, Guan Q, Mao R, Hao Y, Wang X, Yao J, Wang J. Escherichia coli outer membrane protein F (OmpF): an immunogenic protein induces cross-reactive antibodies against Escherichia coli and Shigella. AMB Express. 2017; 7(1); 155. [PubMed: 28728309].
  62. Wen et al., 2006: Wen SX, Teel LD, Judge NA, O'Brien AD. A plant-based oral vaccine to protect against systemic intoxication by Shiga toxin type 2. Proceedings of the National Academy of Sciences of the United States of America. 2006 May 2; 103(18); 7082-7. [PubMed: 16641102].
  63. Wennerås et al., 1992: Wennerås C, Svennerholm AM, Ahrén C, Czerkinsky C. Antibody-secreting cells in human peripheral blood after oral immunization with an inactivated enterotoxigenic Escherichia coli vaccine. Infection and immunity. 1992; 60(7); 2605-2611. [PubMed: 1612730].
  64. Won and John, 2017: Won G, John Hwa L. Potent immune responses induced by a Salmonella ghost delivery system that expresses the recombinant Stx2eB, FedF, and FedA proteins of the Escherichia coli-producing F18 and Shiga toxin in a murine model and evaluation of its protective effect as a porcine vaccine candidate. The Veterinary quarterly. 2017; 37(1); 81-90. [PubMed: 28317440].
  65. Zeinalzadeh et al., 2017: Zeinalzadeh N, Salmanian AH, Goujani G, Amani J, Ahangari G, Akhavian A, Jafari M. A Chimeric protein of CFA/I, CS6 subunits and LTB/STa toxoid protects immunized mice against enterotoxigenic Escherichia coli. Microbiology and immunology. 2017; 61(7); 272-279. [PubMed: 28543534].
  66. Zhang et al., 2006: Zhang J, Shi Z, Kong FK, Jex E, Huang Z, Watt JM, Van Kampen KR, Tang DC. Topical application of Escherichia coli-vectored vaccine as a simple method for eliciting protective immunity. Infection and immunity. 2006 Jun; 74(6); 3607-17. [PubMed: 16714593].

Experimental autoimmune encephalomyelitis

  1. Bourquin et al., 2000: Bourquin C, Iglesias A, Berger T, Wekerle H, Linington C. Myelin oligodendrocyte glycoprotein-DNA vaccination induces antibody-mediated autoaggression in experimental autoimmune encephalomyelitis. European journal of immunology. 2000; 30(12); 3663-3671. [PubMed: 11169409].
  2. Lobell et al., 1999: Lobell A, Weissert R, Eltayeb S, Svanholm C, Olsson T, Wigzell H. Presence of CpG DNA and the local cytokine milieu determine the efficacy of suppressive DNA vaccination in experimental autoimmune encephalomyelitis. Journal of immunology (Baltimore, Md. : 1950). 1999; 163(9); 4754-4762. [PubMed: 10528174].
  3. Lobell et al., 2003: Lobell A, Weissert R, Eltayeb S, de Graaf KL, Wefer J, Storch MK, Lassmann H, Wigzell H, Olsson T. Suppressive DNA vaccination in myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis involves a T1-biased immune response. Journal of immunology (Baltimore, Md. : 1950). 2003; 170(4); 1806-1813. [PubMed: 12574345].
  4. Ramshaw et al., 1997: Ramshaw IA, Fordham SA, Bernard CC, Maguire D, Cowden WB, Willenborg DO. DNA vaccines for the treatment of autoimmune disease. Immunology and cell biology. 1997; 75(4); 409-413. [PubMed: 9315486].
  5. Ruiz et al., 1999: Ruiz PJ, Garren H, Ruiz IU, Hirschberg DL, Nguyen LV, Karpuj MV, Cooper MT, Mitchell DJ, Fathman CG, Steinman L. Suppressive immunization with DNA encoding a self-peptide prevents autoimmune disease: modulation of T cell costimulation. Journal of immunology (Baltimore, Md. : 1950). 1999; 162(6); 3336-3341. [PubMed: 10092787].
  6. Selmaj et al., 2000: Selmaj K, Kowal C, Walczak A, Nowicka J, Raine CS. Naked DNA vaccination differentially modulates autoimmune responses in experimental autoimmune encephalomyelitis. Journal of neuroimmunology. 2000; 111(1-2); 34-44. [PubMed: 11063819].
  7. Tsunoda et al., 1998: Tsunoda I, Kuang LQ, Tolley ND, Whitton JL, Fujinami RS. Enhancement of experimental allergic encephalomyelitis (EAE) by DNA immunization with myelin proteolipid protein (PLP) plasmid DNA. Journal of neuropathology and experimental neurology. 1998; 57(8); 758-767. [PubMed: 9720491].
  8. Waisman et al., 1996: Waisman A, Ruiz PJ, Hirschberg DL, Gelman A, Oksenberg JR, Brocke S, Mor F, Cohen IR, Steinman L. Suppressive vaccination with DNA encoding a variable region gene of the T-cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity. Nature medicine. 1996; 2(8); 899-905. [PubMed: 8705860].
  9. Walczak et al., 2004: Walczak A, Szymanska B, Selmaj K. Differential prevention of experimental autoimmune encephalomyelitis with antigen-specific DNA vaccination. Clinical neurology and neurosurgery. 2004; 106(3); 241-245. [PubMed: 15177776].
  10. Weissert et al., 2000: Weissert R, Lobell A, de Graaf KL, Eltayeb SY, Andersson R, Olsson T, Wigzell H. Protective DNA vaccination against organ-specific autoimmunity is highly specific and discriminates between single amino acid substitutions in the peptide autoantigen. Proceedings of the National Academy of Sciences of the United States of America. 2000; 97(4); 1689-1694. [PubMed: 10677519].
  11. Wiki: Experimental autoimmune encephalomyelitis: Experimental autoimmune encephalomyelitis [http://en.wikipedia.org/wiki/Experimental_autoimmune_encephalomyelitis]

Experimental autoimmune uveitis

  1. Commodaro et al., 2010: Commodaro AG, Peron JP, Lopes CT, Arslanian C, Belfort R Jr, Rizzo LV, Bueno V. Evaluation of experimental autoimmune uveitis in mice treated with FTY720. Investigative ophthalmology & visual science. 2010; 51(5); 2568-2574. [PubMed: 20019358].
  2. Silver et al., 2007: Silver PB, Agarwal RK, Su SB, Suffia I, Grajewski RS, Luger D, Chan CC, Mahdi RM, Nickerson JM, Caspi RR. Hydrodynamic vaccination with DNA encoding an immunologically privileged retinal antigen protects from autoimmunity through induction of regulatory T cells. Journal of immunology (Baltimore, Md. : 1950). 2007; 179(8); 5146-5158. [PubMed: 17911600].

Feline calicivirus

  1. McCabe and Spibey, 2005: McCabe VJ, Spibey N. Potential for broad-spectrum protection against feline calicivirus using an attenuated myxoma virus expressing a chimeric FCV capsid protein. Vaccine. 2005; 23(46-47); 5380-5388. [PubMed: 16176851].
  2. McCabe et al., 2002: McCabe VJ, Tarpey I, Spibey N. Vaccination of cats with an attenuated recombinant myxoma virus expressing feline calicivirus capsid protein. Vaccine. 2002; 20(19-20); 2454-2462. [PubMed: 12057600].
  3. Radford et al., 2007: Radford AD, Coyne KP, Dawson S, Porter CJ, Gaskell RM. Feline calicivirus. Veterinary research. 2007; 38(2); 319-335. [PubMed: 17296159].

Feline herpesvirus 1

  1. Gaskell et al., 2007: Gaskell R, Dawson S, Radford A, Thiry E. Feline herpesvirus. Veterinary research. 2007; 38(2); 337-354. [PubMed: 17296160].
  2. Maeda et al., 1996: Maeda K, Ono M, Kawaguchi Y, Niikura M, Okazaki K, Yokoyama N, Tokiyoshi Y, Tohya Y, Mikami T. Expression and properties of feline herpesvirus type 1 gD (hemagglutinin) by a recombinant baculovirus. Virus research. 1996; 46(1-2); 75-80. [PubMed: 9029779].
  3. Sato et al., 2000: Sato E, Yokoyama N, Miyazawa T, Maeda K, Ikeda Y, Nishimura Y, Fujita K, Kohmoto M, Takahashi E, Mikami T. Efficient expression of the envelope protein of feline immunodeficiency virus in a recombinant feline herpesvirus type 1 (FHV-1) using the gC promoter of FHV-1. Virus research. 2000; 70(1-2); 13-23. [PubMed: 11074121].
  4. Yokoyama et al., 1996: Yokoyama N, Maeda K, Tohya Y, Kawaguchi Y, Shin YS, Ono M, Ishiguro S, Fujikawa Y, Mikami T. Pathogenicity and vaccine efficacy of a thymidine kinase-deficient mutant of feline herpesvirus type 1 in cats. Archives of virology. 1996; 141(3-4); 481-494. [PubMed: 8645090].

Feline immunodeficiency virus

  1. Hosie et al., 1998: Hosie MJ, Flynn JN, Rigby MA, Cannon C, Dunsford T, Mackay NA, Argyle D, Willett BJ, Miyazawa T, Onions DE, Jarrett O, Neil JC. DNA vaccination affords significant protection against feline immunodeficiency virus infection without inducing detectable antiviral antibodies. Journal of virology. 1998; 72(9); 7310-7319. [PubMed: 9696827].
  2. Kusuhara et al., 2005: Kusuhara H, Hohdatsu T, Okumura M, Sato K, Suzuki Y, Motokawa K, Gemma T, Watanabe R, Huang C, Arai S, Koyama H. Dual-subtype vaccine (Fel-O-Vax FIV) protects cats against contact challenge with heterologous subtype B FIV infected cats. Veterinary microbiology. 2005; 108(3-4); 155-165. [PubMed: 15899558].
  3. Lockridge et al., 2000: Lockridge KM, Chien M, Dean GA, Stefano Cole K, Montelaro RC, Luciw PA, Sparger EE. Protective immunity against feline immunodeficiency virus induced by inoculation with vif-deleted proviral DNA. Virology. 2000; 273(1); 67-79. [PubMed: 10891409].
  4. Pistello et al., 2005: Pistello M, Bonci F, Isola P, Mazzetti P, Merico A, Zaccaro L, Matteucci D, Bendinelli M. Evaluation of feline immunodeficiency virus ORF-A mutants as candidate attenuated vaccine. Virology. 2005; 332(2); 676-690. [PubMed: 15680433].
  5. Wiki: Feline Immunodeficincy Virus: Wiki: Feline Immunodeficincy Virus [http://en.wikipedia.org/wiki/Feline_immunodeficiency_virus]

Feline infectious peritonitis virus

  1. Addie et al., 2009: Addie D, Belák S, Boucraut-Baralon C, Egberink H, Frymus T, Gruffydd-Jones T, Hartmann K, Hosie MJ, Lloret A, Lutz H, Marsilio F, Pennisi MG, Radford AD, Thiry E, Truyen U, Horzinek MC. Feline infectious peritonitis. ABCD guidelines on prevention and management. Journal of feline medicine and surgery. 2009; 11(7); 594-604. [PubMed: 19481039].
  2. Haijema et al., 2004: Haijema BJ, Volders H, Rottier PJ. Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis. Journal of virology. 2004; 78(8); 3863-3871. [PubMed: 15047802].
  3. Hohdatsu et al., 2003: Hohdatsu T, Yamato H, Ohkawa T, Kaneko M, Motokawa K, Kusuhara H, Kaneshima T, Arai S, Koyama H. Vaccine efficacy of a cell lysate with recombinant baculovirus-expressed feline infectious peritonitis (FIP) virus nucleocapsid protein against progression of FIP. Veterinary microbiology. 2003; 97(1-2); 31-44. [PubMed: 14637036].
  4. Satoh et al., 2011: Satoh R, Furukawa T, Kotake M, Takano T, Motokawa K, Gemma T, Watanabe R, Arai S, Hohdatsu T. Screening and identification of T helper 1 and linear immunodominant antibody-binding epitopes in the spike 2 domain and the nucleocapsid protein of feline infectious peritonitis virus. Vaccine. 2011; 29(9); 1791-1800. [PubMed: 21216312].
  5. Takano et al., 2014: Takano T, Tomizawa K, Morioka H, Doki T, Hohdatsu T. Evaluation of protective efficacy of the synthetic peptide vaccine containing the T-helper 1 epitope with CpG oligodeoxynucleotide against feline infectious peritonitis virus infection in cats. Antiviral therapy. 2014; 19(7); 645-650. [PubMed: 24458025].
  6. Weiss and Scott, 1981: Weiss RC, Scott FW. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comparative immunology, microbiology and infectious diseases. 1981; 4(2); 175-189. [PubMed: 6754243].

Feline leukemia virus

  1. Clark et al., 1991: Clark N, Kushner NN, Barrett CB, Kensil CR, Salsbury D, Cotter S. Efficacy and safety field trials of a recombinant DNA vaccine against feline leukemia virus infection. Journal of the American Veterinary Medical Association. 1991; 199(10); 1433-1443. [PubMed: 1666099].
  2. Hanlon et al., 2001: Hanlon L, Argyle D, Bain D, Nicolson L, Dunham S, Golder MC, McDonald M, McGillivray C, Jarrett O, Neil JC, Onions DE. Feline leukemia virus DNA vaccine efficacy is enhanced by coadministration with interleukin-12 (IL-12) and IL-18 expression vectors. Journal of virology. 2001; 75(18); 8424-8433. [PubMed: 11507187].
  3. Marciani et al., 1991: Marciani DJ, Kensil CR, Beltz GA, Hung CH, Cronier J, Aubert A. Genetically-engineered subunit vaccine against feline leukaemia virus: protective immune response in cats. Vaccine. 1991; 9(2); 89-96. [PubMed: 1647576].
  4. Poulet et al., 2003: Poulet H, Brunet S, Boularand C, Guiot AL, Leroy V, Tartaglia J, Minke J, Audonnet JC, Desmettre P. Efficacy of a canarypox virus-vectored vaccine against feline leukaemia. The Veterinary record. 2003; 153(5); 141-145. [PubMed: 12934796].
  5. Tartaglia et al., 1993: Tartaglia J, Jarrett O, Neil JC, Desmettre P, Paoletti E. Protection of cats against feline leukemia virus by vaccination with a canarypox virus recombinant, ALVAC-FL. Journal of virology. 1993; 67(4); 2370-2375. [PubMed: 8383248].
  6. Wiki: Feline leukemia virus: Feline leukemia virus [http://en.wikipedia.org/wiki/Feline_leukemia_virus]

Feline panleukopenia virus

  1. Truyen et al., 2009: Truyen U, Addie D, Belák S, Boucraut-Baralon C, Egberink H, Frymus T, Gruffydd-Jones T, Hartmann K, Hosie MJ, Lloret A, Lutz H, Marsilio F, Pennisi MG, Radford AD, Thiry E, Horzinek MC. Feline panleukopenia. ABCD guidelines on prevention and management. Journal of feline medicine and surgery. 2009; 11(7); 538-546. [PubMed: 19481033].
  2. Wiki: Feline Panleukopenia: Wiki: Feline Panleukopenia [http://en.wikipedia.org/wiki/Feline_Panleukopenia]
  3. Yang et al., 2008: Yang S, Xia X, Qiao J, Liu Q, Chang S, Xie Z, Ju H, Zou X, Gao Y. Complete protection of cats against feline panleukopenia virus challenge by a recombinant canine adenovirus type 2 expressing VP2 from FPV. Vaccine. 2008; 26(11); 1482-1487. [PubMed: 18313810].

Flavobacterium columnare

  1. Dumpala et al., 2010: Dumpala PR, Gülsoy N, Lawrence ML, Karsi A. Proteomic analysis of the fish pathogen Flavobacterium columnare. Proteome science. 2010; 8; 26. [PubMed: 20525376].

Foot-and-mouth disease virus

  1. Dar et al., 2012: Dar PA, Ganesh K, Nagarajan G, Sarika S, Reddy GR, Suryanarayana VV. Sindbis virus replicase-based DNA vaccine construct encoding FMDV-specific multivalent epitope gene: studies on its immune responses in guinea pigs. Scandinavian journal of immunology. 2012; 76(4); 345-353. [PubMed: 22702835].
  2. Dhanesh et al., 2020: Dhanesh VV, Hosamani M, Basagoudanavar SH, Saravanan P, Biswal JK, Tamil Selvan RP, Madhavan A, Sehrish K, Sanyal A, Sreenivasa BP. Immunogenicity and protective efficacy of 3A truncated negative marker foot-and-mouth disease virus serotype A vaccine. Applied microbiology and biotechnology. 2020; 104(6); 2589-2602. [PubMed: 32002597].
  3. Fowler et al., 2012: Fowler V, Robinson L, Bankowski B, Cox S, Parida S, Lawlor C, Gibson D, O'Brien F, Ellefsen B, Hannaman D, Takamatsu HH, Barnett PV. A DNA vaccination regime including protein boost and electroporation protects cattle against foot-and-mouth disease. Antiviral research. 2012; 94(1); 25-34. [PubMed: 22330893].
  4. Joyappa et al., 2009: Joyappa DH, Kumar CA, Banumathi N, Reddy GR, Suryanarayana VV. Calcium phosphate nanoparticle prepared with foot and mouth disease virus P1-3CD gene construct protects mice and guinea pigs against the challenge virus. Veterinary microbiology. 2009; 139(1-2); 58-66. [PubMed: 19505774].
  5. NCT04182932: Safety and Immunogenicity of CJ-40010 in Healthy Subjects [https://classic.clinicaltrials.gov/ct2/show/NCT04182932]
  6. Reddy et al., 2012: Reddy KS, Rashmi BR, Dechamma HJ, Gopalakrishna S, Banumathi N, Suryanarayana VV, Reddy GR. Cationic microparticle [poly(D,L-lactide-co-glycolide)]-coated DNA vaccination induces a long-term immune response against foot and mouth disease in guinea pigs. The journal of gene medicine. 2012; 14(5); 348-352. [PubMed: 22438260].
  7. Shao et al., 2005: Shao HJ, Chen L, Su YB. DNA fragment encoding human IL-1beta 163-171 peptide enhances the immune responses elicited in mice by DNA vaccine against foot-and-mouth disease. Veterinary research communications. 2005; 29(1); 35-46. [PubMed: 15727290].
  8. Wang et al., 2006: Wang F, He XW, Jiang L, Ren D, He Y, Li DA, Sun SH. Enhanced immunogenicity of microencapsulated multiepitope DNA vaccine encoding T and B cell epitopes of foot-and-mouth disease virus in mice. Vaccine. 2006; 24(12); 2017-2026. [PubMed: 16414158].
  9. Ward et al., 1997: Ward G, Rieder E, Mason PW. Plasmid DNA encoding replicating foot-and-mouth disease virus genomes induces antiviral immune responses in swine. Journal of virology. 1997; 71(10); 7442-7447. [PubMed: 9311823].
  10. Wiki: Foot and mouth disease: Wiki: Foot and mouth disease [http://en.wikipedia.org/wiki/Foot-and-mouth_disease]

Fowlpox virus

  1. Merck Vet Manual: Fowlpox: Merck Veterinary Manual- Fowlpox in Chickens and Turkeys [http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/204801.htm]
  2. Pacchioni et al., 2013: Pacchioni SM, Bissa M, Zanotto C, Morghen Cde G, Illiano E, Radaelli A. L1R, A27L, A33R and B5R vaccinia virus genes expressed by fowlpox recombinants as putative novel orthopoxvirus vaccines. Journal of translational medicine. 2013; 11; 95. [PubMed: 23578094].
  3. Wiki: Fowlpox: Wiki: Fowlpox [http://en.wikipedia.org/wiki/index.html?curid=6441791]

Francisella tularensis

  1. Ashtekar et al., 2012: Ashtekar AR, Katz J, Xu Q, Michalek SM. A mucosal subunit vaccine protects against lethal respiratory infection with Francisella tularensis LVS. PloS one. 2012; 7(11); e50460. [PubMed: 23209745].
  2. Bakshi et al., 2006: Bakshi CS, Malik M, Regan K, Melendez JA, Metzger DW, Pavlov VM, Sellati TJ. Superoxide dismutase B gene (sodB)-deficient mutants of Francisella tularensis demonstrate hypersensitivity to oxidative stress and attenuated virulence. Journal of bacteriology. 2006 Sep; 188(17); 6443-8. [PubMed: 16923916].
  3. Bakshi et al., 2008: Bakshi CS, Malik M, Mahawar M, Kirimanjeswara GS, Hazlett KR, Palmer LE, Furie MB, Singh R, Melendez JA, Sellati TJ, Metzger DW. An improved vaccine for prevention of respiratory tularemia caused by Francisella tularensis SchuS4 strain. Vaccine. 2008; 26(41); 5276-5288. [PubMed: 18692537].
  4. Bokhari et al., 2008: Bokhari SM, Kim KJ, Pinson DM, Slusser J, Yeh HW, Parmely MJ. NK cells and gamma interferon coordinate the formation and function of hepatic granulomas in mice infected with the Francisella tularensis live vaccine strain. Infection and immunity. 2008; 76(4); 1379-1389. [PubMed: 18227174].
  5. Breitbach et al., 2008: Breitbach K, Köhler J, Steinmetz I. Induction of protective immunity against Burkholderia pseudomallei using attenuated mutants with defects in the intracellular life cycle. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2008; 102 Suppl 1; S89-94. [PubMed: 19121696].
  6. Cong et al., 2009: Cong Y, Yu JJ, Guentzel MN, Berton MT, Seshu J, Klose KE, Arulanandam BP. Vaccination with a defined Francisella tularensis subsp. novicida pathogenicity island mutant (DeltaiglB) induces protective immunity against homotypic and heterotypic challenge. Vaccine. 2009; 27(41); 5554-5561. [PubMed: 19651173].
  7. Conlan et al., 2010: Conlan JW, Shen H, Golovliov I, Zingmark C, Oyston PC, Chen W, House RV, Sjöstedt A. Differential ability of novel attenuated targeted deletion mutants of Francisella tularensis subspecies tularensis strain SCHU S4 to protect mice against aerosol challenge with virulent bacteria: effects of host background and route of immunization. Vaccine. 2010; 28(7); 1824-1831. [PubMed: 20018266].
  8. Dreisbach et al., 2000: Dreisbach VC, Cowley S, Elkins KL. Purified lipopolysaccharide from Francisella tularensis live vaccine strain (LVS) induces protective immunity against LVS infection that requires B cells and gamma interferon. Infection and immunity. 2000 Apr; 68(4); 1988-96. [PubMed: 10722593].
  9. Elkins et al., 1996: Elkins KL, Rhinehart-Jones TR, Culkin SJ, Yee D, Winegar RK. Minimal requirements for murine resistance to infection with Francisella tularensis LVS. Infection and immunity. 1996 Aug; 64(8); 3288-93. [PubMed: 8757866].
  10. Gregory et al., 2010: Gregory SH, Chen WH, Mott S, Palardy JE, Parejo NA, Heninger S, Anderson CA, Artenstein AW, Opal SM, Cross AS. Detoxified endotoxin vaccine (J5dLPS/OMP) protects mice against lethal respiratory challenge with Francisella tularensis SchuS4. Vaccine. 2010; 28(16); 2908-2915. [PubMed: 20170768].
  11. Hartley et al., 2004: Hartley MG, Green M, Choules G, Rogers D, Rees DG, Newstead S, Sjostedt A, Titball RW. Protection afforded by heat shock protein 60 from Francisella tularensis is due to copurified lipopolysaccharide. Infection and immunity. 2004; 72(7); 4109-4113. [PubMed: 15213156].
  12. Hepburn et al., 2006: Hepburn MJ, Purcell BK, Lawler JV, Coyne SR, Petitt PL, Sellers KD, Norwood DA, Ulrich MP. Live vaccine strain Francisella tularensis is detectable at the inoculation site but not in blood after vaccination against tularemia. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2006 Sep 15; 43(6); 711-6. [PubMed: 16912944].
  13. Isherwood et al., 2005: Isherwood KE, Titball RW, Davies DH, Felgner PL, Morrow WJ. Vaccination strategies for Francisella tularensis. Advanced drug delivery reviews. 2005 Jun 17; 57(9); 1403-14. [PubMed: 15919131].
  14. Jayakar et al., 2011: Jayakar HR, Parvathareddy J, Fitzpatrick EA, Bina XR, Bina JE, Re F, Emery FD, Miller MA. A galU Mutant of Francisella tularensis is Attenuated for Virulence in a Murine Pulmonary Model of Tularemia. BMC microbiology. 2011; 11(1); 179. [PubMed: 21819572].
  15. Jia et al., 2009: Jia Q, Lee BY, Clemens DL, Bowen RA, Horwitz MA. Recombinant attenuated Listeria monocytogenes vaccine expressing Francisella tularensis IglC induces protection in mice against aerosolized Type A F. tularensis. Vaccine. 2009; 27(8); 1216-1229. [PubMed: 19126421].
  16. Jia et al., 2010: Jia Q, Lee BY, Bowen R, Dillon BJ, Som SM, Horwitz MA. A Francisella tularensis live vaccine strain (LVS) mutant with a deletion in capB, encoding a putative capsular biosynthesis protein, is significantly more attenuated than LVS yet induces potent protective immunity in mice against F. tularensis challenge. Infection and immunity. 2010; 78(10); 4341-4355. [PubMed: 20643859].
  17. Jia et al., 2010: Jia Q, Lee BY, Bowen R, Dillon BJ, Som SM, Horwitz MA. A Francisella tularensis live vaccine strain (LVS) mutant with a deletion in capB, encoding a putative capsular biosynthesis protein, is significantly more attenuated than LVS yet induces potent protective immunity in mice against F. tularensis challenge. Infection and immunity. 2010; 78(10); 4341-4355. [PubMed: 20643859].
  18. Lauriano et al., 2003: Lauriano CM, Barker JR, Nano FE, Arulanandam BP, Klose KE. Allelic exchange in Francisella tularensis using PCR products. FEMS microbiology letters. 2003 Dec 12; 229(2); 195-202. [PubMed: 14680699].
  19. Li et al., 2007: Li J, Ryder C, Mandal M, Ahmed F, Azadi P, Snyder DS, Pechous RD, Zahrt T, Inzana TJ. Attenuation and protective efficacy of an O-antigen-deficient mutant of Francisella tularensis LVS. Microbiology (Reading, England). 2007; 153(Pt 9); 3141-3153. [PubMed: 17768257].
  20. Melillo et al., 2009: Melillo AA, Mahawar M, Sellati TJ, Malik M, Metzger DW, Melendez JA, Bakshi CS. Identification of Francisella tularensis live vaccine strain CuZn superoxide dismutase as critical for resistance to extracellularly generated reactive oxygen species. Journal of bacteriology. 2009; 191(20); 6447-6456. [PubMed: 19684141].
  21. Pammit et al., 2006: Pammit MA, Raulie EK, Lauriano CM, Klose KE, Arulanandam BP. Intranasal vaccination with a defined attenuated Francisella novicida strain induces gamma interferon-dependent antibody-mediated protection against tularemia. Infection and immunity. 2006 Apr; 74(4); 2063-71. [PubMed: 16552035].
  22. Pechous et al., 2006: Pechous R, Celli J, Penoske R, Hayes SF, Frank DW, Zahrt TC. Construction and characterization of an attenuated purine auxotroph in a Francisella tularensis live vaccine strain. Infection and immunity. 2006; 74(8); 4452-4461. [PubMed: 16861631].
  23. Quarry et al., 2007: Quarry JE, Isherwood KE, Michell SL, Diaper H, Titball RW, Oyston PC. A Francisella tularensis subspecies novicida purF mutant, but not a purA mutant, induces protective immunity to tularemia in mice. Vaccine. 2007; 25(11); 2011-2018. [PubMed: 17241711].
  24. Rodriguez et al., 2011: Rodriguez AR, Yu JJ, Murthy AK, Guentzel MN, Klose KE, Forsthuber TG, Chambers JP, Berton MT, Arulanandam BP. Mast cell/IL-4 control of Francisella tularensis replication and host cell death is associated with increased ATP production and phagosomal acidification. Mucosal immunology. 2011; 4(2); 217-226. [PubMed: 20861832].
  25. Rohmer et al., 2006: Rohmer L, Brittnacher M, Svensson K, Buckley D, Haugen E, Zhou Y, Chang J, Levy R, Hayden H, Forsman M, Olson M, Johansson A, Kaul R, Miller SI. Potential source of Francisella tularensis live vaccine strain attenuation determined by genome comparison. Infection and immunity. 2006 Sep 25; ; . [PubMed: 17000723].
  26. Sammons-Jackson et al., 2008: Sammons-Jackson WL, McClelland K, Manch-Citron JN, Metzger DW, Bakshi CS, Garcia E, Rasley A, Anderson BE. Generation and characterization of an attenuated mutant in a response regulator gene of Francisella tularensis live vaccine strain (LVS). DNA and cell biology. 2008; 27(7); 387-403. [PubMed: 18613792].
  27. Santiago et al., 2009: Santiago AE, Cole LE, Franco A, Vogel SN, Levine MM, Barry EM. Characterization of rationally attenuated Francisella tularensis vaccine strains that harbor deletions in the guaA and guaB genes. Vaccine. 2009; 27(18); 2426-2436. [PubMed: 19368784].
  28. Savitt et al., 2009: Savitt AG, Mena-Taboada P, Monsalve G, Benach JL. Francisella tularensis infection-derived monoclonal antibodies provide detection, protection, and therapy. Clinical and vaccine immunology : CVI. 2009; 16(3); 414-422. [PubMed: 19176692].
  29. Sebastian et al., 2007: Sebastian S, Dillon ST, Lynch JG, Blalock LT, Balon E, Lee KT, Comstock LE, Conlan JW, Rubin EJ, Tzianabos AO, Kasper DL. A defined O-antigen polysaccharide mutant of Francisella tularensis live vaccine strain has attenuated virulence while retaining its protective capacity. Infection and immunity. 2007; 75(5); 2591-2602. [PubMed: 17296751].
  30. Sinha and Bhatnagar, 2013: Sinha K, Bhatnagar R. Recombinant GroEL enhances protective antigen-mediated protection against Bacillus anthracis spore challenge. Medical microbiology and immunology. 2013; 202(2); 153-165. [PubMed: 23263010].
  31. Sjöstedt et al., 1992: Sjöstedt A, Sandström G, Tärnvik A. Humoral and cell-mediated immunity in mice to a 17-kilodalton lipoprotein of Francisella tularensis expressed by Salmonella typhimurium. Infection and immunity. 1992; 60(7); 2855-2862. [PubMed: 1612751].
  32. Tempel et al., 2006: Tempel R, Lai XH, Crosa L, Kozlowicz B, Heffron F. Attenuated Francisella novicida transposon mutants protect mice against wild-type challenge. Infection and immunity. 2006 Sep; 74(9); 5095-105. [PubMed: 16926401].
  33. Twine et al., 2005: Twine S, Bystrom M, Chen W, Forsman M, Golovliov I, Johansson A, Kelly J, Lindgren H, Svensson K, Zingmark C, Conlan W, Sjostedt A. A mutant of Francisella tularensis strain SCHU S4 lacking the ability to express a 58-kilodalton protein is attenuated for virulence and is an effective live vaccine. Infection and immunity. 2005 Dec; 73(12); 8345-52. [PubMed: 16299332 ].
  34. Yu et al., 2010: Yu JJ, Goluguri T, Guentzel MN, Chambers JP, Murthy AK, Klose KE, Forsthuber TG, Arulanandam BP. Francisella tularensis T-cell antigen identification using humanized HLA-DR4 transgenic mice. Clinical and vaccine immunology : CVI. 2010; 17(2); 215-222. [PubMed: 20016043].

Gallid herpesvirus 1

  1. Chen et al., 2011: Chen HY, Zhang HY, Li XS, Cui BA, Wang SJ, Geng JW, Li K. Interleukin-18-mediated enhancement of the protective effect of an infectious laryngotracheitis virus glycoprotein B plasmid DNA vaccine in chickens. Journal of medical microbiology. 2011; 60(Pt 1); 110-116. [PubMed: 20829398].
  2. Fuchs et al., 2007: Fuchs W, Veits J, Helferich D, Granzow H, Teifke JP, Mettenleiter TC. Molecular biology of avian infectious laryngotracheitis virus. Veterinary research. 2007; 38(2); 261-279. [PubMed: 17296156].
  3. Han et al., 2002: Han MG, Kweon CH, Mo IP, Kim SJ. Pathogenicity and vaccine efficacy of a thymidine kinase gene deleted infectious laryngotracheitis virus expressing the green fluorescent protein gene. Archives of virology. 2002; 147(5); 1017-1031. [PubMed: 12021870].
  4. Helferich et al., 2007: Helferich D, Veits J, Teifke JP, Mettenleiter TC, Fuchs W. The UL47 gene of avian infectious laryngotracheitis virus is not essential for in vitro replication but is relevant for virulence in chickens. The Journal of general virology. 2007; 88(Pt 3); 732-742. [PubMed: 17325345].
  5. Veits et al., 2003: Veits J, Lüschow D, Kindermann K, Werner O, Teifke JP, Mettenleiter TC, Fuchs W. Deletion of the non-essential UL0 gene of infectious laryngotracheitis (ILT) virus leads to attenuation in chickens, and UL0 mutants expressing influenza virus haemagglutinin (H7) protect against ILT and fowl plague. The Journal of general virology. 2003; 84(Pt 12); 3343-3352. [PubMed: 14645915].

Giardia duodenalis

  1. Abdul-Wahid and Faubert, 2007: Abdul-Wahid A, Faubert G. Mucosal delivery of a transmission-blocking DNA vaccine encoding Giardia lamblia CWP2 by Salmonella typhimurium bactofection vehicle. Vaccine. 2007; 25(50); 8372-8383. [PubMed: 17996337].
  2. Lee et al., 2009: Lee P, Abdul-Wahid A, Faubert GM. Comparison of the local immune response against Giardia lamblia cyst wall protein 2 induced by recombinant Lactococcus lactis and Streptococcus gordonii. Microbes and infection / Institut Pasteur. 2009; 11(1); 20-28. [PubMed: 18992359].
  3. Olson et al., 2000: Olson ME, Ceri H, Morck DW. Giardia vaccination. Parasitology today (Personal ed.). 2000; 16(5); 213-217. [PubMed: 10782082].
  4. Wiki: Giardia lamblia: Giardia lamblia [http://en.wikipedia.org/wiki/Giardia_duodenalis]

Haemophilus influenzae

  1. AAPC 1991: American Academy of Pediatrics Committee. American Academy of Pediatrics Committee on Infectious Diseases: Haemophilus influenzae type b conjugate vaccines: recommendations for immunization of infants and children 2 months of age and older: update. Pediatrics. 1991; 88(1); 169-172. [PubMed: 2057256].
  2. ActHIB 2005: Haemophilus b conjugate vaccine ActHIB [http://www.acthib.com]
  3. Bakaletz et al., 1999: Bakaletz LO, Kennedy BJ, Novotny LA, Duquesne G, Cohen J, Lobet Y. Protection against development of otitis media induced by nontypeable Haemophilus influenzae by both active and passive immunization in a chinchilla model of virus-bacterium superinfection. Infection and immunity. 1999; 67(6); 2746-2762. [PubMed: 10338477].
  4. Barenkamp, 1986: Barenkamp SJ. Protection by serum antibodies in experimental nontypable Haemophilus influenzae otitis media. Infection and immunity. 1986; 52(2); 572-578. [PubMed: 3486158].
  5. Bertot et al., 2004: Bertot GM, Becker PD, Guzman CA, Grinstein S. Intranasal vaccination with recombinant P6 protein and adamantylamide dipeptide as mucosal adjuvant confers efficient protection against otitis media and lung infection by nontypeable Haemophilus influenzae. The Journal of infectious diseases. 2004 Apr 1; 189(7); 1304-12. [PubMed: 15031801].
  6. Bolduc et al., 2000: Bolduc GR, Bouchet V, Jiang RZ, Geisselsoder J, Truong-Bolduc QC, Rice PA, Pelton SI, Goldstein R. Variability of outer membrane protein P1 and its evaluation as a vaccine candidate against experimental otitis media due to nontypeable Haemophilus influenzae: an unambiguous, multifaceted approach. Infection and immunity. 2000 Aug; 68(8); 4505-17. [PubMed: 10899849].
  7. Clancy et al., 1985: Clancy R, Cripps A, Murree-Allen K, Yeung S, Engel M. Oral immunisation with killed Haemophilus influenzae for protection against acute bronchitis in chronic obstructive lung disease. Lancet. 1985 Dec 21-28; 2(8469-70); 1395-7. [PubMed: 2867396].
  8. Clancy et al., 1990: Clancy RL, Cripps AW, Gebski V. Protection against recurrent acute bronchitis after oral immunization with killed Haemophilus influenzae. The Medical journal of Australia. 1990 Apr 16; 152(8); 413-6. [PubMed: 2184330].
  9. Clancy et al., 1992: Clancy RL, Cripps AW. Specific protection against acute bronchitis associated with nontypeable Haemophilus influenzae. The Journal of infectious diseases. 1992 Jun; 165 Suppl 1; S194-5. [PubMed: 1588162].
  10. Comvax: Comvax [http://www.fda.gov/cber/products/comvax.htm]
  11. Decker et al., 1992: Decker MD, Edwards KM, Bradley R, Palmer P. Comparative trial in infants of four conjugate Haemophilus influenzae type b vaccines. The Journal of pediatrics. 1992 Feb; 120(2 Pt 1); 184-9. [PubMed: 1735812].
  12. DeMaria et al., 1996: DeMaria TF, Murwin DM, Leake ER. Immunization with outer membrane protein P6 from nontypeable Haemophilus influenzae induces bactericidal antibody and affords protection in the chinchilla model of otitis media. Infection and immunity. 1996; 64(12); 5187-5192. [PubMed: 8945564].
  13. FDA: ACTHIB: FDA: ACTHIB Vaccine for Haemophilus influenzae [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm174743.htm]
  14. FDA: ActHIB: FDA: ActHIB vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM109841.pdf]
  15. FDA: COMVAX: FDA: COMVAX information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm174757.htm]
  16. FDA: Hiberix: FDA: Hiberix vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM179530.pdf]
  17. FDA: MenHibrix: FDA: MenHibrix Package insert [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm308566.htm]
  18. FDA: Pentacel: FDA: Pentacel [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm172502.htm]
  19. Forsgren et al., 2008: Forsgren A, Riesbeck K, Janson H. Protein D of Haemophilus influenzae: a protective nontypeable H. influenzae antigen and a carrier for pneumococcal conjugate vaccines. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2008; 46(5); 726-731. [PubMed: 18230042].
  20. Foxwell et al., 2006: Foxwell AR, Cripps AW, Dear KB. Haemophilus influenzae oral whole cell vaccination for preventing acute exacerbations of chronic bronchitis. Cochrane database of systematic reviews (Online). 2006 Oct 18; (4); CD001958. [PubMed: 17054150 ].
  21. Fritzell et al., 1992: Fritzell B, Plotkin S. Efficacy and safety of a Haemophilus influenzae type b capsular polysaccharide-tetanus protein conjugate vaccine. The Journal of pediatrics. 1992 Sep; 121(3); 355-62. [PubMed: 1517908].
  22. Green et al., 1991: Green BA, Farley JE, Quinn-Dey T, Deich RA, Zlotnick GW. The e (P4) outer membrane protein of Haemophilus influenzae: biologic activity of anti-e serum and cloning and sequencing of the structural gene. Infection and immunity. 1991 Sep; 59(9); 3191-8. [PubMed: 1715322 ].
  23. GSK: Infanrix-hexa: GSK: Infanrix-hexa vaccine information [http://ca.gsk.com/media/537989/infanrix-hexa.pdf]
  24. GSK: Infanrix-IPV/Hib: GSK: Infanrix-IPV/Hib vaccine information [http://ca.gsk.com/media/590970/infanrix-ipv-hib.pdf]
  25. Gu et al., 1996: Gu XX, Tsai CM, Ueyama T, Barenkamp SJ, Robbins JB, Lim DJ. Synthesis, characterization, and immunologic properties of detoxified lipooligosaccharide from nontypeable Haemophilus influenzae conjugated to proteins. Infection and immunity. 1996 Oct; 64(10); 4047-53. [PubMed: 8926067 ].
  26. Gu et al., 1997: Gu XX, Sun J, Jin S, Barenkamp SJ, Lim DJ, Robbins JB, Battey J. Detoxified lipooligosaccharide from nontypeable Haemophilus influenzae conjugated to proteins confers protection against otitis media in chinchillas. Infection and immunity. 1997; 65(11); 4488-4493. [PubMed: 9353024].
  27. Gu et al., 2003: Gu XX, Rudy SF, Chu C, McCullagh L, Kim HN, Chen J, Li J, Robbins JB, Van Waes C, Battey JF. Phase I study of a lipooligosaccharide-based conjugate vaccine against nontypeable Haemophilus influenzae. Vaccine. 2003 May 16; 21(17-18); 2107-14. [PubMed: 12706701].
  28. HibTITER 2007: HAEMOPHILUS b CONJUGATE VACCINE (Diphtheria CRM197 Protein Conjugate) HibTITER® [http://www.wyeth.com/content/showlabeling.asp?id=105]
  29. Hotomi et al., 2005: Hotomi M, Ikeda Y, Suzumoto M, Yamauchi K, Green BA, Zlotnick G, Billal DS, Shimada J, Fujihara K, Yamanaka N. A recombinant P4 protein of Haemophilus influenzae induces specific immune responses biologically active against nasopharyngeal colonization in mice after intranasal immunization. Vaccine. 2005 Jan 26; 23(10); 1294-300. [PubMed: 15652672].
  30. Kayhty et al., 1984: Kayhty H, Karanko V, Peltola H, Makela PH. Serum antibodies after vaccination with Haemophilus influenzae type b capsular polysaccharide and responses to reimmunization: no evidence of immunologic tolerance or memory. Pediatrics. 1984 Nov; 74(5); 857-65. [PubMed: 6387614].
  31. Kilian et al, 1991: Kilian, M. Haemophilus. 463-470. Manual of clinical microbiology, 5th ed. 1991. American Society for Microbiology, Washington, DC.
  32. Kurono et al., 1999: Kurono Y, Yamamoto M, Fujihashi K, Kodama S, Suzuki M, Mogi G, McGhee JR, Kiyono H. Nasal immunization induces Haemophilus influenzae-specific Th1 and Th2 responses with mucosal IgA and systemic IgG antibodies for protective immunity. The Journal of infectious diseases. 1999 Jul; 180(1); 122-32. [PubMed: 10353870].
  33. Kyd and Cripps, 1998: Kyd JM, Cripps AW. Potential of a novel protein, OMP26, from nontypeable Haemophilus influenzae to enhance pulmonary clearance in a rat model. Infection and immunity. 1998; 66(5); 2272-2278. [PubMed: 9573117].
  34. Kyd et al., 2003: Kyd JM, Cripps AW, Novotny LA, Bakaletz LO. Efficacy of the 26-kilodalton outer membrane protein and two P5 fimbrin-derived immunogens to induce clearance of nontypeable Haemophilus influenzae from the rat middle ear and lungs as well as from the chinchilla middle ear and nasopharynx. Infection and immunity. 2003 Aug; 71(8); 4691-9. [PubMed: 12874350].
  35. Lehmann et al., 1991: Lehmann D, Coakley KJ, Coakley CA, Spooner V, Montgomery JM, Michael A, Riley ID, Smith T, Clancy RL, Cripps AW. Reduction in the incidence of acute bronchitis by an oral Haemophilus influenzae vaccine in patients with chronic bronchitis in the highlands of Papua New Guinea. The American review of respiratory disease. 1991 Aug; 144(2); 324-30. [PubMed: 1859055].
  36. Lepow et al., 1987: Lepow ML, Barkin RM, Berkowitz CD, Brunell PA, James D, Meier K, Ward J, Zahradnik JM, Samuelson J, McVerry PH. Safety and immunogenicity of Haemophilus influenzae type b polysaccharide-diphtheria toxoid conjugate vaccine (PRP-D) in infants. The Journal of infectious diseases. 1987 Oct; 156(4); 591-6. [PubMed: 3497990 ].
  37. Liu et al., 2004: Liu DF, Mason KW, Mastri M, Pazirandeh M, Cutter D, Fink DL, St Geme JW 3rd, Zhu D, Green BA. The C-terminal fragment of the internal 110-kilodalton passenger domain of the Hap protein of nontypeable Haemophilus influenzae is a potential vaccine candidate. Infection and immunity. 2004 Dec; 72(12); 6961-8. [PubMed: 15557618].
  38. Loosmore et al., 1996: Loosmore SM, Yang YP, Coleman DC, Shortreed JM, England DM, Harkness RE, Chong PS, Klein MH. Cloning and expression of the Haemophilus influenzae transferrin receptor genes. Molecular microbiology. 1996; 19(3); 575-586. [PubMed: 8830248].
  39. Loosmore et al., 1997: Loosmore SM, Yang YP, Coleman DC, Shortreed JM, England DM, Klein MH. Outer membrane protein D15 is conserved among Haemophilus influenzae species and may represent a universal protective antigen against invasive disease. Infection and immunity. 1997; 65(9); 3701-3707. [PubMed: 9284140].
  40. Loosmore et al., 1998: Loosmore SM, Yang YP, Oomen R, Shortreed JM, Coleman DC, Klein MH. The Haemophilus influenzae HtrA protein is a protective antigen. Infection and immunity. 1998; 66(3); 899-906. [PubMed: 9488373].
  41. Makwana et al., 2007: Makwana N, Riordan FA. Bacterial meningitis: the impact of vaccination. CNS drugs. 2007; 21(5); 355-66. [PubMed: 17447825].
  42. Marburg 1986: S. Marburg, D. Jorn, R. L. Tolman, B. Arison, J. McCauley, P. J. Kniskern, A. Hagopian, and P. P. Vella. Bimolecular chemistry of macromolecules: synthesis of bacterial polysaccharide conjugates with Neisseria meningitidis membrane protein. Journal of the American Chemical Society. 1986; 108; 5282-5287.
  43. Marrs et al., 2001: Marrs CF, Krasan GP, McCrea KW, Clemans DL, Gilsdorf JR. Haemophilus influenzae - human specific bacteria. Frontiers in bioscience : a journal and virtual library. 2001 Sep 1; 6; E41-60. [PubMed: 11532609].
  44. Mason et al., 2004: Mason KW, Zhu D, Scheuer CA, McMichael JC, Zlotnick GW, Green BA. Reduction of nasal colonization of nontypeable Haemophilus influenzae following intranasal immunization with rLP4/rLP6/UspA2 proteins combined with aqueous formulation of RC529. Vaccine. 2004 Sep 3; 22(25-26); 3449-56. [PubMed: 15308371].
  45. McMahon et al., 2005: McMahon M, Murphy TF, Kyd J, Thanavala Y. Role of an immunodominant T cell epitope of the P6 protein of nontypeable Haemophilus influenzae in murine protective immunity. Vaccine. 2005 May 20; 23(27); 3590-6. [PubMed: 15855018].
  46. Meekison et al., 1989: Meekison W, Hutcheon M, Guasparini R, Arnott M, Scheifele D, Grace M, Humphreys G, Barreto L. Post-marketing surveillance of adverse events following ProHIBit vaccine--British Columbia. Canada diseases weekly report = Rapport hebdomadaire des maladies au Canada. 1989 Jul 15; 15(28); 143-5. [PubMed: 2791073].
  47. Munson et al., 1983: Munson RS Jr, Shenep JL, Barenkamp SJ, Granoff DM. Purification and comparison of outer membrane protein P2 from Haemophilus influenzae type b isolates. The Journal of clinical investigation. 1983; 72(2); 677-684. [PubMed: 6603479].
  48. PedvasHIB: Liquid PedvaxHIB [http://www.merck.com/product/usa/pi_circulars/p/pedvax_hib]
  49. Peltola et al., 1977: Peltola H, Kayhty H, Sivonen A, Makela H. Haemophilus influenzae type b capsular polysaccharide vaccine in children: a double-blind field study of 100,000 vaccinees 3 months to 5 years of age in Finland. Pediatrics. 1977 Nov; 60(5); 730-7. [PubMed: 335348].
  50. ProHIBiT 2007: Haemophilus b Conjugate Vaccine (Diphtheria Toxoid-Conjugate) [http://www.rxlist.com/cgi/generic/prohibit.htm]
  51. Reinholdt et al., 1997: Reinholdt J, Kilian M. Comparative analysis of immunoglobulin A1 protease activity among bacteria representing different genera, species, and strains. Infection and immunity. 1997 Nov; 65(11); 4452-9. [PubMed: 9353019].
  52. Riedmann et al., 2003: Riedmann EM, Kyd JM, Smith AM, Gomez-Gallego S, Jalava K, Cripps AW, Lubitz W. Construction of recombinant S-layer proteins (rSbsA) and their expression in bacterial ghosts--a delivery system for the nontypeable Haemophilus influenzae antigen Omp26. FEMS immunology and medical microbiology. 2003 Jul 15; 37(2-3); 185-92. [PubMed: 12832124].
  53. Rothstein et al., 1991: Rothstein EP, Madore DV, Long SS. Antibody persistence four years after primary immunization of infants and toddlers with Haemophilus influenzae type b CRM197 conjugate vaccine. The Journal of pediatrics. 1991 Oct; 119(4); 655-7. [PubMed: 1919902].
  54. Rubin and Rizvi, 1991: Rubin LG, Rizvi A. Antibody to a 145-kilodalton outer membrane protein has bactericidal activity and protective activity against experimental bacteremia caused by a Brazilian purpuric fever isolate of Haemophilus influenzae biogroup aegyptius. The Brazilian Purpuric Fever Study Group. Infection and immunity. 1991; 59(12); 4576-4582. [PubMed: 1937817].
  55. Sabirov et al., 2004: Sabirov A, Kodama S, Sabirova N, Mogi G, Suzuki M. Intranasal immunization with outer membrane protein P6 and cholera toxin induces specific sinus mucosal immunity and enhances sinus clearance of nontypeable Haemophilus influenzae. Vaccine. 2004 Aug 13; 22(23-24); 3112-21. [PubMed: 15297063].
  56. Tabatabaee et al., 2016: Tabatabaee Bafroee AS, Siadat SD, Mousavi SF, Aghasadeghi MR, Khorsand H, Nejati M, Sadat SM, Mahdavi M. Recombinant C-terminal 311 amino acids of HapS adhesin as a vaccine candidate for nontypeable Haemophilus influenzae: A study on immunoreactivity in Balb/C mouse. Microbial pathogenesis. 2016; 98; 106-111. [PubMed: 27377430].
  57. Talan et al., 1999: Talan DA, Moran GJ, Pinner RW. Progress toward eliminating Haemophilus influenzae type b disease among infants and children--United States, 1987-1997. Annals of emergency medicine. 1999 Jul; 34(1); 109-11. [PubMed: 10382005].
  58. Tandon et al., 1991: Tandon MK, Gebski V. A controlled trial of a killed Haemophilus influenzae vaccine for prevention of acute exacerbations of chronic bronchitis. Australian and New Zealand journal of medicine. 1991 Aug; 21(4); 427-32. [PubMed: 1953532].
  59. Thornton et al., 2017: Thornton RB, Kirkham LS, Corscadden KJ, Wiertsema SP, Fuery A, Jones BJ, Coates HL, Vijayasekaran S, Zhang G, Keil A, Richmond PC. Australian Aboriginal Children with Otitis Media Have Reduced Antibody Titers to Specific Nontypeable Haemophilus influenzae Vaccine Antigens. Clinical and vaccine immunology : CVI. 2017; 24(4); . [PubMed: 28151410].
  60. Tristram et al., 2007: Tristram S, Jacobs MR, Appelbaum PC. Antimicrobial resistance in Haemophilus influenzae. Clinical microbiology reviews. 2007 Apr; 20(2); 368-89. [PubMed: 17428889 ].
  61. Webb et al., 1999: Webb DC, Cripps AW. Immunization with recombinant transferrin binding protein B enhances clearance of nontypeable Haemophilus influenzae from the rat lung. Infection and immunity. 1999 May; 67(5); 2138-44. [PubMed: 10225866].
  62. Webb et al., 2000: Webb DC, Cripps AW. A P5 peptide that is homologous to peptide 10 of OprF from Pseudomonas aeruginosa enhances clearance of nontypeable Haemophilus influenzae from acutely infected rat lung in the absence of detectable peptide-specific antibody. Infection and immunity. 2000 Jan; 68(1); 377-81. [PubMed: 10603411].
  63. Weinberg et al., 1988: Weinberg GA, Granoff DM. Polysaccharide-protein conjugate vaccines for the prevention of Haemophilus influenzae type b disease. The Journal of pediatrics. 1988 Oct; 113(4); 621-31. [PubMed: 3050001 ].
  64. Wu et al., 2005: Wu T, Chen J, Murphy TF, Green BA, Gu XX. Investigation of non-typeable Haemophilus influenzae outer membrane protein P6 as a new carrier for lipooligosaccharide conjugate vaccines. Vaccine. 2005 Oct 25; 23(44); 5177-85. [PubMed: 16039021].
  65. Yang et al., 1997: Yang YP, Munson RS Jr, Grass S, Chong P, Harkness RE, Gisonni L, James O, Kwok Y, Klein MH. Effect of lipid modification on the physicochemical, structural, antigenic and immunoprotective properties of Haemophilus influenzae outer membrane protein P6. Vaccine. 1997; 15(9); 976-987. [PubMed: 9261944].
  66. Zagursky et al., 2000: Zagursky RJ, Ooi P, Jones KF, Fiske MJ, Smith RP, Green BA. Identification of a Haemophilus influenzae 5'-nucleotidase protein: cloning of the nucA gene and immunogenicity and characterization of the NucA protein. Infection and immunity. 2000 May; 68(5); 2525-34. [PubMed: 10768940].

Haemophilus parasuis

  1. Barasuol et al., 2017: Barasuol BM, Guizzo JA, Fegan JE, Martínez-Martínez S, Rodríguez-Ferri EF, Gutiérrez-Martín CB, Kreutz LC, Schryvers AB, Frandoloso R. New insights about functional and cross-reactive properties of antibodies generated against recombinant TbpBs of Haemophilus parasuis. Scientific reports. 2017; 7(1); 10377. [PubMed: 28871190].
  2. Fu et al., 2012: Fu S, Zhang M, Ou J, Liu H, Tan C, Liu J, Chen H, Bei W. Construction and immune effect of Haemophilus parasuis DNA vaccine encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in mice. Vaccine. 2012; 30(48); 6839-6844. [PubMed: 23000128].
  3. Guo et al., 2017: Guo L, Xu L, Wu T, Fu S, Qiu Y, Hu CA, Ren X, Liu R, Ye M. Evaluation of recombinant protein superoxide dismutase of Haemophilus parasuis strain SH0165 as vaccine candidate in a mouse model. Canadian journal of microbiology. 2017; 63(4); 312-320. [PubMed: 28177794].
  4. Hong et al., 2011: Hong M, Ahn J, Yoo S, Hong J, Lee E, Yoon I, Jung JK, Lee H. Identification of novel immunogenic proteins in pathogenic Haemophilus parasuis based on genome sequence analysis. Veterinary microbiology. 2011; 148(1); 89-92. [PubMed: 20817421].
  5. Huang et al., 2013: Huang X, Li Y, Fu Y, Ji Y, Lian K, Zheng H, Wei J, Cai X, Zhu Q. Cross-protective efficacy of recombinant transferrin-binding protein A of Haemophilus parasuis in guinea pigs. Clinical and vaccine immunology : CVI. 2013; 20(6); 912-919. [PubMed: 23616407].
  6. Li et al., 2015: Li M, Song S, Yang D, Li C, Li G. Identification of secreted proteins as novel antigenic vaccine candidates of Haemophilus parasuis serovar 5. Vaccine. 2015; 33(14); 1695-1701. [PubMed: 25704800].
  7. Li et al., 2016: Li M, Li C, Song S, Kang H, Yang D, Li G. Development and antigenic characterization of three recombinant proteins with potential for Glässer's disease prevention. Vaccine. 2016; 34(19); 2251-2258. [PubMed: 26993332].
  8. Li et al., 2017: Li M, Cai RJ, Song S, Jiang ZY, Li Y, Gou HC, Chu PP, Li CL, Qiu HJ. Evaluation of immunogenicity and protective efficacy of recombinant outer membrane proteins of Haemophilus parasuis serovar 5 in a murine model. PloS one. 2017; 12(4); e0176537. [PubMed: 28448603].
  9. Macedo et al., 2016: Macedo N, Oliveira S, Torremorell M, Rovira A. Immune response to oligopeptide permease A (OppA) protein in pigs naturally and experimentally infected with Haemophilus parasuis. Research in veterinary science. 2016; 107; 62-67. [PubMed: 27473976].
  10. Oliveira and Pijoan, 2004: Oliveira S, Pijoan C. Haemophilus parasuis: new trends on diagnosis, epidemiology and control. Veterinary microbiology. 2004; 99(1); 1-12. [PubMed: 15019107].
  11. Olvera et al., 2011: Olvera A, Pina S, Pérez-Simó M, Aragón V, Segalés J, Bensaid A. Immunogenicity and protection against Haemophilus parasuis infection after vaccination with recombinant virulence associated trimeric autotransporters (VtaA). Vaccine. 2011; 29(15); 2797-2802. [PubMed: 21320547].
  12. Tian et al., 2011: Tian H, Fu F, Li X, Chen X, Wang W, Lang Y, Cong F, Liu C, Tong G, Li X. Identification of the immunogenic outer membrane protein A antigen of Haemophilus parasuis by a proteomics approach and passive immunization with monoclonal antibodies in mice. Clinical and vaccine immunology : CVI. 2011; 18(10); 1695-1701. [PubMed: 21832103].
  13. Wen et al., 2016: Wen Y, Yan X, Wen Y, Cao S, He L, Ding L, Zhang L, Zhou P, Huang X, Wu R, Wen X. Immunogenicity of the recombinant HxuCBA proteins encoded by hxuCBA gene cluster of Haemophilus parasuis in mice. Gene. 2016; 591(2); 478-483. [PubMed: 27378742].
  14. Yuan et al., 2012: Yuan F, Fu S, Hu J, Li J, Chang H, Hu L, Chen H, Tian Y, Bei W. Evaluation of recombinant proteins of Haemophilus parasuis strain SH0165 as vaccine candidates in a mouse model. Research in veterinary science. 2012; 93(1); 51-56. [PubMed: 21596404].
  15. Zhou et al., 2009: Zhou M, Guo Y, Zhao J, Hu Q, Hu Y, Zhang A, Chen H, Jin M. Identification and characterization of novel immunogenic outer membrane proteins of Haemophilus parasuis serovar 5. Vaccine. 2009; 27(38); 5271-5277. [PubMed: 19576561].

Haemophilus somnus

  1. Microbe Wiki: H. somnus: Microbe Wiki: Haemophilus somnus [http://microbewiki.kenyon.edu/index.php/Haemophilus_somnus]

Hantavirus

  1. Bharadwaj et al., 2002: Bharadwaj M, Mirowsky K, Ye C, Botten J, Masten B, Yee J, Lyons CR, Hjelle B. Genetic vaccines protect against Sin Nombre hantavirus challenge in the deer mouse (Peromyscus maniculatus). The Journal of general virology. 2002; 83(Pt 7); 1745-1751. [PubMed: 12075094].
  2. Brown et al., 2011: Brown KS, Safronetz D, Marzi A, Ebihara H, Feldmann H. Vesicular stomatitis virus-based vaccine protects hamsters against lethal challenge with Andes virus. Journal of virology. 2011; 85(23); 12781-12791. [PubMed: 21917979].
  3. CDC Hantaviruses: CDC Hantaviruses [http://0-www.cdc.gov.mill1.sjlibrary.org/ncidod/diseases/hanta/hps/]
  4. Chu et al., 1995: Chu YK, Jennings GB, Schmaljohn CS. A vaccinia virus-vectored Hantaan virus vaccine protects hamsters from challenge with Hantaan and Seoul viruses but not Puumala virus. Journal of virology. 1995; 69(10); 6417-6423. [PubMed: 7666542].
  5. Custer et al., 2003: Custer DM, Thompson E, Schmaljohn CS, Ksiazek TG, Hooper JW. Active and passive vaccination against hantavirus pulmonary syndrome with Andes virus M genome segment-based DNA vaccine. Journal of virology. 2003 Sep; 77(18); 9894-905. [PubMed: 12941899 ].
  6. de Carvalho Nicacio et al., 2002: de Carvalho Nicacio C, Gonzalez Della Valle M, Padula P, Bjorling E, Plyusnin A, Lundkvist A. Cross-protection against challenge with Puumala virus after immunization with nucleocapsid proteins from different hantaviruses. Journal of virology. 2002 Jul; 76(13); 6669-77. [PubMed: 12050380].
  7. Hooper et al., 2001: Hooper JW, Custer DM, Thompson E, Schmaljohn CS. DNA vaccination with the Hantaan virus M gene protects Hamsters against three of four HFRS hantaviruses and elicits a high-titer neutralizing antibody response in Rhesus monkeys. Journal of virology. 2001; 75(18); 8469-8477. [PubMed: 11507192].
  8. Klingstrom et al., 2004: Klingstrom J, Maljkovic I, Zuber B, Rollman E, Kjerrstrom A, Lundkvist A. Vaccination of C57/BL6 mice with Dobrava hantavirus nucleocapsid protein in Freund's adjuvant induced partial protection against challenge. Vaccine. 2004 Sep 28; 22(29-30); 4029-34. [PubMed: 15364453].
  9. Kruger et al., 2001: Kruger DH, Ulrich R, Lundkvist A A. Hantavirus infections and their prevention. Microbes and infection / Institut Pasteur. 2001 Nov; 3(13); 1129-44. [PubMed: 11709294 ].
  10. Lednicky, 2003: Lednicky JA. Hantaviruses. a short review. Archives of pathology & laboratory medicine. 2003 Jan; 127(1); 30-5. [PubMed: 12521363].
  11. Maes et al., 2006: Maes P, Keyaerts E, Bonnet V, Clement J, Avsic-Zupanc T, Robert A, Van Ranst M. Truncated recombinant Dobrava hantavirus nucleocapsid proteins induce strong, long-lasting immune responses in mice. Intervirology. 2006; 49(5); 253-60. [PubMed: 16714853].
  12. Safronetz et al., 2009: Safronetz D, Hegde NR, Ebihara H, Denton M, Kobinger GP, St Jeor S, Feldmann H, Johnson DC. Adenovirus vectors expressing hantavirus proteins protect hamsters against lethal challenge with andes virus. Journal of virology. 2009; 83(14); 7285-7295. [PubMed: 19403663].
  13. Ulrich et al., 1998: Ulrich R, Lundkvist A, Meisel H, Koletzki D, Sjolander KB, Gelderblom HR, Borisova G, Schnitzler P, Darai G, Kruger DH. Chimaeric HBV core particles carrying a defined segment of Puumala hantavirus nucleocapsid protein evoke protective immunity in an animal model. Vaccine. 1998 Jan-Feb; 16(2-3); 272-80. [PubMed: 9607042 ].
  14. Yoshimatsu et al., 1993: Yoshimatsu K, Yoo YC, Yoshida R, Ishihara C, Azuma I, Arikawa J. Protective immunity of Hantaan virus nucleocapsid and envelope protein studied using baculovirus-expressed proteins. Archives of virology. 1993; 130(3-4); 365-376. [PubMed: 8517793].
  15. Yuan et al., 2010: Yuan ZG, Luo SJ, Xu HJ, Wang XH, Li J, Yuan LG, He LT, Zhang XX. Generation of E3-deleted canine adenovirus type 2 expressing the Gc glycoprotein of Seoul virus by gene insertion of deletion of related terminal region sequences. The Journal of general virology. 2010; ; . [PubMed: 20181748].

Helicobacter pylori

  1. Chen et al., 2012: Chen J, Lin L, Li N, She F. Enhancement of Helicobacter pylori outer inflammatory protein DNA vaccine efficacy by co-delivery of interleukin-2 and B subunit heat-labile toxin gene encoded plasmids. Microbiology and immunology. 2012; 56(2); 85-92. [PubMed: 22150716].
  2. Dunkley et al., 1999: Dunkley ML, Harris SJ, McCoy RJ, Musicka MJ, Eyers FM, Beagley LG, Lumley PJ, Beagley KW, Clancy RL. Protection against Helicobacter pylori infection by intestinal immunisation with a 50/52-kDa subunit protein. FEMS immunology and medical microbiology. 1999; 24(2); 221-225. [PubMed: 10378424].
  3. Ferrero et al., 1995: Ferrero RL, Thiberge JM, Kansau I, Wuscher N, Huerre M, Labigne A. The GroES homolog of Helicobacter pylori confers protective immunity against mucosal infection in mice. Proceedings of the National Academy of Sciences of the United States of America. 1995; 92(14); 6499-6503. [PubMed: 7604021].
  4. Gómez-Duarte et al., 1998: Gómez-Duarte OG, Lucas B, Yan ZX, Panthel K, Haas R, Meyer TF. Protection of mice against gastric colonization by Helicobacter pylori by single oral dose immunization with attenuated Salmonella typhimurium producing urease subunits A and B. Vaccine. 1998; 16(5); 460-471. [PubMed: 9491500].
  5. Guo et al., 2017: Guo L, Yang H, Tang F, Yin R, Liu H, Gong X, Wei J, Zhang Y, Xu G, Liu K. Oral Immunization with a Multivalent Epitope-Based Vaccine, Based on NAP, Urease, HSP60, and HpaA, Provides Therapeutic Effect on <i>H. pylori</i> Infection in Mongolian gerbils. Frontiers in cellular and infection microbiology. 2017; 7; 349. [PubMed: 28824883].
  6. Guo et al., 2017: Guo L, Yin R, Xu G, Gong X, Chang Z, Hong D, Liu H, Ding S, Han X, Li Y, Tang F, Liu K. Immunologic properties and therapeutic efficacy of a multivalent epitope-based vaccine against four Helicobacter pylori adhesins (urease, Lpp20, HpaA, and CagL) in Mongolian gerbils. Helicobacter. 2017; 22(6); . [PubMed: 28851031].
  7. Huang et al., 2005: Huang W, Bai Y, Wang JD, Wu JB, Li GF, Zhang WM, Zhou DY. [Preparation oral liposome-encapsulated recombinant Helicobacter pylori heat shock protein 60 vaccine for prevention of Hp infection]. Di 1 jun yi da xue xue bao = Academic journal of the first medical college of PLA. 2005; 25(5); 531-534. [PubMed: 15897126].
  8. Lü et al., 2011: Lü L, Zeng HQ, Wang PL, Shen W, Xiang TX, Mei ZC. Oral immunization with recombinant Mycobacterium smegmatis expressing the outer membrane protein 26-kilodalton antigen confers prophylactic protection against Helicobacter pylori infection. Clinical and vaccine immunology : CVI. 2011; 18(11); 1957-1961. [PubMed: 21900527].
  9. Li et al., 2012: Li HB, Zhang JY, He YF, Chen L, Li B, Liu KY, Yang WC, Zhao Z, Zou QM, Wu C. Systemic immunization with an epitope-based vaccine elicits a Th1-biased response and provides protection against Helicobacter pylori in mice. Vaccine. 2012; 31(1); 120-126. [PubMed: 23137845].
  10. Li et al., 2015: Li B, Chen L, Sun H, Yang W, Hu J, He Y, Wei S, Zhao Z, Zhang J, Li H, Zou Q, Wu C. Immunodominant epitope-specific Th1 but not Th17 responses mediate protection against Helicobacter pylori infection following UreB vaccination of BALB/c mice. Scientific reports. 2015; 5; 14793. [PubMed: 26434384].
  11. Li et al., 2017: Li B, Yuan H, Chen L, Sun H, Hu J, Wei S, Zhao Z, Zou Q, Wu C. The influence of adjuvant on UreB protection against <i>Helicobacter pylori</i> through the diversity of CD4+ T-cell epitope repertoire. Oncotarget. 2017; 8(40); 68138-68152. [PubMed: 28978104].
  12. Liu et al., 2004: Liu XL, Li SQ, Liu CJ, Tao HX, Zhang ZS. Antigen epitope of Helicobacter pylori vacuolating cytotoxin A. World journal of gastroenterology. 2004; 10(16); 2340-2343. [PubMed: 15285016].
  13. et al., 2009: Lü L, Cao HD, Zeng HQ, Wang PL, Wang LJ, Liu SN, Xiang TX. Recombinant Mycobacterium smegmatis mc(2)155 vaccine expressing outer membrane protein 26 kDa antigen affords therapeutic protection against Helicobacter pylori infection. Vaccine. 2009; 27(7); 972-978. [PubMed: 19111590].
  14. Manetti et al., 1997: Manetti R, Massari P, Marchetti M, Magagnoli C, Nuti S, Lupetti P, Ghiara P, Rappuoli R, Telford JL. Detoxification of the Helicobacter pylori cytotoxin. Infection and immunity. 1997; 65(11); 4615-4619. [PubMed: 9353041].
  15. Mori et al., 2012: Mori J, Vranac T, Smrekar B, Cernilec M, Serbec V?, Horvat S, Ihan A, Ben?ina M, Jerala R. Chimeric flagellin as the self-adjuvanting antigen for the activation of immune response against Helicobacter pylori. Vaccine. 2012; 30(40); 5856-5863. [PubMed: 22819990].
  16. O'Riordan et al., 2012: O'Riordan AA, Morales VA, Mulligan L, Faheem N, Windle HJ, Kelleher DP. Alkyl hydroperoxide reductase: a candidate Helicobacter pylori vaccine. Vaccine. 2012; 30(26); 3876-3884. [PubMed: 22512976].
  17. Radcliff et al., 1997: Radcliff FJ, Hazell SL, Kolesnikow T, Doidge C, Lee A. Catalase, a novel antigen for Helicobacter pylori vaccination. Infection and immunity. 1997; 65(11); 4668-4674. [PubMed: 9353048].
  18. Salyers and Whitt., 2002: Abigail A. Salyers, Dixie D. Whitt. Helicobacter pylori, A Resourceful Gastric Pathogen. 339-49. Bacterial Pathogenesis: A Molecular Approach. 2002. ASM Press, Washington D.C. USA.
  19. Satin et al., 2000: Satin B, Del Giudice G, Della Bianca V, Dusi S, Laudanna C, Tonello F, Kelleher D, Rappuoli R, Montecucco C, Rossi F. The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor. The Journal of experimental medicine. 2000; 191(9); 1467-1476. [PubMed: 10790422].
  20. Smythies et al., 2005: Smythies LE, Novak MJ, Waites KB, Lindsey JR, Morrow CD, Smith PD. Poliovirus replicons encoding the B subunit of Helicobacter pylori urease protect mice against H. pylori infection. Vaccine. 2005; 23(7); 901-909. [PubMed: 15603891].
  21. Stent et al., 2012: Stent A, Every AL, Ng GZ, Chionh YT, Ong LS, Edwards SJ, Sutton P. Helicobacter pylori thiolperoxidase as a protective antigen in single- and multi-component vaccines. Vaccine. 2012; 30(50); 7214-7220. [PubMed: 23084846].
  22. Talebi, 2016: Talebi Bezmin Abadi A. Vaccine against Helicobacter pylori: Inevitable approach. World journal of gastroenterology. 2016; 22(11); 3150-3157. [PubMed: 27003991].
  23. Todoroki et al., 2000: Todoroki I, Joh T, Watanabe K, Miyashita M, Seno K, Nomura T, Ohara H, Yokoyama Y, Tochikubo K, Itoh M. Suppressive effects of DNA vaccines encoding heat shock protein on Helicobacter pylori-induced gastritis in mice. Biochemical and biophysical research communications. 2000; 277(1); 159-163. [PubMed: 11027657].
  24. Wiki: Helicobacter pylori: Helicobacter pylori [http://en.wikipedia.org/wiki/Helicobacter_pylori]
  25. Xu et al., 2007: Xu C, Li ZS, Du YQ, Gong YF, Yang H, Sun B, Jin J. Construction of recombinant attenuated Salmonella typhimurium DNA vaccine expressing H pylori ureB and IL-2. World journal of gastroenterology : WJG. 2007; 13(6); 939-944. [PubMed: 17352028].
  26. Zhang et al., 2015: Zhang X, Zhang J, Yang F, Wu W, Sun H, Xie Q, Si W, Zou Q, Yang Z. Immunization with Heat Shock Protein A and ?-Glutamyl Transpeptidase Induces Reduction on the Helicobacter pylori Colonization in Mice. PloS one. 2015; 10(6); e0130391. [PubMed: 26102080].

Hendra virus

  1. Brown et al., 2011: Brown KS, Safronetz D, Marzi A, Ebihara H, Feldmann H. Vesicular stomatitis virus-based vaccine protects hamsters against lethal challenge with Andes virus. Journal of virology. 2011; 85(23); 12781-12791. [PubMed: 21917979].
  2. CDC: Hendra virus: Hendra Virus Disease and Nipah Virus Encephalitis [http://www.cdc.gov/ncidod/dvrd/spb/mnpages/dispages/nipah.htm]
  3. McEachern et al., 2008: McEachern JA, Bingham J, Crameri G, Green DJ, Hancock TJ, Middleton D, Feng YR, Broder CC, Wang LF, Bossart KN. A recombinant subunit vaccine formulation protects against lethal Nipah virus challenge in cats. Vaccine. 2008; 26(31); 3842-3852. [PubMed: 18556094].

Hepatitis A virus

  1. EMC: Avaxim: The electronic Medicines Compendium: Avaxim [http://emc.medicines.org.uk/medicine/17385/PIL/AVAXIM/]
  2. EMC: Epaxal: EMC: Epaxal Product Information [http://emc.medicines.org.uk/medicine/12742/SPC/Epaxal/]
  3. Emerson et al., 1996: Emerson SU, Tsarev SA, Govindarajan S, Shapiro M, Purcell RH. A simian strain of hepatitis A virus, AGM-27, functions as an attenuated vaccine for chimpanzees. The Journal of infectious diseases. 1996; 173(3); 592-597. [PubMed: 8627022].
  4. FDA: Havrix: FDA: Havrix vaccine information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm110016.htm]
  5. FDA: HAVRIX: FDA: HAVRIX Influenza Virus Vaccine [http://www.fda.gov/cber/label/havrixLB.pdf]
  6. FDA: TWINRIX: FDA: TWINRIX [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094035.htm]
  7. FDA: VAQTA: FDA: VAQTA vaccine information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm110017.htm]
  8. GSK: Twinrix: GSK: Twinrix Product information [http://www.gsk.ca/english/docs-pdf/Twinrix_PM_20080916_EN.pdf]
  9. Karayiannis et al., 1991: Karayiannis P, O'Rourke S, McGarvey MJ, Luther S, Waters J, Goldin R, Thomas HC. A recombinant vaccinia virus expressing hepatitis A virus structural polypeptides: characterization and demonstration of protective immunogenicity. The Journal of general virology. 1991; 72 ( Pt 9); 2167-2172. [PubMed: 1654376].
  10. Product Monograph: ViVaxim: Product Monograph: ViVaxim vaccine information [https://www.vaccineshoppecanada.com/document.cfm?file=vivaxim_e.pdf]
  11. SP: Avaxim Pediatrix: SP: Avaxim Pediatrix [https://www.vaccineshoppecanada.com/secure/pdfs/ca/Avaxim_Ped_E.pdf]
  12. Wiki: Hepatitis A: Wiki: Hepatitis A virus [http://en.wikipedia.org/wiki/Hepatitis_A_virus]

Hepatitis B virus

  1. Chen et al., 2011: Chen JH, Yu YS, Liu HH, Chen XH, Xi M, Zang GQ, Tang ZH. Ubiquitin conjugation of hepatitis B virus core antigen DNA vaccine leads to enhanced cell-mediated immune response in BALB/c mice. Hepatitis monthly. 2011; 11(8); 620-628. [PubMed: 22140385].
  2. Chow et al., 1998: Chow YH, Chiang BL, Lee YL, Chi WK, Lin WC, Chen YT, Tao MH. Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. Journal of immunology (Baltimore, Md. : 1950). 1998; 160(3); 1320-1329. [PubMed: 9570550].
  3. Conry et al., 2002: Conry RM, Curiel DT, Strong TV, Moore SE, Allen KO, Barlow DL, Shaw DR, LoBuglio AF. Safety and immunogenicity of a DNA vaccine encoding carcinoembryonic antigen and hepatitis B surface antigen in colorectal carcinoma patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2002; 8(9); 2782-2787. [PubMed: 12231517].
  4. Davis et al., 1993: Davis HL, Michel ML, Whalen RG. DNA-based immunization induces continuous secretion of hepatitis B surface antigen and high levels of circulating antibody. Human molecular genetics. 1993; 2(11); 1847-1851. [PubMed: 8281146].
  5. Davis et al., 1996: Davis HL, McCluskie MJ, Gerin JL, Purcell RH. DNA vaccine for hepatitis B: evidence for immunogenicity in chimpanzees and comparison with other vaccines. Proceedings of the National Academy of Sciences of the United States of America. 1996; 93(14); 7213-7218. [PubMed: 8692971].
  6. FDA COMVAX: FDA COMVAX package insert information [http://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM109869.pdf]
  7. FDA: COMVAX: FDA: COMVAX [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm174757.htm]
  8. FDA: ENGERIX-B: FDA: ENGERIX-B I [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm110102.htm]
  9. FDA: Pediarix: FDA: Pediarix [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm146759.htm]
  10. FDA: RECOMBIVAX HB: FDA: RECOMBIVAX HB [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm110098.htm]
  11. FDA: TWINRIX: FDA: TWINRIX [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094035.htm]
  12. He et al., 2005: He X, Jiang L, Wang F, Xiao Z, Li J, Liu LS, Li D, Ren D, Jin X, Li K, He Y, Shi K, Guo Y, Zhang Y, Sun S. Augmented humoral and cellular immune responses to hepatitis B DNA vaccine adsorbed onto cationic microparticles. Journal of controlled release : official journal of the Controlled Release Society. 2005; 107(2); 357-372. [PubMed: 16099068].
  13. Horta et al., 2022: Horta D, Forné M, Agustí A, Raga A, Martín-Cardona A, Hernández-Soto JM, Ruiz-Ramírez P, Esteve-Comas M. Efficacy of Hepatitis B Virus Vaccines HBVaxpro40© and Fendrix© in Patients with Chronic Liver Disease in Clinical Practice. Vaccines. 2022; 10(8); . [PubMed: 36016211].
  14. Hwang et al., 2002: Hwang YK, Kim NK, Park JM, Lee K, Han WK, Kim HI, Cheong HS. HLA-A2 1 restricted peptides from the HBx antigen induce specific CTL responses in vitro and in vivo. Vaccine. 2002; 20(31-32); 3770-3777. [PubMed: 12399208].
  15. Jain et al., 2009: Jain V, Vyas SP, Kohli DV. Well-defined and potent liposomal hepatitis B vaccines adjuvanted with lipophilic MDP derivatives. Nanomedicine : nanotechnology, biology, and medicine. 2009; 5(3); 334-344. [PubMed: 19523433].
  16. Khatri et al., 2008: Khatri K, Goyal AK, Gupta PN, Mishra N, Vyas SP. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. International journal of pharmaceutics. 2008; 354(1-2); 235-241. [PubMed: 18182259].
  17. Kuhröber et al., 1997: Kuhröber A, Wild J, Pudollek HP, Chisari FV, Reimann J. DNA vaccination with plasmids encoding the intracellular (HBcAg) or secreted (HBeAg) form of the core protein of hepatitis B virus primes T cell responses to two overlapping Kb- and Kd-restricted epitopes. International immunology. 1997; 9(8); 1203-1212. [PubMed: 9263018].
  18. Kwissa et al., 2003: Kwissa M, Kröger A, Hauser H, Reimann J, Schirmbeck R. Cytokine-facilitated priming of CD8+ T cell responses by DNA vaccination. Journal of molecular medicine (Berlin, Germany). 2003; 81(2); 91-9101. [PubMed: 12601525].
  19. Merck: Recombivax HB: Merck: Recombivax HB vaccine information [http://www.merck.com/product/usa/pi_circulars/r/recombivax_hb/recombivax_pi.pdf]
  20. Morrey et al., 2011: Morrey JD, Motter NE, Chang S, Fairman J. Breaking B and T cell tolerance using cationic lipid-DNA complexes (CLDC) as a vaccine adjuvant with hepatitis B virus (HBV) surface antigen in transgenic mice expressing HBV. Antiviral research. 2011; 90(3); 227-230. [PubMed: 21545812].
  21. Payette et al., 2006: Payette PJ, Ma X, Weeratna RD, McCluskie MJ, Shapiro M, Engle RE, Davis HL, Purcell RH. Testing of CpG-optimized protein and DNA vaccines against the hepatitis B virus in chimpanzees for immunogenicity and protection from challenge. Intervirology. 2006; 49(3); 144-151. [PubMed: 16428890].
  22. Qing et al., 2010: Qing Y, Chen M, Zhao J, Hu H, Xu H, Ling N, Peng M, Ren H. Construction of an HBV DNA vaccine by fusion of the GM-CSF gene to the HBV-S gene and examination of its immune effects in normal and HBV-transgenic mice. Vaccine. 2010; 28(26); 4301-4307. [PubMed: 20430121].
  23. Quiroga et al., 1990: Quiroga JA, Castillo I, Porres JC, Casado S, Sáez F, Gracia Martínez M, Gómez M, Inglada L, Sánchez-Sicilia L, Mora A. Recombinant gamma-interferon as adjuvant to hepatitis B vaccine in hemodialysis patients. Hepatology (Baltimore, Md.). 1990; 12(4 Pt 1); 661-663. [PubMed: 2145212].
  24. Schirmbeck et al., 1995: Schirmbeck R, Böhm W, Ando K, Chisari FV, Reimann J. Nucleic acid vaccination primes hepatitis B virus surface antigen-specific cytotoxic T lymphocytes in nonresponder mice. Journal of virology. 1995; 69(10); 5929-5934. [PubMed: 7666497].
  25. Tacket et al., 1999: Tacket CO, Roy MJ, Widera G, Swain WF, Broome S, Edelman R. Phase 1 safety and immune response studies of a DNA vaccine encoding hepatitis B surface antigen delivered by a gene delivery device. Vaccine. 1999; 17(22); 2826-2829. [PubMed: 10438052].
  26. Thermet et al., 2003: Thermet A, Rollier C, Zoulim F, Trepo C, Cova L. Progress in DNA vaccine for prophylaxis and therapy of hepatitis B. Vaccine. 2003; 21(7-8); 659-662. [PubMed: 12531335].
  27. Triyatni et al., 1998: Triyatni M, Jilbert AR, Qiao M, Miller DS, Burrell CJ. Protective efficacy of DNA vaccines against duck hepatitis B virus infection. Journal of virology. 1998; 72(1); 84-94. [PubMed: 9420203].
  28. Wang et al., 2000: Wang S, Liu X, Fisher K, Smith JG, Chen F, Tobery TW, Ulmer JB, Evans RK, Caulfield MJ. Enhanced type I immune response to a hepatitis B DNA vaccine by formulation with calcium- or aluminum phosphate. Vaccine. 2000; 18(13); 1227-1235. [PubMed: 10649624].
  29. Wiki: Hepatitis B: Wiki: Hepatitis B virus [http://en.wikipedia.org/wiki/Hepatitis_B]
  30. Xu et al., 2005: Xu W, Chu Y, Zhang R, Xu H, Wang Y, Xiong S. Endoplasmic reticulum targeting sequence enhances HBV-specific cytotoxic T lymphocytes induced by a CTL epitope-based DNA vaccine. Virology. 2005; 334(2); 255-263. [PubMed: 15780875].
  31. Zhang et al., 2001: Zhang Z, Torii N, Hu Z, Jacob J, Liang TJ. X-deficient woodchuck hepatitis virus mutants behave like attenuated viruses and induce protective immunity in vivo. The Journal of clinical investigation. 2001; 108(10); 1523-1531. [PubMed: 11714744].
  32. Zhang et al., 2006: Zhang W, Dong SF, Sun SH, Wang Y, Li GD, Qu D. Coimmunization with IL-15 plasmid enhances the longevity of CD8 T cells induced by DNA encoding hepatitis B virus core antigen. World journal of gastroenterology : WJG. 2006; 12(29); 4727-4735. [PubMed: 16937447].
  33. Zhou et al., 2003: Zhou FJ, Hu ZL, Dai JX, Chen RW, Shi K, Lin Y, Sun SH. Protection of tree shrews by pVAX-PS DNA vaccine against HBV infection. DNA and cell biology. 2003; 22(7); 475-478. [PubMed: 12932306].
  34. Zhou et al., 2003: Zhou X, Zheng L, Liu L, Xiang L, Yuan Z. T helper 2 immunity to hepatitis B surface antigen primed by gene-gun-mediated DNA vaccination can be shifted towards T helper 1 immunity by codelivery of CpG motif-containing oligodeoxynucleotides. Scandinavian journal of immunology. 2003; 58(3); 350-357. [PubMed: 12950682].
  35. Zinckgraf and Silbart, 2003: Zinckgraf JW, Silbart LK. Modulating gene expression using DNA vaccines with different 3'-UTRs influences antibody titer, seroconversion and cytokine profiles. Vaccine. 2003; 21(15); 1640-1649. [PubMed: 12639485].

Hepatitis C virus

  1. CDC - Hepatitis C: Hepatitis C Information for Health Professionals [http://www.cdc.gov/hepatitis/hcv/]
  2. Geissler et al., 1997: Geissler M, Gesien A, Tokushige K, Wands JR. Enhancement of cellular and humoral immune responses to hepatitis C virus core protein using DNA-based vaccines augmented with cytokine-expressing plasmids. Journal of immunology (Baltimore, Md. : 1950). 1997; 158(3); 1231-1237. [PubMed: 9013964].
  3. Guo et al., 2016: Guo H, Zhu J, Tan Y, Li C, Chen Z, Sun S, Liu G. Self-assembly of virus-like particles of rabbit hemorrhagic disease virus capsid protein expressed in Escherichia coli and their immunogenicity in rabbits. Antiviral research. 2016; 131; 85-91. [PubMed: 27118636].
  4. Lang et al., 2012: Lang Kuhs KA, Ginsberg AA, Yan J, Wiseman RW, Khan AS, Sardesai NY, O'Connor DH, Weiner DB. Hepatitis C virus NS3/NS4A DNA vaccine induces multiepitope T cell responses in rhesus macaques mimicking human immune responses. Molecular therapy : the journal of the American Society of Gene Therapy. 2012; 20(3); 669-678. [PubMed: 21952169].
  5. NCT01070407: A Study of a New Candidate Vaccine Against Hepatitis C Virus (HCV) [https://classic.clinicaltrials.gov/ct2/show/NCT01070407]
  6. Pierce et al., 2017: Pierce BG, Boucher EN, Piepenbrink KH, Ejemel M, Rapp CA, Thomas WD Jr, Sundberg EJ, Weng Z, Wang Y. Structure-Based Design of Hepatitis C Virus Vaccines That Elicit Neutralizing Antibody Responses to a Conserved Epitope. Journal of virology. 2017; 91(20); . [PubMed: 28794021].
  7. Wu et al., 2016: Wu X, Chen P, Lin H, Hao X, Liang Z. Hepatitis E virus: Current epidemiology and vaccine. Human vaccines & immunotherapeutics. 2016; 12(10); 2603-2610. [PubMed: 27184971].
  8. Zhang et al., 2017: Zhang S, Sun F, Ren T, Duan Y, Gu H, Lai C, Wang Z, Zhang P, Wang X, Yang P. Immunogenicity of an influenza virus-vectored vaccine carrying the hepatitis C virus protein epitopes in mice. Antiviral research. 2017; 145; 168-174. [PubMed: 28778831].

Hepatitis D virus

  1. A.D.A.M. Medical Encyclopedia: Delta agent (Hepatitis D) [http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0001264/]
  2. Fiedler et al., 2013: Fiedler M, Kosinska A, Schumann A, Brovko O, Walker A, Lu M, Johrden L, Mayer A, Wildner O, Roggendorf M. Prime/Boost Immunization with DNA and Adenoviral Vectors Protects from Hepatitis D Virus (HDV) Infection after Simultaneous Infection with HDV and Woodchuck Hepatitis Virus. Journal of virology. 2013; ; . [PubMed: 23637419].

Hepatitis E virus

  1. Al-Ayoubi et al., 2018: Al-Ayoubi J, Behrendt P, Bremer B, Suneetha PV, Gisa A, Rinker F, Manns MP, Cornberg M, Wedemeyer H, Kraft ARM. Hepatitis E virus ORF 1 induces proliferative and functional T-cell responses in patients with ongoing and resolved hepatitis E. Liver international : official journal of the International Association for the Study of the Liver. 2018; 38(2); 266-277. [PubMed: 28718943].
  2. CDC - Hepatitis E: Hepatitis E Information for Health Professionals [http://www.cdc.gov/hepatitis/HEV/]
  3. He et al., 1997: He J, Hoffman SL, Hayes CG. DNA inoculation with a plasmid vector carrying the hepatitis E virus structural protein gene induces immune response in mice. Vaccine. 1997; 15(4); 357-362. [PubMed: 9141205].
  4. Joshi and Arankalle, 2016: Joshi SS, Arankalle VA. Differential Immune Responses in Mice Immunized with Recombinant Neutralizing Epitope Protein of Hepatitis E Virus Formulated with Liposome and Alum Adjuvants. Viral immunology. 2016; 29(6); 350-360. [PubMed: 27285290].
  5. Li et al., 2009: Li S, Tang X, Seetharaman J, Yang C, Gu Y, Zhang J, Du H, Shih JW, Hew CL, Sivaraman J, Xia N. Dimerization of hepatitis E virus capsid protein E2s domain is essential for virus-host interaction. PLoS pathogens. 2009; 5(8); e1000537. [PubMed: 19662165].
  6. Wu et al., 2016: Wu X, Chen P, Lin H, Hao X, Liang Z. Hepatitis E virus: Current epidemiology and vaccine. Human vaccines & immunotherapeutics. 2016; 12(10); 2603-2610. [PubMed: 27184971].

Herpes simplex virus type 1 and 2

  1. Awasthi et al., 2008: Awasthi S, Lubinski JM, Eisenberg RJ, Cohen GH, Friedman HM. An HSV-1 gD mutant virus as an entry-impaired live virus vaccine. Vaccine. 2008; 26(9); 1195-1203. [PubMed: 18243431].
  2. Awasthi et al., 2011: Awasthi S, Lubinski JM, Shaw CE, Barrett SM, Cai M, Wang F, Betts M, Kingsley S, Distefano DJ, Balliet JW, Flynn JA, Casimiro DR, Bryan JT, Friedman HM. Immunization with a vaccine combining herpes simplex virus 2 (HSV-2) glycoprotein C (gC) and gD subunits improves the protection of dorsal root ganglia in mice and reduces the frequency of recurrent vaginal shedding of HSV-2 DNA in guinea pigs compared to immunization with gD alone. Journal of virology. 2011; 85(20); 10472-10486. [PubMed: 21813597].
  3. Brittle et al., 2008: Brittle EE, Wang F, Lubinski JM, Bunte RM, Friedman HM. A replication-competent, neuronal spread-defective, live attenuated herpes simplex virus type 1 vaccine. Journal of virology. 2008; 82(17); 8431-8441. [PubMed: 18562543].
  4. Burke et al., 1994: Burke RL, Goldbeck C, Ng P, Stanberry L, Ott G, Van Nest G. The influence of adjuvant on the therapeutic efficacy of a recombinant genital herpes vaccine. The Journal of infectious diseases. 1994; 170(5); 1110-1119. [PubMed: 7963702].
  5. Chlibek et al., 2013: Chlibek R, Bayas JM, Collins H, de la Pinta ML, Ledent E, Mols JF, Heineman TC. Safety and Immunogenicity of an AS01-adjuvanted Varicella-zoster Virus Subunit Candidate Vaccine Against Herpes Zoster in Adults >=50 Years of Age. The Journal of infectious diseases. 2013; ; . [PubMed: 23904292].
  6. Fan and Yang, 2010: Fan J, Yang H. Construction and immune response of HSV-2gD-Hsp70 DNA vaccine. Journal of dermatological science. 2010; 57(1); 64-66. [PubMed: 19942410].
  7. Farrell et al., 1994: Farrell HE, McLean CS, Harley C, Efstathiou S, Inglis S, Minson AC. Vaccine potential of a herpes simplex virus type 1 mutant with an essential glycoprotein deleted. Journal of virology. 1994; 68(2); 927-932. [PubMed: 8289395].
  8. Field and Wildy, 1978: Field HJ, Wildy P. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice. The Journal of hygiene. 1978; 81(2); 267-277. [PubMed: 212476].
  9. GlaxoSmithKline, 2013: Study to Evaluate GSK Biologicals' Herpes Zoster Vaccine GSK1437173A in Adults Aged >= 50 Years [http://clinicaltrials.gov/ct2/show/study/NCT01165177]
  10. Goel et al., 2005: Goel N, Zimmerman DH, Rosenthal KS. Ligand epitope antigen presentation system vaccines against herpes simplex virus. Frontiers in bioscience : a journal and virtual library. 2005; 10; 966-974. [PubMed: 15569635].
  11. Grabowska et al., 2000: Grabowska AM, Jennings R, Laing P, Darsley M, Jameson CL, Swift L, Irving WL. Immunisation with phage displaying peptides representing single epitopes of the glycoprotein G can give rise to partial protective immunity to HSV-2. Virology. 2000; 269(1); 47-53. [PubMed: 10725197].
  12. Halford et al., 2011: Halford WP, Püschel R, Gershburg E, Wilber A, Gershburg S, Rakowski B. A live-attenuated HSV-2 ICP0 virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine. PloS one. 2011; 6(3); e17748. [PubMed: 21412438].
  13. Hariharan et al., 1998: Hariharan MJ, Driver DA, Townsend K, Brumm D, Polo JM, Belli BA, Catton DJ, Hsu D, Mittelstaedt D, McCormack JE, Karavodin L, Dubensky TW Jr, Chang SM, Banks TA. DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector. Journal of virology. 1998; 72(2); 950-958. [PubMed: 9444987].
  14. Haynes et al., 2006: Haynes JR, Arrington J, Dong L, Braun RP, Payne LG. Potent protective cellular immune responses generated by a DNA vaccine encoding HSV-2 ICP27 and the E. coli heat labile enterotoxin. Vaccine. 2006; 24(23); 5016-5026. [PubMed: 16621198].
  15. Heineman et al., 1995: Heineman TC, Connelly BL, Bourne N, Stanberry LR, Cohen J. Immunization with recombinant varicella-zoster virus expressing herpes simplex virus type 2 glycoprotein D reduces the severity of genital herpes in guinea pigs. Journal of virology. 1995; 69(12); 8109-8113. [PubMed: 7494331].
  16. Hu et al., 2011: Hu K, Dou J, Yu F, He X, Yuan X, Wang Y, Liu C, Gu N. An ocular mucosal administration of nanoparticles containing DNA vaccine pRSC-gD-IL-21 confers protection against mucosal challenge with herpes simplex virus type 1 in mice. Vaccine. 2011; 29(7); 1455-1462. [PubMed: 21185849].
  17. Huilan et al., 2010: Huilan Y, Cui Z, Jianyong F, Lei G, Wei Q. Construction of, and T-helper (Th)1/Th2 immune responses to, a herpes simplex virus type 2 glycoprotein D-cytotoxic T-lymphocyte epitope DNA vaccine. Clinical and experimental dermatology. 2010; ; . [PubMed: 20497188].
  18. Jamali et al., 2009: Jamali A, Mahdavi M, Hassan ZM, Sabahi F, Farsani MJ, Bamdad T, Soleimanjahi H, Motazakker M, Shahabi S. A novel adjuvant, the general opioid antagonist naloxone, elicits a robust cellular immune response for a DNA vaccine. International immunology. 2009; 21(3); 217-225. [PubMed: 19174474].
  19. Kim et al., 2009: Kim SB, Han YW, Rahman MM, Kim SJ, Yoo DJ, Kang SH, Kim K, Eo SK. Modulation of protective immunity against herpes simplex virus via mucosal genetic co-transfer of DNA vaccine with beta2-adrenergic agonist. Experimental & molecular medicine. 2009; 41(11); 812-823. [PubMed: 19641376].
  20. Manickan et al., 1997: Manickan E, Kanangat S, Rouse RJ, Yu Z, Rouse BT. Enhancement of immune response to naked DNA vaccine by immunization with transfected dendritic cells. Journal of leukocyte biology. 1997; 61(2); 125-132. [PubMed: 9021916].
  21. Manservigi et al., 1990: Manservigi R, Grossi MP, Gualandri R, Balboni PG, Marchini A, Rotola A, Rimessi P, Di Luca D, Cassai E, Barbanti-Brodano G. Protection from herpes simplex virus type 1 lethal and latent infections by secreted recombinant glycoprotein B constitutively expressed in human cells with a BK virus episomal vector. Journal of virology. 1990; 64(1); 431-436. [PubMed: 2152829].
  22. McClements et al., 1996: McClements WL, Armstrong ME, Keys RD, Liu MA. Immunization with DNA vaccines encoding glycoprotein D or glycoprotein B, alone or in combination, induces protective immunity in animal models of herpes simplex virus-2 disease. Proceedings of the National Academy of Sciences of the United States of America. 1996; 93(21); 11414-11420. [PubMed: 8876149].
  23. McClements et al., 1997: McClements WL, Armstrong ME, Keys RD, Liu MA. The prophylactic effect of immunization with DNA encoding herpes simplex virus glycoproteins on HSV-induced disease in guinea pigs. Vaccine. 1997; 15(8); 857-860. [PubMed: 9234533].
  24. Mester et al., 1999: Mester JC, Twomey TA, Tepe ET, Bernstein DI. Immunity induced by DNA immunization with herpes simplex virus type 2 glycoproteins B and C. Vaccine. 1999; 18(9-10); 875-883. [PubMed: 10580201].
  25. Morrison and Knipe, 1994: Morrison LA, Knipe DM. Immunization with replication-defective mutants of herpes simplex virus type 1: sites of immune intervention in pathogenesis of challenge virus infection. Journal of virology. 1994; 68(2); 689-696. [PubMed: 8289372].
  26. Nass et al., 1998: Nass PH, Elkins KL, Weir JP. Antibody response and protective capacity of plasmid vaccines expressing three different herpes simplex virus glycoproteins. The Journal of infectious diseases. 1998; 178(3); 611-617. [PubMed: 9728527].
  27. Orr et al., 2007: Orr MT, Orgun NN, Wilson CB, Way SS. Cutting edge: recombinant Listeria monocytogenes expressing a single immune-dominant peptide confers protective immunity to herpes simplex virus-1 infection. Journal of immunology (Baltimore, Md. : 1950). 2007; 178(8); 4731-4735. [PubMed: 17404252].
  28. Osorio et al., 2004: Osorio Y, Cohen J, Ghiasi H. Improved protection from primary ocular HSV-1 infection and establishment of latency using multigenic DNA vaccines. Investigative ophthalmology & visual science. 2004; 45(2); 506-514. [PubMed: 14744892].
  29. Shlapobersky et al., 2012: Shlapobersky M, Marshak JO, Dong L, Huang ML, Wei Q, Chu A, Rolland A, Sullivan S, Koelle DM. Vaxfectin-adjuvanted plasmid DNA vaccine improves protection and immunogenicity in a murine model of genital herpes infection. The Journal of general virology. 2012; 93(Pt 6); 1305-1315. [PubMed: 22398318].
  30. Sin et al., 2001: Sin JI, Kim JJ, Zhang D, Weiner DB. Modulation of cellular responses by plasmid CD40L: CD40L plasmid vectors enhance antigen-specific helper T cell type 1 CD4+ T cell-mediated protective immunity against herpes simplex virus type 2 in vivo. Human gene therapy. 2001; 12(9); 1091-1102. [PubMed: 11399230].
  31. Tirabassi et al., 2011: Tirabassi RS, Ace CI, Levchenko T, Torchilin VP, Selin LK, Nie S, Guberski DL, Yang K. A mucosal vaccination approach for herpes simplex virus type 2. Vaccine. 2011; 29(5); 1090-1098. [PubMed: 21134447].
  32. Toka and Rouse, 2005: Toka FN, Rouse BT. Mucosal application of plasmid-encoded IL-15 sustains a highly protective anti-Herpes simplex virus immunity. Journal of leukocyte biology. 2005; 78(1); 178-186. [PubMed: 15817700].
  33. Veselenak et al., 2012: Veselenak RL, Shlapobersky M, Pyles RB, Wei Q, Sullivan SM, Bourne N. A Vaxfectin(®)-adjuvanted HSV-2 plasmid DNA vaccine is effective for prophylactic and therapeutic use in the guinea pig model of genital herpes. Vaccine. 2012; 30(49); 7046-7051. [PubMed: 23041125].
  34. Wiki: Herpes simplex virus: Herpes simplex virus [http://en.wikipedia.org/wiki/Herpes_simplex_virus]

Hirame rhabdovirus

  1. Borzym et al., 2012: First detection of Hirame rhabdovirus (HIRRV) in Europe [http://orbit.dtu.dk/fedora/objects/orbit:112698/datastreams/file_9708708/content]
  2. Seo et al., 2006: Seo JY, Kim KH, Kim SG, Oh MJ, Nam SW, Kim YT, Choi TJ. Protection of flounder against hirame rhabdovirus (HIRRV) with a DNA vaccine containing the glycoprotein gene. Vaccine. 2006; 24(7); 1009-1015. [PubMed: 16176849].
  3. Yasuike et al., 2007: Yasuike M, Kondo H, Hirono I, Aoki T. Difference in Japanese flounder, Paralichthys olivaceus gene expression profile following hirame rhabdovirus (HIRRV) G and N protein DNA vaccination. Fish & shellfish immunology. 2007; 23(3); 531-541. [PubMed: 17449275].

Human coxsackievirus

  1. Henke et al., 2004: Henke A, Chiang CS, Zell R, Stelzner A. Co-expression of interleukin-2 to increase the efficacy of DNA vaccine-mediated protection in coxsackievirus B3-infected mice. Antiviral research. 2004; 64(2); 131-136. [PubMed: 15498609].
  2. Jin et al., 2021: Jin WP, Lu J, Zhang XY, Wu J, Wei ZN, Mai JY, Qian SS, Yu YT, Meng SL, Wang ZJ, Shen S. Efficacy of Coxsackievirus A5 Vaccine Candidates in an Actively Immunized Mouse Model. Journal of virology. 2021; 95(6); . [PubMed: 33408178].
  3. MedicineNet - Coxsackievirus: Coxsackie Virus [http://www.medicinenet.com/coxsackie_virus/article.htm]

Human cytomegalovirus

  1. Hwang et al., 1999: Hwang ES, Kwon KB, Park JW, Kim DJ, Park CG, Cha CY. Induction of neutralizing antibody against human cytomegalovirus (HCMV) with DNA-mediated immunization of HCMV glycoprotein B in mice. Microbiology and immunology. 1999; 43(3); 307-310. [PubMed: 10338203].
  2. Mayo Clinic - CMV: Cytomegalovirus (CMV) infection [http://www.mayoclinic.com/health/cmv/DS00938]
  3. Schleiss, 2009: Schleiss MR. VCL-CB01, an injectable bivalent plasmid DNA vaccine for potential protection against CMV disease and infection. Current opinion in molecular therapeutics. 2009; 11(5); 572-578. [PubMed: 19806506].
  4. Tang et al., 2017: Tang A, Freed DC, Li F, Meschino S, Prokop M, Bett A, Casimiro D, Wang D, Fu TM. Functionally inactivated dominant viral antigens of human cytomegalovirus delivered in replication incompetent adenovirus type 6 vectors as vaccine candidates. Human vaccines & immunotherapeutics. 2017; 13(12); 2763-2771. [PubMed: 28494195].
  5. Temperton et al., 2003: Temperton NJ, Quenelle DC, Lawson KM, Zuckerman JN, Kern ER, Griffiths PD, Emery VC. Enhancement of humoral immune responses to a human cytomegalovirus DNA vaccine: adjuvant effects of aluminum phosphate and CpG oligodeoxynucleotides. Journal of medical virology. 2003; 70(1); 86-90. [PubMed: 12629648].
  6. Wang et al., 2013: Wang H, Yao Y, Huang C, Chen Q, Chen J, Chen Z. Immunization with cytomegalovirus envelope glycoprotein M and glycoprotein N DNA vaccines can provide mice with complete protection against a lethal murine cytomegalovirus challenge. Virologica Sinica. 2013; 28(3); 174-182. [PubMed: 23715998].

Human Immunodeficiency Virus

  1. Aggarwal et al., 2005: Aggarwal P, Kumar S, Vajpayee M, Seth P. Adjuvant action of murine IL-2/Ig plasmid after intramuscular immunization with Indian HIV-1 subtype C recombinant env.gp 120 construct. Viral immunology. 2005; 18(4); 649-656. [PubMed: 16359231].
  2. Ami et al., 2005: Ami Y, Izumi Y, Matsuo K, Someya K, Kanekiyo M, Horibata S, Yoshino N, Sakai K, Shinohara K, Matsumoto S, Yamada T, Yamazaki S, Yamamoto N, Honda M. Priming-boosting vaccination with recombinant Mycobacterium bovis bacillus Calmette-Guérin and a nonreplicating vaccinia virus recombinant leads to long-lasting and effective immunity. Journal of virology. 2005; 79(20); 12871-12879. [PubMed: 16188989].
  3. Ara et al., 2001: Ara Y, Saito T, Takagi T, Hagiwara E, Miyagi Y, Sugiyama M, Kawamoto S, Ishii N, Yoshida T, Hanashi D, Koshino T, Okada H, Okuda K. Zymosan enhances the immune response to DNA vaccine for human immunodeficiency virus type-1 through the activation of complement system. Immunology. 2001; 103(1); 98-9105. [PubMed: 11380697].
  4. Ayyavoo et al., 2002: Ayyavoo V, Muthumani K, Kudchodkar S, Zhang D, Ramanathan P, Dayes NS, Kim JJ, Sin JI, Montaner LJ, Weiner DB. HIV-1 viral protein R compromises cellular immune function in vivo. International immunology. 2002 Jan; 14(1); 13-22. [PubMed: 11751747].
  5. Bagley et al., 2003: Bagley KC, Shata MT, Onyabe DY, DeVico AL, Fouts TR, Lewis GK, Hone DM. Immunogenicity of DNA vaccines that direct the coincident expression of the 120 kDa glycoprotein of human immunodeficiency virus and the catalytic domain of cholera toxin. Vaccine. 2003; 21(23); 3335-3341. [PubMed: 12804865].
  6. Barouch et al., 2012: Barouch DH, Klasse PJ, Dufour J, Veazey RS, Moore JP. Macaque studies of vaccine and microbicide combinations for preventing HIV-1 sexual transmission. Proceedings of the National Academy of Sciences of the United States of America. 2012; 109(22); 8694-8698. [PubMed: 22586094].
  7. Barrett et al., 1989: Barrett N, Mitterer A, Mundt W, Eibl J, Eibl M, Gallo RC, Moss B, Dorner F. Large-scale production and purification of a vaccinia recombinant-derived HIV-1 gp160 and analysis of its immunogenicity. AIDS research and human retroviruses. 1989; 5(2); 159-171. [PubMed: 2713166].
  8. Benson et al., 1998: Benson J, Chougnet C, Robert-Guroff M, Montefiori D, Markham P, Shearer G, Gallo RC, Cranage M, Paoletti E, Limbach K, Venzon D, Tartaglia J, Franchini G. Recombinant vaccine-induced protection against the highly pathogenic simian immunodeficiency virus SIV(mac251): dependence on route of challenge exposure. Journal of virology. 1998; 72(5); 4170-4182. [PubMed: 9557706].
  9. Bielinska et al., 2008: Bielinska AU, Janczak KW, Landers JJ, Markovitz DM, Montefiori DC, Baker JR Jr. Nasal immunization with a recombinant HIV gp120 and nanoemulsion adjuvant produces Th1 polarized responses and neutralizing antibodies to primary HIV type 1 isolates. AIDS research and human retroviruses. 2008; 24(2); 271-281. [PubMed: 18260780].
  10. Bomford et al., 1992: Bomford R, Stapleton M, Winsor S, McKnight A, Andronova T. The control of the antibody isotype response to recombinant human immunodeficiency virus gp120 antigen by adjuvants. AIDS research and human retroviruses. 1992; 8(10); 1765-1771. [PubMed: 1457190].
  11. Bower et al., 2004: Bower JF, Yang X, Sodroski J, Ross TM. Elicitation of neutralizing antibodies with DNA vaccines expressing soluble stabilized human immunodeficiency virus type 1 envelope glycoprotein trimers conjugated to C3d. Journal of virology. 2004; 78(9); 4710-4719. [PubMed: 15078953].
  12. Boyer et al., 1997: Boyer JD, Ugen KE, Wang B, Agadjanyan M, Gilbert L, Bagarazzi ML, Chattergoon M, Frost P, Javadian A, Williams WV, Refaeli Y, Ciccarelli RB, McCallus D, Coney L, Weiner DB. Protection of chimpanzees from high-dose heterologous HIV-1 challenge by DNA vaccination. Nature medicine. 1997; 3(5); 526-532. [PubMed: 9142121].
  13. Bråve et al., 2007: Bråve A, Hinkula J, Cafaro A, Eriksson LE, Srivastava IK, Magnani M, Ensoli B, Barnett SW, Wahren B, Rollman E. Candidate HIV-1 gp140DeltaV2, Gag and Tat vaccines protect against experimental HIV-1/MuLV challenge. Vaccine. 2007; 25(39-40); 6882-6890. [PubMed: 17707956].
  14. Bråve et al., 2005: Bråve A, Ljungberg K, Boberg A, Rollman E, Isaguliants M, Lundgren B, Blomberg P, Hinkula J, Wahren B. Multigene/multisubtype HIV-1 vaccine induces potent cellular and humoral immune responses by needle-free intradermal delivery. Molecular therapy : the journal of the American Society of Gene Therapy. 2005; 12(6); 1197-1205. [PubMed: 16112909].
  15. Breton et al., 2007: Breton M, Zhao C, Ouellette M, Tremblay MJ, Papadopoulou B. A recombinant non-pathogenic Leishmania vaccine expressing human immunodeficiency virus 1 (HIV-1) Gag elicits cell-mediated immunity in mice and decreases HIV-1 replication in human tonsillar tissue following exposure to HIV-1 infection. The Journal of general virology. 2007; 88(Pt 1); 217-225. [PubMed: 17170454].
  16. Buchbinder et al., 1994: Buchbinder SP, Katz MH, Hessol NA, O'Malley PM, Holmberg SD. Long-term HIV-1 infection without immunologic progression. AIDS (London, England). 1994 Aug; 8(8); 1123-8. [PubMed: 7986410].
  17. Calarota et al., 1998: Calarota S, Bratt G, Nordlund S, Hinkula J, Leandersson AC, Sandström E, Wahren B. Cellular cytotoxic response induced by DNA vaccination in HIV-1-infected patients. Lancet. 1998; 351(9112); 1320-1325. [PubMed: 9643795].
  18. Calarota et al., 2008: Calarota SA, Dai A, Trocio JN, Weiner DB, Lori F, Lisziewicz J. IL-15 as memory T-cell adjuvant for topical HIV-1 DermaVir vaccine. Vaccine. 2008; 26(40); 5188-5195. [PubMed: 18462844].
  19. Caley et al., 1999: Caley IJ, Betts MR, Davis NL, Swanstrom R, Frelinger JA, Johnston RE. Venezuelan equine encephalitis virus vectors expressing HIV-1 proteins: vector design strategies for improved vaccine efficacy. Vaccine. 1999 Aug 6; 17(23-24); 3124-35. [PubMed: 10462249].
  20. Caputo et al., 2003: Caputo A, Gavioli R, Altavilla G, Brocca-Cofano E, Boarini C, Betti M, Castaldello A, Lorenzini F, Micheletti F, Cafaro A, Sparnacci K, Laus M, Tondelli L, Ensoli B. Immunization with low doses of HIV-1 tat DNA delivered by novel cationic block copolymers induces CTL responses against Tat. Vaccine. 2003; 21(11-12); 1103-1111. [PubMed: 12559787].
  21. Casimiro et al., 2003: Casimiro DR, Chen L, Fu TM, Evans RK, Caulfield MJ, Davies ME, Tang A, Chen M, Huang L, Harris V, Freed DC, Wilson KA, Dubey S, Zhu DM, Nawrocki D, Mach H, Troutman R, Isopi L, Williams D, Hurni W, Xu Z, Smith JG, Wang S, Liu X, Guan L, Long R, Trigona W, Heidecker GJ, Perry HC, Persaud N, Toner TJ, Su Q, Liang X, Youil R, Chastain M, Bett AJ, Volkin DB, Emini EA, Shiver JW. Comparative immunogenicity in rhesus monkeys of DNA plasmid, recombinant vaccinia virus, and replication-defective adenovirus vectors expressing a human immunodeficiency virus type 1 gag gene. Journal of virology. 2003; 77(11); 6305-6313. [PubMed: 12743287].
  22. Chan et al., 1997: Chan DC, Fass D, Berger JM, Kim PS. Core structure of gp41 from the HIV envelope glycoprotein. Cell. 1997 Apr 18; 89(2); 263-73. [PubMed: 9108481].
  23. Chen et al., 2005: Chen X, Rock MT, Hammonds J, Tartaglia J, Shintani A, Currier J, Slike B, Crowe JE Jr, Marovich M, Spearman P. Pseudovirion particle production by live poxvirus human immunodeficiency virus vaccine vector enhances humoral and cellular immune responses. Journal of virology. 2005 May; 79(9); 5537-47. [PubMed: 15827168].
  24. Chin'ombe et al., 2009: Chin'ombe N, Bourn WR, Williamson AL, Shephard EG. Oral vaccination with a recombinant Salmonella vaccine vector provokes systemic HIV-1 subtype C Gag-specific CD4+ Th1 and Th2 cell immune responses in mice. Virology journal. 2009; 6; 87. [PubMed: 19555490].
  25. Coakley et al., 2005: Coakley E, Petropoulos CJ, Whitcomb JM. Assessing chemokine co-receptor usage in HIV. Current opinion in infectious diseases. 2005 Feb; 18(1); 9-15. [PubMed: 15647694].
  26. Coffin et al., 1986: Coffin J, Haase A, Levy JA, Montagnier L, Oroszlan S, Teich N, Temin H, Toyoshima K, Varmus H, Vogt P. What to call the AIDS virus?. Nature. 1986 May 1-7; 321(6065); 10. [PubMed: 3010128].
  27. Cristillo et al., 2011: Cristillo AD, Ferrari MG, Hudacik L, Lewis B, Galmin L, Bowen B, Thompson D, Petrovsky N, Markham P, Pal R. Induction of mucosal and systemic antibody and T-cell responses following prime-boost immunization with novel adjuvanted human immunodeficiency virus-1-vaccine formulations. The Journal of general virology. 2011; 92(Pt 1); 128-140. [PubMed: 21169215].
  28. Dale et al., 2004: Dale CJ, De Rose R, Stratov I, Chea S, Montefiori DC, Thomson S, Ramshaw IA, Coupar BE, Boyle DB, Law M, Kent SJ. Efficacy of DNA and fowlpox virus priming/boosting vaccines for simian/human immunodeficiency virus. Journal of virology. 2004; 78(24); 13819-13828. [PubMed: 15564490].
  29. Davis et al., 2002: Davis NL, West A, Reap E, MacDonald G, Collier M, Dryga S, Maughan M, Connell M, Walker C, McGrath K, Cecil C, Ping LH, Frelinger J, Olmsted R, Keith P, Swanstrom R, Williamson C, Johnson P, Montefiori D, Johnston RE. Alphavirus replicon particles as candidate HIV vaccines. IUBMB life. 2002 Apr-May; 53(4-5); 209-11. [PubMed: 12120997].
  30. Deng et al., 1996: Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996 Jun 20; 381(6584); 661-6. [PubMed: 8649511].
  31. Denis-Mize et al., 2000: Denis-Mize KS, Dupuis M, MacKichan ML, Singh M, Doe B, O'Hagan D, Ulmer JB, Donnelly JJ, McDonald DM, Ott G. Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene therapy. 2000; 7(24); 2105-2112. [PubMed: 11223992].
  32. Duerr et al., 2012: Duerr A, Huang Y, Buchbinder S, Coombs RW, Sanchez J, Del Rio C, Casapia M, Santiago S, Gilbert P, Corey L, Robertson MN. Extended Follow-up Confirms Early Vaccine-Enhanced Risk of HIV Acquisition and Demonstrates Waning Effect Over Time Among Participants in a Randomized Trial of Recombinant Adenovirus HIV Vaccine (Step Study). The Journal of infectious diseases. 2012; 206(2); 258-266. [PubMed: 22561365].
  33. Durier et al., 2006: Durier C, Launay O, Meiffredy V, Saidi Y, Salmon D, Levy Y, Guillet JG, Pialoux G, Aboulker JP. Clinical safety of HIV lipopeptides used as vaccines in healthy volunteers and HIV-infected adults. AIDS (London, England). 2006 Apr 24; 20(7); 1039-49. [PubMed: 16603857].
  34. Flatz et al., 2012: Flatz L, Cheng C, Wang L, Foulds KE, Ko SY, Kong WP, Roychoudhuri R, Shi W, Bao S, Todd JP, Asmal M, Shen L, Donaldson M, Schmidt SD, Gall JG, Pinschewer DD, Letvin NL, Rao S, Mascola JR, Roederer M, Nabel GJ. Gene-Based Vaccination with a Mismatched Envelope Protects against Simian Immunodeficiency Virus Infection in Nonhuman Primates. Journal of virology. 2012; 86(15); 7760-7770. [PubMed: 22593152].
  35. Franco et al., 2010: Franco D, Li W, Qing F, Stoyanov CT, Moran T, Rice CM, Ho DD. Evaluation of yellow fever virus 17D strain as a new vector for HIV-1 vaccine development. Vaccine. 2010; 28(35); 5676-5685. [PubMed: 20600494].
  36. Gu et al., 2010: Gu R, Shampang A, Nashar T, Patil M, Fuller DH, Ramsingh AI. Oral immunization with a live coxsackievirus/HIV recombinant induces gag p24-specific T cell responses. PloS one. 2010; 5(9); . [PubMed: 20824074].
  37. Gudmundsdotter et al., 2009: Gudmundsdotter L, Nilsson C, Brave A, Hejdeman B, Earl P, Moss B, Robb M, Cox J, Michael N, Marovich M, Biberfeld G, Sandström E, Wahren B. Recombinant Modified Vaccinia Ankara (MVA) effectively boosts DNA-primed HIV-specific immune responses in humans despite pre-existing vaccinia immunity. Vaccine. 2009; 27(33); 4468-4474. [PubMed: 19450644].
  38. Hammer et al., 2009: Safety and Effectiveness of HIV-1 DNA Plasmid Vaccine and HIV-1 Recombinant Adenoviral Vector Vaccine in HIV-Uninfected, Circumcised Men and Male-to-Female (MTF) Transgender Persons Who Have Sex With Men [http://www.clinicaltrials.gov/ct2/show/NCT00865566?term=Ad5+DNA&rank=3]
  39. Hanke et al., 2002: Hanke T, McMichael AJ, Samuel RV, Powell LA, McLoughlin L, Crome SJ, Edlin A. Lack of toxicity and persistence in the mouse associated with administration of candidate DNA- and modified vaccinia virus Ankara (MVA)-based HIV vaccines for Kenya. Vaccine. 2002; 21(1-2); 108-114. [PubMed: 12443668].
  40. Harris et al., 1996: Harris SJ, Woodrow SA, Gearing AJ, Adams SE, Kingsman AJ, Layton GT. The effects of adjuvants on CTL induction by V3:Ty-virus-like particles (V3-VLPs) in mice. Vaccine. 1996; 14(10); 971-976. [PubMed: 8873390].
  41. Harro et al., 2009: Harro CD, Robertson MN, Lally MA, O'Neill LD, Edupuganti S, Goepfert PA, Mulligan MJ, Priddy FH, Dubey SA, Kierstead LS, Sun X, Casimiro DR, DiNubile MJ, Shiver JW, Leavitt RY, Mehrotra DV. Safety and immunogenicity of adenovirus-vectored near-consensus HIV type 1 clade B gag vaccines in healthy adults. AIDS research and human retroviruses. 2009; 25(1); 103-114. [PubMed: 19108693].
  42. Hawkins et al., 2003: Hawkins WG, Trcka J, Segal N, Blachere NE, Gold JS, Moroi Y, Bowne WB, Lewis JJ, Wolchok JD, Houghton AN. The role of lipopolysaccharide in T-cell responses following DNA vaccination. Vaccine. 2003; 21(13-14); 1548-1553. [PubMed: 12615452].
  43. Hejdeman et al., 2004: Hejdeman B, Boström AC, Matsuda R, Calarota S, Lenkei R, Fredriksson EL, Sandström E, Bratt G, Wahren B. DNA immunization with HIV early genes in HIV type 1-infected patients on highly active antiretroviral therapy. AIDS research and human retroviruses. 2004; 20(8); 860-870. [PubMed: 15320990].
  44. Hirao et al., 2008: Hirao LA, Wu L, Khan AS, Hokey DA, Yan J, Dai A, Betts MR, Draghia-Akli R, Weiner DB. Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine. 2008; 26(25); 3112-3120. [PubMed: 18430495].
  45. Johnson et al., 2012: Johnson MJ, Petrovas C, Yamamoto T, Lindsay RW, Loré K, Gall JG, Gostick E, Lefebvre F, Cameron MJ, Price DA, Haddad E, Sekaly RP, Seder RA, Koup RA. Type I IFN induced by adenovirus serotypes 28 and 35 has multiple effects on T cell immunogenicity. Journal of immunology (Baltimore, Md. : 1950). 2012; 188(12); 6109-6118. [PubMed: 22586038].
  46. Kaneko et al., 2000: Kaneko H, Bednarek I, Wierzbicki A, Kiszka I, Dmochowski M, Wasik TJ, Kaneko Y, Kozbor D. Oral DNA vaccination promotes mucosal and systemic immune responses to HIV envelope glycoprotein. Virology. 2000; 267(1); 8-16. [PubMed: 10648178].
  47. Kang et al., 2003: Kang KK, Choi SM, Choi JH, Lee DS, Kim CY, Ahn BO, Kim BM, Kim WB. Safety evaluation of GX-12, a new HIV therapeutic vaccine: investigation of integration into the host genome and expression in the reproductive organs. Intervirology. 2003; 46(5); 270-276. [PubMed: 14555847].
  48. Kent et al., 2007: Kent S, De Rose R, Rollman E. Drug evaluation: DNA/MVA prime-boost HIV vaccine. Current opinion in investigational drugs (London, England : 2000). 2007 Feb; 8(2); 159-67. [PubMed: 17328232].
  49. Kim et al., 1998: Kim JJ, Trivedi NN, Nottingham LK, Morrison L, Tsai A, Hu Y, Mahalingam S, Dang K, Ahn L, Doyle NK, Wilson DM, Chattergoon MA, Chalian AA, Boyer JD, Agadjanyan MG, Weiner DB. Modulation of amplitude and direction of in vivo immune responses by co-administration of cytokine gene expression cassettes with DNA immunogens. European journal of immunology. 1998; 28(3); 1089-1103. [PubMed: 9541605].
  50. Kim et al., 2000: Kim JJ, Yang JS, VanCott TC, Lee DJ, Manson KH, Wyand MS, Boyer JD, Ugen KE, Weiner DB. Modulation of antigen-specific humoral responses in rhesus macaques by using cytokine cDNAs as DNA vaccine adjuvants. Journal of virology. 2000; 74(7); 3427-3429. [PubMed: 10708463].
  51. Kim et al., 2001: Kim JJ, Yang JS, Manson KH, Weiner DB. Modulation of antigen-specific cellular immune responses to DNA vaccination in rhesus macaques through the use of IL-2, IFN-gamma, or IL-4 gene adjuvants. Vaccine. 2001; 19(17-19); 2496-2505. [PubMed: 11257383].
  52. Knight et al., 1990: Knight SC, Macatonia SE, Patterson S. HIV I infection of dendritic cells. International reviews of immunology. 1990; 6(2-3); 163-75. [PubMed: 2152500].
  53. Kutzler et al., 2005: Kutzler MA, Robinson TM, Chattergoon MA, Choo DK, Choo AY, Choe PY, Ramanathan MP, Parkinson R, Kudchodkar S, Tamura Y, Sidhu M, Roopchand V, Kim JJ, Pavlakis GN, Felber BK, Waldmann TA, Boyer JD, Weiner DB. Coimmunization with an optimized IL-15 plasmid results in enhanced function and longevity of CD8 T cells that are partially independent of CD4 T cell help. Journal of immunology (Baltimore, Md. : 1950). 2005; 175(1); 112-123. [PubMed: 15972637].
  54. Kwa et al., 2014: Kwa S, Lai L, Gangadhara S, Siddiqui M, Pillai VB, Labranche C, Yu T, Moss B, Montefiori DC, Robinson HL, Kozlowski PA, Amara RR. CD40L-adjuvanted DNA/MVA SIV239 vaccine enhances SIV-specific humoral and cellular immunity, and improves protection against a heterologous SIVE660 mucosal challenge. Journal of virology. 2014; ; . [PubMed: 24920805].
  55. Leclerc et al., 1997: Leclerc C, Dériaud E, Rojas M, Whalen RG. The preferential induction of a Th1 immune response by DNA-based immunization is mediated by the immunostimulatory effect of plasmid DNA. Cellular immunology. 1997; 179(2); 97-9106. [PubMed: 9268493].
  56. Lekutis et al., 1997: Lekutis C, Shiver JW, Liu MA, Letvin NL. HIV-1 env DNA vaccine administered to rhesus monkeys elicits MHC class II-restricted CD4+ T helper cells that secrete IFN-gamma and TNF-alpha. Journal of immunology (Baltimore, Md. : 1950). 1997; 158(9); 4471-4477. [PubMed: 9127013].
  57. Lena et al., 2002: Lena P, Villinger F, Giavedoni L, Miller CJ, Rhodes G, Luciw P. Co-immunization of rhesus macaques with plasmid vectors expressing IFN-gamma, GM-CSF, and SIV antigens enhances anti-viral humoral immunity but does not affect viremia after challenge with highly pathogenic virus. Vaccine. 2002; 20 Suppl 4; A69-79. [PubMed: 12477432].
  58. Li et al., 2008: Li W, Li S, Hu Y, Tang B, Cui L, He W. Efficient augmentation of a long-lasting immune responses in HIV-1 gag DNA vaccination by IL-15 plasmid boosting. Vaccine. 2008; 26(26); 3282-3290. [PubMed: 18472194].
  59. Liu et al., 2004: Liu YZ, Zhou L, Wang Q, Ye SQ, Li HX, Zeng Y. [Immune response induced by HIV DNA vaccine combined with recombinant adeno-associated virus]. Zhonghua shi yan he lin chuang bing du xue za zhi = Zhonghua shiyan he linchuang bingduxue zazhi = Chinese journal of experimental and clinical virology. 2004 Sep; 18(3); 251-4. [PubMed: 15640860].
  60. Liu et al., 2006: Liu J, Wyatt LS, Amara RR, Moss B, Robinson HL. Studies on in vitro expression and in vivo immunogenicity of a recombinant MVA HIV vaccine. Vaccine. 2006 Apr 12; 24(16); 3332-9. [PubMed: 16472543].
  61. Locher et al., 2004: Locher CP, Witt SA, Ashlock BM, Polacino P, Hu SL, Shiboski S, Schmidt AM, Agy MB, Anderson DM, Staprans SI, zur Megede J, Levy JA. Human immunodeficiency virus type 2 DNA vaccine provides partial protection from acute baboon infection. Vaccine. 2004; 22(17-18); 2261-2272. [PubMed: 15149785].
  62. Lu et al., 2000: Lu Y, Friedman R, Kushner N, Doling A, Thomas L, Touzjian N, Starnbach M, Lieberman J. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity. Proceedings of the National Academy of Sciences of the United States of America. 2000 Jul 5; 97(14); 8027-32. [PubMed: 10884430].
  63. MacGregor et al., 1998: MacGregor RR, Boyer JD, Ugen KE, Lacy KE, Gluckman SJ, Bagarazzi ML, Chattergoon MA, Baine Y, Higgins TJ, Ciccarelli RB, Coney LR, Ginsberg RS, Weiner DB. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. The Journal of infectious diseases. 1998; 178(1); 92-9100. [PubMed: 9652427].
  64. MacGregor et al., 2005: MacGregor RR, Boyer JD, Ugen KE, Tebas P, Higgins TJ, Baine Y, Ciccarelli RB, Ginsberg RS, Weiner DB. Plasmid vaccination of stable HIV-positive subjects on antiviral treatment results in enhanced CD8 T-cell immunity and increased control of viral "blips". Vaccine. 2005; 23(17-18); 2066-2073. [PubMed: 15755572].
  65. Malm et al., 2005: Malm M, Rollman E, Ustav M, Hinkula J, Krohn K, Wahren B, Blazevic V. Cross-clade protection induced by human immunodeficiency virus-1 DNA immunogens expressing consensus sequences of multiple genes and epitopes from subtypes A, B, C, and FGH. Viral immunology. 2005; 18(4); 678-88. [PubMed: 16359234].
  66. Mascola et al., 2005: Mascola JR, Sambor A, Beaudry K, Santra S, Welcher B, Louder MK, Vancott TC, Huang Y, Chakrabarti BK, Kong WP, Yang ZY, Xu L, Montefiori DC, Nabel GJ, Letvin NL. Neutralizing antibodies elicited by immunization of monkeys with DNA plasmids and recombinant adenoviral vectors expressing human immunodeficiency virus type 1 proteins. Journal of virology. 2005; 79(2); 771-779. [PubMed: 15613305].
  67. McElrath et al., 2008: McElrath MJ, De Rosa SC, Moodie Z, Dubey S, Kierstead L, Janes H, Defawe OD, Carter DK, Hural J, Akondy R, Buchbinder SP, Robertson MN, Mehrotra DV, Self SG, Corey L, Shiver JW, Casimiro DR. HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet. 2008; 372(9653); 1894-1905. [PubMed: 19012957].
  68. McEvers et al., 2005: McEvers K, Elrefaei M, Norris P, Deeks S, Martin J, Lu Y, Cao H. Modified anthrax fusion proteins deliver HIV antigens through MHC Class I and II pathways. Vaccine. 2005 Jul 14; 23(32); 4128-35. [PubMed: 15964481].
  69. Moore et al., 2002: Moore AC, Kong WP, Chakrabarti BK, Nabel GJ. Effects of antigen and genetic adjuvants on immune responses to human immunodeficiency virus DNA vaccines in mice. Journal of virology. 2002; 76(1); 243-250. [PubMed: 11739689].
  70. O'Hagan et al., 2001: O'Hagan D, Singh M, Ugozzoli M, Wild C, Barnett S, Chen M, Schaefer M, Doe B, Otten GR, Ulmer JB. Induction of potent immune responses by cationic microparticles with adsorbed human immunodeficiency virus DNA vaccines. Journal of virology. 2001; 75(19); 9037-9043. [PubMed: 11533167].
  71. Otero et al., 2004: Otero M, Calarota SA, Felber B, Laddy D, Pavlakis G, Boyer JD, Weiner DB. Resiquimod is a modest adjuvant for HIV-1 gag-based genetic immunization in a mouse model. Vaccine. 2004; 22(13-14); 1782-1790. [PubMed: 15068862].
  72. Otten et al., 2005: Otten GR, Schaefer M, Doe B, Liu H, Srivastava I, Megede J, Kazzaz J, Lian Y, Singh M, Ugozzoli M, Montefiori D, Lewis M, Driver DA, Dubensky T, Polo JM, Donnelly J, O'Hagan DT, Barnett S, Ulmer JB. Enhanced potency of plasmid DNA microparticle human immunodeficiency virus vaccines in rhesus macaques by using a priming-boosting regimen with recombinant proteins. Journal of virology. 2005 Jul; 79(13); 8189-200. [PubMed: 15956564].
  73. Ozpolat et al., 1998: Ozpolat B, Rao XM, Powell MF, Lachman LB. Immunoliposomes containing antibodies to costimulatory molecules as adjuvants for HIV subunit vaccines. AIDS research and human retroviruses. 1998; 14(5); 409-417. [PubMed: 9546800].
  74. Pal et al., 2005: Pal R, Wang S, Kalyanaraman VS, Nair BC, Whitney S, Keen T, Hocker L, Hudacik L, Rose N, Cristillo A, Mboudjeka I, Shen S, Wu-Chou TH, Montefiori D, Mascola J, Lu S, Markham P. Polyvalent DNA prime and envelope protein boost HIV-1 vaccine elicits humoral and cellular responses and controls plasma viremia in rhesus macaques following rectal challenge with an R5 SHIV isolate. Journal of medical primatology. 2005; 34(5-6); 226-236. [PubMed: 16128917].
  75. Pal et al., 2006: Pal R, Kalyanaraman VS, Nair BC, Whitney S, Keen T, Hocker L, Hudacik L, Rose N, Mboudjeka I, Shen S, Wu-Chou TH, Montefiori D, Mascola J, Markham P, Lu S. Immunization of rhesus macaques with a polyvalent DNA prime/protein boost human immunodeficiency virus type 1 vaccine elicits protective antibody response against simian human immunodeficiency virus of R5 phenotype. Virology. 2006; 348(2); 341-353. [PubMed: 16460776].
  76. Palella et al., 1998: Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, Aschman DJ, Holmberg SD. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. The New England journal of medicine. 1998 Mar 26; 338(13); 853-60. [PubMed: 9516219].
  77. Parker, 2007: Safety and Effectiveness of PENNVAX-B Vaccine Alone, With Il-12, or IL-15 in Healthy Adults [http://clinicaltrials.gov/ct2/show/NCT00528489]
  78. Patterson et al., 2000: Patterson LJ, Peng B, Abimiku AG, Aldrich K, Murty L, Markham PD, Kalyanaraman VS, Alvord WG, Tartaglia J, Franchini G, Robert-Guroff M. Cross-protection in NYVAC-HIV-1-immunized/HIV-2-challenged but not in NYVAC-HIV-2-immunized/SHIV-challenged rhesus macaques. AIDS (London, England). 2000; 14(16); 2445-2455. [PubMed: 11101054].
  79. Pegu et al., 2013: Pegu P, Vaccari M, Gordon S, Keele BF, Doster M, Guan Y, Ferrari G, Pal R, Ferrari MG, Whitney S, Hudacik L, Billings E, Rao M, Montefiori D, Tomaras G, Alam SM, Fenizia C, Lifson JD, Stablein D, Tartaglia J, Michael N, Kim J, Venzon D, Franchini G. Antibodies with high avidity to the gp120 envelope protein in protection from simian immunodeficiency virus SIV(mac251) acquisition in an immunization regimen that mimics the RV-144 Thai trial. Journal of virology. 2013; 87(3); 1708-1719. [PubMed: 23175374].
  80. Peters et al., 2007: Peters BS, Jaoko W, Vardas E, Panayotakopoulos G, Fast P, Schmidt C, Gilmour J, Bogoshi M, Omosa-Manyonyi G, Dally L, Klavinskis L, Farah B, Tarragona T, Bart PA, Robinson A, Pieterse C, Stevens W, Thomas R, Barin B, McMichael AJ, McIntyre JA, Pantaleo G, Hanke T, Bwayo J. Studies of a prophylactic HIV-1 vaccine candidate based on modified vaccinia virus Ankara (MVA) with and without DNA priming: effects of dosage and route on safety and immunogenicity. Vaccine. 2007; 25(11); 2120-2127. [PubMed: 17250931].
  81. Qiu et al., 1999: Qiu JT, Song R, Dettenhofer M, Tian C, August T, Felber BK, Pavlakis GN, Yu XF. Evaluation of novel human immunodeficiency virus type 1 Gag DNA vaccines for protein expression in mammalian cells and induction of immune responses. Journal of virology. 1999; 73(11); 9145-9152. [PubMed: 10516021].
  82. Rerks-Ngarm et al., 2009: Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, Premsri N, Namwat C, de Souza M, Adams E, Benenson M, Gurunathan S, Tartaglia J, McNeil JG, Francis DP, Stablein D, Birx DL, Chunsuttiwat S, Khamboonruang C, Thongcharoen P, Robb ML, Michael NL, Kunasol P, Kim JH. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. The New England journal of medicine. 2009; 361(23); 2209-2220. [PubMed: 19843557].
  83. Reynolds et al., 2012: Reynolds MR, Weiler AM, Piaskowski SM, Piatak M Jr, Robertson HT, Allison DB, Bett AJ, Casimiro DR, Shiver JW, Wilson NA, Lifson JD, Koff WC, Watkins DI. A trivalent recombinant Ad5 gag/pol/nef vaccine fails to protect rhesus macaques from infection or control virus replication after a limiting-dose heterologous SIV challenge. Vaccine. 2012; 30(30); 4465-4475. [PubMed: 22569124].
  84. Robinson et al., 2006: Robinson HL, Montefiori DC, Villinger F, Robinson JE, Sharma S, Wyatt LS, Earl PL, McClure HM, Moss B, Amara RR. Studies on GM-CSF DNA as an adjuvant for neutralizing Ab elicited by a DNA/MVA immunodeficiency virus vaccine. Virology. 2006; 352(2); 285-294. [PubMed: 16740288].
  85. Santra et al., 2004: Santra S, Barouch DH, Korioth-Schmitz B, Lord CI, Krivulka GR, Yu F, Beddall MH, Gorgone DA, Lifton MA, Miura A, Philippon V, Manson K, Markham PD, Parrish J, Kuroda MJ, Schmitz JE, Gelman RS, Shiver JW, Montefiori DC, Panicali D, Letvin NL. Recombinant poxvirus boosting of DNA-primed rhesus monkeys augments peak but not memory T lymphocyte responses. Proceedings of the National Academy of Sciences of the United States of America. 2004 Jul 27; 101(30); 11088-93. [PubMed: 15258286].
  86. Sheets et al., 2006: Sheets RL, Stein J, Manetz TS, Duffy C, Nason M, Andrews C, Kong WP, Nabel GJ, Gomez PL. Biodistribution of DNA plasmid vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile virus is similar, without integration, despite differing plasmid backbones or gene inserts. Toxicological sciences : an official journal of the Society of Toxicology. 2006; 91(2); 610-619. [PubMed: 16569729].
  87. Shiver et al., 2002: Shiver JW, Fu TM, Chen L, Casimiro DR, Davies ME, Evans RK, Zhang ZQ, Simon AJ, Trigona WL, Dubey SA, Huang L, Harris VA, Long RS, Liang X, Handt L, Schleif WA, Zhu L, Freed DC, Persaud NV, Guan L, Punt KS, Tang A, Chen M, Wilson KA, Collins KB, Heidecker GJ, Fernandez VR, Perry HC, Joyce JG, Grimm KM, Cook JC, Keller PM, Kresock DS, Mach H, Troutman RD, Isopi LA, Williams DM, Xu Z, Bohannon KE, Volkin DB, Montefiori DC, Miura A, Krivulka GR, Lifton MA, Kuroda MJ, Schmitz JE, Letvin NL, Caulfield MJ, Bett AJ, Youil R, Kaslow DC, Emini EA. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature. 2002 Jan 17; 415(6869); 331-5. [PubMed: 11797011].
  88. Sizemore et al., 1995: Sizemore DR, Branstrom AA, Sadoff JC. Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science (New York, N.Y.). 1995; 270(5234); 299-302. [PubMed: 7569980].
  89. Song et al., 2006: Song R, Liu S, Adams RJ, Leong KW. Enhancing efficacy of HIV gag DNA vaccine by local delivery of GM-CSF in murine and macaque models. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research. 2006; 26(6); 380-389. [PubMed: 16734558].
  90. Stieneker et al., 1991: Stieneker F, Kreuter J, Löwer J. High antibody titres in mice with polymethylmethacrylate nanoparticles as adjuvant for HIV vaccines. AIDS (London, England). 1991; 5(4); 431-435. [PubMed: 2059385].
  91. Sun et al., 2013: Sun C, Chen Z, Tang X, Zhang Y, Feng L, Du Y, Xiao L, Liu L, Zhu W, Chen L, Zhang L. Mucosal priming with a replicating-vaccinia virus-based vaccine elicits protective immunity to simian immunodeficiency virus challenge in rhesus monkeys. Journal of virology. 2013; 87(10); 5669-5677. [PubMed: 23487457].
  92. Takehisa et al., 2001: Takehisa J, Harada Y, Ndembi N, Mboudjeka I, Taniguchi Y, Ngansop C, Kuate S, Zekeng L, Ibuki K, Shimada T, Bikandou B, Yamaguchi-Kabata Y, Miura T, Ikeda M, Ichimura H, Kaptue L, Hayami M. Natural infection of wild-born mandrills (Mandrillus sphinx) with two different types of simian immunodeficiency virus. AIDS research and human retroviruses. 2001 Aug 10; 17(12); 1143-54. [PubMed: 11522184].
  93. Tatalick et al., 2005: Tatalick LM, Gerard CJ, Takeya R, Price DN, Thorne BA, Wyatt LM, Anklesaria P. Safety characterization of HeLa-based cell substrates used in the manufacture of a recombinant adeno-associated virus-HIV vaccine. Vaccine. 2005 Apr 8; 23(20); 2628-38. [PubMed: 15780446].
  94. Vecino et al., 2002: Vecino WH, Morin PM, Agha R, Jacobs WR Jr, Fennelly GJ. Mucosal DNA vaccination with highly attenuated Shigella is superior to attenuated Salmonella and comparable to intramuscular DNA vaccination for T cells against HIV. Immunology letters. 2002; 82(3); 197-204. [PubMed: 12036602].
  95. Vinner et al., 1999: Vinner L, Nielsen HV, Bryder K, Corbet S, Nielsen C, Fomsgaard A. Gene gun DNA vaccination with Rev-independent synthetic HIV-1 gp160 envelope gene using mammalian codons. Vaccine. 1999; 17(17); 2166-2175. [PubMed: 10367950].
  96. Walther-Jallow et al., 2001: Walther-Jallow L, Nilsson C, Söderlund J, ten Haaft P, Mäkitalo B, Biberfeld P, Böttiger P, Heeney J, Biberfeld G, Thorstensson R. Cross-protection against mucosal simian immunodeficiency virus (SIVsm) challenge in human immunodeficiency virus type 2-vaccinated cynomolgus monkeys. The Journal of general virology. 2001; 82(Pt 7); 1601-1612. [PubMed: 11413371].
  97. Wang et al., 1993: Wang B, Ugen KE, Srikantan V, Agadjanyan MG, Dang K, Refaeli Y, Sato AI, Boyer J, Williams WV, Weiner DB. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences of the United States of America. 1993; 90(9); 4156-4160. [PubMed: 8483929].
  98. Wang et al., 1993: Wang B, Boyer J, Srikantan V, Coney L, Carrano R, Phan C, Merva M, Dang K, Agadjanan M, Gilbert L. DNA inoculation induces neutralizing immune responses against human immunodeficiency virus type 1 in mice and nonhuman primates. DNA and cell biology. 1993; 12(9); 799-805. [PubMed: 8216851].
  99. Wang et al., 2006: Wang S, Farfan-Arribas DJ, Shen S, Chou TH, Hirsch A, He F, Lu S. Relative contributions of codon usage, promoter efficiency and leader sequence to the antigen expression and immunogenicity of HIV-1 Env DNA vaccine. Vaccine. 2006; 24(21); 4531-4540. [PubMed: 16140431].
  100. Weber et al., 2001: Weber R, Bossart W, Cone R, Luethy R, Moelling K. Phase I clinical trial with HIV-1 gp160 plasmid vaccine in HIV-1-infected asymptomatic subjects. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology. 2001; 20(11); 800-803. [PubMed: 11783696].
  101. Xin et al., 2005: Xin KQ, Jounai N, Someya K, Honma K, Mizuguchi H, Naganawa S, Kitamura K, Hayakawa T, Saha S, Takeshita F, Okuda K, Honda M, Klinman DM, Okuda K. Prime-boost vaccination with plasmid DNA and a chimeric adenovirus type 5 vector with type 35 fiber induces protective immunity against HIV. Gene therapy. 2005 Dec; 12(24); 1769-77. [PubMed: 16079886].
  102. Yoshino et al., 2004: Yoshino N, Lü FX, Fujihashi K, Hagiwara Y, Kataoka K, Lu D, Hirst L, Honda M, van Ginkel FW, Takeda Y, Miller CJ, Kiyono H, McGhee JR. A novel adjuvant for mucosal immunity to HIV-1 gp120 in nonhuman primates. Journal of immunology (Baltimore, Md. : 1950). 2004; 173(11); 6850-6857. [PubMed: 15557179].
  103. Zhang et al., 2009: Zhang H, Hong H, Li D, Ma S, Di Y, Stoten A, Haig N, Di Gleria K, Yu Z, Xu XN, McMichael A, Jiang S. Comparing pooled peptides with intact protein for accessing cross-presentation pathways for protective CD8+ and CD4+ T cells. The Journal of biological chemistry. 2009; 284(14); 9184-9191. [PubMed: 19193636].

Human metapneumovirus

  1. Aerts et al., 2015: Aerts L, Rhéaume C, Carbonneau J, Lavigne S, Couture C, Hamelin MÈ, Boivin G. Adjuvant effect of the human metapneumovirus (HMPV) matrix protein in HMPV subunit vaccines. The Journal of general virology. 2015; 96(Pt 4); 767-774. [PubMed: 25519171].
  2. Biacchesi et al., 2005: Biacchesi S, Pham QN, Skiadopoulos MH, Murphy BR, Collins PL, Buchholz UJ. Infection of nonhuman primates with recombinant human metapneumovirus lacking the SH, G, or M2-2 protein categorizes each as a nonessential accessory protein and identifies vaccine candidates. Journal of virology. 2005; 79(19); 12608-12613. [PubMed: 16160190].
  3. Kapczynski and Sellers, 2003: Kapczynski DR, Sellers HS. Immunization of turkeys with a DNA vaccine expressing either the F or N gene of avian metapneumovirus. Avian diseases. 2003; 47(4); 1376-1383. [PubMed: 14708985].
  4. Lévy et al., 2013: Lévy C, Aerts L, Hamelin MÈ, Granier C, Szécsi J, Lavillette D, Boivin G, Cosset FL. Virus-like particle vaccine induces cross-protection against human metapneumovirus infections in mice. Vaccine. 2013; 31(25); 2778-2785. [PubMed: 23583815].
  5. Más et al., 2016: Más V, Rodriguez L, Olmedillas E, Cano O, Palomo C, Terrón MC, Luque D, Melero JA, McLellan JS. Engineering, Structure and Immunogenicity of the Human Metapneumovirus F Protein in the Postfusion Conformation. PLoS pathogens. 2016; 12(9); e1005859. [PubMed: 27611367].
  6. O'Shaughnessy et al., 2011: O'Shaughnessy L, Carr M, Crowley B, Carberry S, Doyle S. Recombinant expression and immunological characterisation of proteins derived from human metapneumovirus. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology. 2011; 52(3); 236-243. [PubMed: 21920812].
  7. Schickli et al., 2008: Schickli JH, Kaur J, Macphail M, Guzzetta JM, Spaete RR, Tang RS. Deletion of human metapneumovirus M2-2 increases mutation frequency and attenuates growth in hamsters. Virology journal. 2008; 5; 69. [PubMed: 18519001].
  8. Wiki: Metapneumovirus: Metapneumovirus [http://en.wikipedia.org/wiki/Metapneumovirus]

Human Papillomavirus

  1. Brinkman et al., 2007: Brinkman JA, Xu X, Kast WM. The efficacy of a DNA vaccine containing inserted and replicated regions of the E7 gene for treatment of HPV-16 induced tumors. Vaccine. 2007; 25(17); 3437-3444. [PubMed: 17241713].
  2. Chatterjee, 2014: Chatterjee A. The next generation of HPV vaccines: nonavalent vaccine V503 on the horizon. Expert review of vaccines. 2014; 13(11); 1279-1290. [PubMed: 25256262].
  3. Cheng et al., 2001: Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, Wu TC. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. The Journal of clinical investigation. 2001; 108(5); 669-678. [PubMed: 11544272].
  4. Chu et al., 2011: Phase I of Human Papillomavirus (HPV) DNA Plasmid (VGX-3100) + Electroporation for CIN 2 or 3 [http://www.clinicaltrials.gov/ct2/show/NCT00685412?term=vgx&rank=1]
  5. Donnelly et al., 1996: Donnelly JJ, Martinez D, Jansen KU, Ellis RW, Montgomery DL, Liu MA. Protection against papillomavirus with a polynucleotide vaccine. The Journal of infectious diseases. 1996; 173(2); 314-320. [PubMed: 8568291].
  6. FDA: Cevarix: FDA: Cervarix [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm186957.htm]
  7. FDA: Gardasil: FDA: Gardasil information [http://www.fda.gov/Cber/products/gardasil.htm]
  8. Galicia-Carmona et al., 2021: Galicia-Carmona T, Arango-Bravo E, Serrano-Olvera JA, Flores-de La Torre C, Cruz-Esquivel I, Villalobos-Valencia R, Morán-Mendoza A, Castro-Eguiluz D, Cetina-Pérez L. ADXS11-001 LM-LLO as specific immunotherapy in cervical cancer. Human vaccines & immunotherapeutics. 2021; 17(8); 2617-2625. [PubMed: 33793380].
  9. Hasan et al., 2020: Hasan Y, Furtado L, Tergas A, Lee N, Brooks R, McCall A, Golden D, Jolly S, Fleming G, Morrow M, Kraynyak K, Sylvester A, Arif F, Levin M, Schwartz D, Boyer J, Skolnik J, Esser M, Kumar R, Bagarazzi M, Weichselbaum R, Spiotto M. A Phase 1 Trial Assessing the Safety and Tolerability of a Therapeutic DNA Vaccination Against HPV16 and HPV18 E6/E7 Oncogenes After Chemoradiation for Cervical Cancer. International journal of radiation oncology, biology, physics. 2020; 107(3); 487-498. [PubMed: 32151670].
  10. Henken et al., 2012: Henken FE, Oosterhuis K, Ohlschläger P, Bosch L, Hooijberg E, Haanen JB, Steenbergen RD. Preclinical safety evaluation of DNA vaccines encoding modified HPV16 E6 and E7. Vaccine. 2012; 30(28); 4259-4266. [PubMed: 22554465].
  11. Huang, 2008: Huang CM. Human papillomavirus and vaccination. Mayo Clinic proceedings. Mayo Clinic. 2008; 83(6); 701-706; quiz 706-706. [PubMed: 18533087].
  12. Iwata et al., 2017: Iwata S, Murata S, Rong Han S, Wakana A, Sawata M, Tanaka Y. Safety and Immunogenicity of a 9-Valent Human Papillomavirus Vaccine Administered to 9- to 15-Year-Old Japanese Girls. Japanese journal of infectious diseases. 2017; 70(4); 368-373. [PubMed: 28003597].
  13. Jagu et al., 2009: Jagu S, Karanam B, Gambhira R, Chivukula SV, Chaganti RJ, Lowy DR, Schiller JT, Roden RB. Concatenated multitype L2 fusion proteins as candidate prophylactic pan-human papillomavirus vaccines. Journal of the National Cancer Institute. 2009; 101(11); 782-792. [PubMed: 19470949].
  14. Jia et al., 2012: Jia Y, Yin Y, Duan F, Fu H, Hu M, Gao Y, Pan Z, Jiao X. Prophylactic and therapeutic efficacy of an attenuated Listeria monocytogenes-based vaccine delivering HPV16 E7 in a mouse model. International journal of molecular medicine. 2012; 30(6); 1335-1342. [PubMed: 23027427].
  15. Karanam et al., 2009: Karanam B, Gambhira R, Peng S, Jagu S, Kim DJ, Ketner GW, Stern PL, Adams RJ, Roden RB. Vaccination with HPV16 L2E6E7 fusion protein in GPI-0100 adjuvant elicits protective humoral and cell-mediated immunity. Vaccine. 2009; 27(7); 1040-1049. [PubMed: 19095032].
  16. Khan et al., 2017: Khan S, Oosterhuis K, Wunderlich K, Bunnik EM, Bhaggoe M, Boedhoe S, Karia S, Steenbergen RDM, Bosch L, Serroyen J, Janssen S, Schuitemaker H, Vellinga J, Scheper G, Zahn R, Custers J. Development of a replication-deficient adenoviral vector-based vaccine candidate for the interception of HPV16- and HPV18-induced infections and disease. International journal of cancer. 2017; 141(2); 393-404. [PubMed: 28263390].
  17. Kim et al., 2008: Kim D, Gambhira R, Karanam B, Monie A, Hung CF, Roden R, Wu TC. Generation and characterization of a preventive and therapeutic HPV DNA vaccine. Vaccine. 2008; 26(3); 351-360. [PubMed: 18096279].
  18. Klencke et al., 2002: Klencke B, Matijevic M, Urban RG, Lathey JL, Hedley ML, Berry M, Thatcher J, Weinberg V, Wilson J, Darragh T, Jay N, Da Costa M, Palefsky JM. Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a Phase I study of ZYC101. Clinical cancer research : an official journal of the American Association for Cancer Research. 2002; 8(5); 1028-1037. [PubMed: 12006515].
  19. Lin et al., 2006: Lin CT, Tsai YC, He L, Calizo R, Chou HH, Chang TC, Soong YK, Hung CF, Lai CH. A DNA vaccine encoding a codon-optimized human papillomavirus type 16 E6 gene enhances CTL response and anti-tumor activity. Journal of biomedical science. 2006; 13(4); 481-488. [PubMed: 16649071].
  20. Liu et al., 2015: Liu C, Yao Y, Yang X, Bai H, Huang W, Xia Y, Ma Y. Production of Recombinant Human Papillomavirus Type 52 L1 Protein in Hansenula polymorpha Formed Virus-Like Particles. Journal of microbiology and biotechnology. 2015; 25(6); 936-940. [PubMed: 25639723].
  21. NCT04436133: Immunogenicity AND Safety Study of the 11 Valent Recombinant Human Papillomavirus Vaccine (Hansenulapolymorpha) [https://clinicaltrials.gov/ct2/show/NCT04436133]
  22. Nieto et al., 2009: Nieto K, Kern A, Leuchs B, Gissmann L, Müller M, Kleinschmidt JA. Combined prophylactic and therapeutic intranasal vaccination against human papillomavirus type-16 using different adeno-associated virus serotype vectors. Antiviral therapy. 2009; 14(8); 1125-1137. [PubMed: 20032542].
  23. Nieto et al., 2012: Nieto K, Weghofer M, Sehr P, Ritter M, Sedlmeier S, Karanam B, Seitz H, Müller M, Kellner M, Hörer M, Michaelis U, Roden RB, Gissmann L, Kleinschmidt JA. Development of AAVLP(HPV16/31L2) particles as broadly protective HPV vaccine candidate. PloS one. 2012; 7(6); e39741. [PubMed: 22761884].
  24. Ohlschläger et al., 2011: Ohlschläger P, Spies E, Alvarez G, Quetting M, Groettrup M. The combination of TLR-9 adjuvantation and electroporation-mediated delivery enhances in vivo antitumor responses after vaccination with HPV-16 E7 encoding DNA. International journal of cancer. Journal international du cancer. 2011; 128(2); 473-481. [PubMed: 20309939].
  25. Osen et al., 2001: Osen W, Peiler T, Ohlschläger P, Caldeira S, Faath S, Michel N, Müller M, Tommasino M, Jochmus I, Gissmann L. A DNA vaccine based on a shuffled E7 oncogene of the human papillomavirus type 16 (HPV 16) induces E7-specific cytotoxic T cells but lacks transforming activity. Vaccine. 2001; 19(30); 4276-4286. [PubMed: 11457555].
  26. Panagiotis et al., 2008: Panagiotis C, Efthimios D, Konstantinos P, George C. Human papilloma virus: diagnostic, treatment and preventive issues. Akusherstvo i ginekologiia. 2008; 47(1); 35-38. [PubMed: 18642576].
  27. Pouyanfard et al., 2018: Pouyanfard S, Spagnoli G, Bulli L, Balz K, Yang F, Odenwald C, Seitz H, Mariz FC, Bolchi A, Ottonello S, Müller M. Minor Capsid Protein L2 Polytope Induces Broad Protection against Oncogenic and Mucosal Human Papillomaviruses. Journal of virology. 2018; 92(4); . [PubMed: 29212932].
  28. Qin et al., 2005: Qin Y, Wang XH, Cui HL, Cheung YK, Hu MH, Zhu SG, Xie Y. Human papillomavirus type 16 E7 peptide(38-61) linked with an immunoglobulin G fragment provides protective immunity in mice. Gynecologic oncology. 2005; 96(2); 475-483. [PubMed: 15661238].
  29. Rocha-Zavaleta et al., 2002: Rocha-Zavaleta L, Alejandre JE, Garcia-Carranca A. Parenteral and oral immunization with a plasmid DNA expressing the human papillomavirus 16-L1 gene induces systemic and mucosal antibodies and cytotoxic T lymphocyte responses. Journal of medical virology. 2002; 66(1); 86-95. [PubMed: 11748663].
  30. Sin, 2009: Sin JI. Suppression of antitumour protective cytotoxic T lymphocyte responses to a human papillomavirus 16 E7 DNA vaccine by coinjection of interleukin-12 complementary DNA: involvement of nitric oxide in immune suppression. Immunology. 2009; 128(1 Suppl); e707-717. [PubMed: 19740332].
  31. Vesikari et al., 2015: Vesikari T, Brodszki N, van Damme P, Diez-Domingo J, Icardi G, Petersen LK, Tran C, Thomas S, Luxembourg A, Baudin M. A Randomized, Double-Blind, Phase III Study of the Immunogenicity and Safety of a 9-Valent Human Papillomavirus L1 Virus-Like Particle Vaccine (V503) Versus Gardasil® in 9-15-Year-Old Girls. The Pediatric infectious disease journal. 2015; 34(9); 992-998. [PubMed: 26090572].
  32. Wiki: HPV: Wiki: Human papillomavirus [http://en.wikipedia.org/wiki/Human_papillomavirus]

Human Respiratory Syncytial Virus

  1. Abarca et al., 2020: Abarca K, Rey-Jurado E, Muñoz-Durango N, Vázquez Y, Soto JA, Gálvez NMS, Valdés-Ferrada J, Iturriaga C, Urzúa M, Borzutzky A, Cerda J, Villarroel L, Madrid V, González PA, González-Aramundiz JV, Bueno SM, Kalergis AM. Safety and immunogenicity evaluation of recombinant BCG vaccine against respiratory syncytial virus in a randomized, double-blind, placebo-controlled phase I clinical trial. EClinicalMedicine. 2020; 27; 100517. [PubMed: 33073219].
  2. Bastos et al., 2009: Bastos RG, Borsuk S, Seixas FK, Dellagostin OA. Recombinant Mycobacterium bovis BCG. Vaccine. 2009; 27(47); 6495-6503. [PubMed: 19720367].
  3. Chatterjee et al., 2017: Chatterjee S, Luthra P, Esaulova E, Agapov E, Yen BC, Borek DM, Edwards MR, Mittal A, Jordan DS, Ramanan P, Moore ML, Pappu RV, Holtzman MJ, Artyomov MN, Basler CF, Amarasinghe GK, Leung DW. Structural basis for human respiratory syncytial virus NS1-mediated modulation of host responses. Nature microbiology. 2017; 2; 17101. [PubMed: 28665409].
  4. Domachowske et al., 2018: Domachowske JB, Khan AA, Esser MT, Jensen K, Takas T, Villafana T, Dubovsky F, Griffin MP. Safety, Tolerability and Pharmacokinetics of MEDI8897, an Extended Half-life Single-dose Respiratory Syncytial Virus Prefusion F-targeting Monoclonal Antibody Administered as a Single Dose to Healthy Preterm Infants. The Pediatric infectious disease journal. 2018; 37(9); 886-892. [PubMed: 29373476].
  5. Drachev et al., 1976: Drachev LA, Jasaitis AA, Mikelsaar H, Nemecek IB, Semenov AY, Semenova EG, Severina II, Skulachev VP. Reconstitution of biological molecular generators of electric current. H+-ATPase. The Journal of biological chemistry. 1976; 251(22); 7077-7082. [PubMed: 11215].
  6. Endt et al., 2022: Endt K, Wollmann Y, Haug J, Bernig C, Feigl M, Heiseke A, Kalla M, Hochrein H, Suter M, Chaplin P, Volkmann A. A Recombinant MVA-Based RSV Vaccine Induces T-Cell and Antibody Responses That Cooperate in the Protection Against RSV Infection. Frontiers in immunology. 2022; 13; 841471. [PubMed: 35774800].
  7. Eyles et al., 2013: Eyles JE, Johnson JE, Megati S, Roopchand V, Cockle PJ, Weeratna R, Makinen S, Brown TP, Lang S, Witko SE, Kotash CS, Li J, West K, Maldonado O, Falconer DJ, Lees C, Smith GJ, White P, Wright P, Loudon PT, Merson JR, Jansen KU, Sidhu MK. Nonreplicating vaccines can protect african green monkeys from the memphis 37 strain of respiratory syncytial virus. The Journal of infectious diseases. 2013; 208(2); 319-329. [PubMed: 23596321].
  8. Falsey et al., 2022: Falsey AR, Walsh EE, Scott DA, Gurtman A, Zareba A, Jansen KU, Gruber WC, Dormitzer PR, Swanson KA, Jiang Q, Gomme E, Cooper D, Schmoele-Thoma B. Phase 1/2 Randomized Study of the Immunogenicity, Safety, and Tolerability of a Respiratory Syncytial Virus Prefusion F Vaccine in Adults With Concomitant Inactivated Influenza Vaccine. The Journal of infectious diseases. 2022; 225(12); 2056-2066. [PubMed: 34931667].
  9. Fu et al., 2014: Fu YH, Jiao YY, He JS, Giang GY, Zhang W, Yan YF, Ma Y, Hua Y, Zhang Y, Peng XL, Shi CX, Hong T. Sublingual administration of a helper-dependent adenoviral vector expressing the codon-optimized soluble fusion glycoprotein of human respiratory syncytial virus elicits protective immunity in mice. Antiviral research. 2014; 105; 72-79. [PubMed: 24560779].
  10. Gan et al., 2012: Gan SW, Tan E, Lin X, Yu D, Wang J, Tan GM, Vararattanavech A, Yeo CY, Soon CH, Soong TW, Pervushin K, Torres J. The small hydrophobic protein of the human respiratory syncytial virus forms pentameric ion channels. The Journal of biological chemistry. 2012; 287(29); 24671-24689. [PubMed: 22621926].
  11. Gilman et al., 2019: Gilman MSA, Furmanova-Hollenstein P, Pascual G, B van 't Wout A, Langedijk JPM, McLellan JS. Transient opening of trimeric prefusion RSV F proteins. Nature communications. 2019; 10(1); 2105. [PubMed: 31068578].
  12. Haller et al., 2003: Haller AA, Mitiku M, MacPhail M. Bovine parainfluenza virus type 3 (PIV3) expressing the respiratory syncytial virus (RSV) attachment and fusion proteins protects hamsters from challenge with human PIV3 and RSV. The Journal of general virology. 2003; 84(Pt 8); 2153-2162. [PubMed: 12867647].
  13. Ivanov et al., 2021: Ivanov V, Oomens AGP, Papin JF, Staats R, Reuter DN, Yu Z, Piedra PA, Wellliver RC Sr. Intranasal and intrapulmonary vaccination with an M protein-deficient respiratory syncytial virus (RSV) vaccine improves clinical signs and reduces viral replication in infant baboons after an RSV challenge infection. Vaccine. 2021; 39(30); 4063-4071. [PubMed: 34140172].
  14. Jin et al., 2003: Jin H, Cheng X, Traina-Dorge VL, Park HJ, Zhou H, Soike K, Kemble G. Evaluation of recombinant respiratory syncytial virus gene deletion mutants in African green monkeys for their potential as live attenuated vaccine candidates. Vaccine. 2003; 21(25-26); 3647-3652. [PubMed: 12922094].
  15. Johnson et al., 2013: Johnson JE, McNeil LK, Megati S, Witko SE, Roopchand VS, Obregon JH, Illenberger DM, Kotash CS, Nowak RM, Braunstein E, Yurgelonis I, Jansen KU, Kalyan NK, Sidhu MK. Non-propagating, recombinant vesicular stomatitis virus vectors encoding respiratory syncytial virus proteins generate potent humoral and cellular immunity against RSV and are protective in mice. Immunology letters. 2013; 150(1-2); 134-144. [PubMed: 23261719].
  16. Karron et al., 2020: Karron RA, Luongo C, Mateo JS, Wanionek K, Collins PL, Buchholz UJ. Safety and Immunogenicity of the Respiratory Syncytial Virus Vaccine RSV/ΔNS2/Δ1313/I1314L in RSV-Seronegative Children. The Journal of infectious diseases. 2020; 222(1); 82-91. [PubMed: 31605113].
  17. Kim et al., 2014: Kim E, Okada K, Beeler JA, Crim RL, Piedra PA, Gilbert BE, Gambotto A. Development of an adenovirus-based respiratory syncytial virus vaccine: preclinical evaluation of efficacy, immunogenicity, and enhanced disease in a cotton rat model. Journal of virology. 2014; 88(9); 5100-5108. [PubMed: 24574396].
  18. Liang et al., 2014: Liang B, Munir S, Amaro-Carambot E, Surman S, Mackow N, Yang L, Buchholz UJ, Collins PL, Schaap-Nutt A. Chimeric bovine/human parainfluenza virus type 3 expressing respiratory syncytial virus (RSV) F glycoprotein: effect of insert position on expression, replication, immunogenicity, stability, and protection against RSV infection. Journal of virology. 2014; 88(8); 4237-4250. [PubMed: 24478424].
  19. McFarland et al., 2020: McFarland EJ, Karron RA, Muresan P, Cunningham CK, Libous J, Perlowski C, Thumar B, Gnanashanmugam D, Moye J, Schappell E, Barr E, Rexroad V, Fearn L, Spector SA, Aziz M, Cielo M, Beneri C, Wiznia A, Luongo C, Collins P, Buchholz UJ. Live Respiratory Syncytial Virus Attenuated by M2-2 Deletion and Stabilized Temperature Sensitivity Mutation 1030s Is a Promising Vaccine Candidate in Children. The Journal of infectious diseases. 2020; 221(4); 534-543. [PubMed: 31758177].
  20. McFarland et al., 2020: McFarland EJ, Karron RA, Muresan P, Cunningham CK, Perlowski C, Libous J, Oliva J, Jean-Philippe P, Moye J, Schappell E, Barr E, Rexroad V, Fearn L, Cielo M, Wiznia A, Deville JG, Yang L, Luongo C, Collins PL, Buchholz UJ. Live-Attenuated Respiratory Syncytial Virus Vaccine With M2-2 Deletion and With Small Hydrophobic Noncoding Region Is Highly Immunogenic in Children. The Journal of infectious diseases. 2020; 221(12); 2050-2059. [PubMed: 32006006].
  21. Miller et al., 2002: Miller M, Cho JY, Baek KJ, Castaneda D, Nayar J, Rodriguez M, Roman M, Raz E, Broide DH. Plasmid DNA encoding the respiratory syncytial virus G protein protects against RSV-induced airway hyperresponsiveness. Vaccine. 2002; 20(23-24); 3023-3033. [PubMed: 12126916].
  22. Oliveira et al., 2013: Oliveira AP, Simabuco FM, Tamura RE, Guerrero MC, Ribeiro PG, Libermann TA, Zerbini LF, Ventura AM. Human respiratory syncytial virus N, P and M protein interactions in HEK-293T cells. Virus research. 2013; 177(1); 108-112. [PubMed: 23892143].
  23. Oomens et al., 2006: Oomens AG, Bevis KP, Wertz GW. The cytoplasmic tail of the human respiratory syncytial virus F protein plays critical roles in cellular localization of the F protein and infectious progeny production. Journal of virology. 2006; 80(21); 10465-10477. [PubMed: 16928754].
  24. Pei et al., 2021: Pei J, Wagner ND, Zou AJ, Chatterjee S, Borek D, Cole AR, Kim PJ, Basler CF, Otwinowski Z, Gross ML, Amarasinghe GK, Leung DW. Structural basis for IFN antagonism by human respiratory syncytial virus nonstructural protein 2. Proceedings of the National Academy of Sciences of the United States of America. 2021; 118(10); . [PubMed: 33649232].
  25. Sadoff et al., 2021: Sadoff J, De Paepe E, Haazen W, Omoruyi E, Bastian AR, Comeaux C, Heijnen E, Strout C, Schuitemaker H, Callendret B. Safety and Immunogenicity of the Ad26.RSV.preF Investigational Vaccine Coadministered With an Influenza Vaccine in Older Adults. The Journal of infectious diseases. 2021; 223(4); 699-708. [PubMed: 32851411].
  26. Schmidt et al., 2001: Schmidt AC, McAuliffe JM, Murphy BR, Collins PL. Recombinant bovine/human parainfluenza virus type 3 (B/HPIV3) expressing the respiratory syncytial virus (RSV) G and F proteins can be used to achieve simultaneous mucosal immunization against RSV and HPIV3. Journal of virology. 2001; 75(10); 4594-4603. [PubMed: 11312329].
  27. Shahriari et al., 2018: Shahriari S, Wei KJ, Ghildyal R. Respiratory Syncytial Virus Matrix (M) Protein Interacts with Actin In Vitro and in Cell Culture. Viruses. 2018; 10(10); . [PubMed: 30274351].
  28. Simabuco et al., 2011: Simabuco FM, Asara JM, Guerrero MC, Libermann TA, Zerbini LF, Ventura AM. Structural analysis of human respiratory syncytial virus p protein: identification of intrinsically disordered domains. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]. 2011; 42(1); 340-345. [PubMed: 24031640].
  29. Tang et al., 2003: Tang RS, Schickli JH, MacPhail M, Fernandes F, Bicha L, Spaete J, Fouchier RA, Osterhaus AD, Spaete R, Haller AA. Effects of human metapneumovirus and respiratory syncytial virus antigen insertion in two 3' proximal genome positions of bovine/human parainfluenza virus type 3 on virus replication and immunogenicity. Journal of virology. 2003; 77(20); 10819-10828. [PubMed: 14512532].
  30. Tiong-Yip et al., 2014: Tiong-Yip CL, Aschenbrenner L, Johnson KD, McLaughlin RE, Fan J, Challa S, Xiong H, Yu Q. Characterization of a respiratory syncytial virus L protein inhibitor. Antimicrobial agents and chemotherapy. 2014; 58(7); 3867-3873. [PubMed: 24777090].
  31. Tripp et al., 2018: Tripp RA, Power UF, Openshaw PJM, Kauvar LM. Respiratory Syncytial Virus: Targeting the G Protein Provides a New Approach for an Old Problem. Journal of virology. 2018; 92(3); . [PubMed: 29118126].
  32. Wiki: Human respiratory syncytial virus: Human respiratory syncytial virus [http://microbewiki.kenyon.edu/index.php/Human_respiratory_syncytial_virus]
  33. Wu et al., 2009: Wu H, Dennis VA, Pillai SR, Singh SR. RSV fusion (F) protein DNA vaccine provides partial protection against viral infection. Virus research. 2009; 145(1); 39-47. [PubMed: 19540885].
  34. Yang et al., 2013: Yang CF, Wang CK, Malkin E, Schickli JH, Shambaugh C, Zuo F, Galinski MS, Dubovsky F, Tang RS. Implication of respiratory syncytial virus (RSV) F transgene sequence heterogeneity observed in Phase 1 evaluation of MEDI-534, a live attenuated parainfluenza type 3 vectored RSV vaccine. Vaccine. 2013; 31(26); 2822-2827. [PubMed: 23602668].

Infectious Bronchitis Virus (IBV)

  1. Guo et al., 2010: Guo Z, Wang H, Yang T, Wang X, Lu D, Li Y, Zhang Y. Priming with a DNA vaccine and boosting with an inactivated vaccine enhance the immune response against infectious bronchitis virus. Journal of virological methods. 2010; 167(1); 84-89. [PubMed: 20307574].
  2. Infectious-bronchitis.net: Information about Infectious Bronchitis in chickens and control of disease [http://www.infectious-bronchitis.com]
  3. Leyson et al., 2016: Leyson C, França M, Jackwood M, Jordan B. Polymorphisms in the S1 spike glycoprotein of Arkansas-type infectious bronchitis virus (IBV) show differential binding to host tissues and altered antigenicity. Virology. 2016; 498; 218-225. [PubMed: 27619927].
  4. Merck Vet Manual: Infectious Bronchitis: Merck Veterinary Manual: Infectious Bronchitis [http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/206500.htm]
  5. Tan et al., 2009: Tan B, Wang H, Shang L, Yang T. Coadministration of chicken GM-CSF with a DNA vaccine expressing infectious bronchitis virus (IBV) S1 glycoprotein enhances the specific immune response and protects against IBV infection. Archives of virology. 2009; 154(7); 1117-1124. [PubMed: 19543689].
  6. Wiki: Infectious Bronchitis Virus: Wiki: Infectious Bronchitis Virus [http://en.wikipedia.org/wiki/Avian_infectious_bronchitis_virus]
  7. Yan et al., 2013: Yan F, Zhao Y, Hu Y, Qiu J, Lei W, Ji W, Li X, Wu Q, Shi X, Li Z. Protection of chickens against infectious bronchitis virus with a multivalent DNA vaccine and boosting with an inactivated vaccine. Journal of veterinary science. 2013; 14(1); 53-60. [PubMed: 23388447].
  8. Yang et al., 2009: Yang T, Wang HN, Wang X, Tang JN, Gao R, Li J, Guo ZC, Li YL. Multivalent DNA vaccine enhanced protection efficacy against infectious bronchitis virus in chickens. The Journal of veterinary medical science / the Japanese Society of Veterinary Science. 2009; 71(12); 1585-1590. [PubMed: 20046025].
  9. Zhang et al., 2014: Zhang J, Chen XW, Tong TZ, Ye Y, Liao M, Fan HY. BacMam virus-based surface display of the infectious bronchitis virus (IBV) S1 glycoprotein confers strong protection against virulent IBV challenge in chickens. Vaccine. 2014; 32(6); 664-670. [PubMed: 24342247].
  10. Zhang et al., 2014: Zhang J, Chen XW, Tong TZ, Ye Y, Liao M, Fan HY. BacMam virus-based surface display of the infectious bronchitis virus (IBV) S1 glycoprotein confers strong protection against virulent IBV challenge in chickens. Vaccine. 2014; 32(6); 664-670. [PubMed: 24342247].
  11. Zhao et al., 2019: Zhao Y, Xie D, Zhang K, Cheng J, Xu G, Zhang G. Pathogenicity of a GI-22 genotype infectious bronchitis virus isolated in China and protection against it afforded by GI-19 vaccine. Virus research. 2019; 267; 59-66. [PubMed: 31082454].

Infectious Bursal Disease Virus (IBDV)

  1. Butter et al., 2013: Butter C, Staines K, van Hateren A, Davison TF, Kaufman J. The peptide motif of the single dominantly expressed class I molecule of the chicken MHC can explain the response to a molecular defined vaccine of infectious bursal disease virus (IBDV). Immunogenetics. 2013; 65(8); 609-618. [PubMed: 23644721].
  2. Gao et al., 2013: Gao H, Li K, Gao L, Qi X, Gao Y, Qin L, Wang Y, Wang X. DNA prime-protein boost vaccination enhances protective immunity against infectious bursal disease virus in chickens. Veterinary microbiology. 2013; 164(1-2); 9-17. [PubMed: 23419823].
  3. Ge et al., 2015: Ge J, An Q, Song S, Gao D, Ping W. Construction of Recombinant Baculoviruses Expressing Infectious Bursal Disease Virus Main Protective Antigen and Their Immune Effects on Chickens. PloS one. 2015; 10(7); e0132993. [PubMed: 26167907].
  4. Heine and Boyle, 1993: Heine HG, Boyle DB. Infectious bursal disease virus structural protein VP2 expressed by a fowlpox virus recombinant confers protection against disease in chickens. Archives of virology. 1993; 131(3-4); 277-292. [PubMed: 8394069].
  5. Kumar et al., 2009: Kumar S, Ahi YS, Salunkhe SS, Koul M, Tiwari AK, Gupta PK, Rai A. Effective protection by high efficiency bicistronic DNA vaccine against infectious bursal disease virus expressing VP2 protein and chicken IL-2. Vaccine. 2009; 27(6); 864-869. [PubMed: 19111591].
  6. Li et al., 2013: Li K, Gao H, Gao L, Qi X, Gao Y, Qin L, Wang Y, Wang X. Adjuvant effects of interleukin-18 in DNA vaccination against infectious bursal disease virus in chickens. Vaccine. 2013; 31(14); 1799-1805. [PubMed: 23395585].
  7. Tsukamoto et al., 2000: Tsukamoto K, Sato T, Saito S, Tanimura N, Hamazaki N, Mase M, Yamaguchi S. Dual-viral vector approach induced strong and long-lasting protective immunity against very virulent infectious bursal disease virus. Virology. 2000; 269(2); 257-267. [PubMed: 10753704].
  8. Wiki: Infectious Bursal Disease: Wiki: Infectious Bursal Disease [http://en.wikipedia.org/wiki/Infectious_bursal_disease]
  9. Zhang et al., 2014: Zhang J, Chen XW, Tong TZ, Ye Y, Liao M, Fan HY. BacMam virus-based surface display of the infectious bronchitis virus (IBV) S1 glycoprotein confers strong protection against virulent IBV challenge in chickens. Vaccine. 2014; 32(6); 664-670. [PubMed: 24342247].

Infectious Hematopoietic Necrosis Virus

  1. Anderson et al., 1996: Anderson ED, Mourich DV, Fahrenkrug SC, LaPatra S, Shepherd J, Leong JA. Genetic immunization of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus. Molecular marine biology and biotechnology. 1996; 5(2); 114-122. [PubMed: 8680524].
  2. Corbeil et al., 1999: Corbeil S, Lapatra SE, Anderson ED, Jones J, Vincent B, Hsu YL, Kurath G. Evaluation of the protective immunogenicity of the N, P, M, NV and G proteins of infectious hematopoietic necrosis virus in rainbow trout oncorhynchus mykiss using DNA vaccines. Diseases of aquatic organisms. 1999; 39(1); 29-36. [PubMed: 11407402].
  3. Corbeil et al., 2000: Corbeil S, LaPatra SE, Anderson ED, Kurath G. Nanogram quantities of a DNA vaccine protect rainbow trout fry against heterologous strains of infectious hematopoietic necrosis virus. Vaccine. 2000; 18(25); 2817-2824. [PubMed: 10812224].
  4. Einer-Jensen et al., 2009: Einer-Jensen K, Delgado L, Lorenzen E, Bovo G, Evensen Ø, Lapatra S, Lorenzen N. Dual DNA vaccination of rainbow trout (Oncorhynchus mykiss) against two different rhabdoviruses, VHSV and IHNV, induces specific divalent protection. Vaccine. 2009; 27(8); 1248-1253. [PubMed: 19118593].
  5. Kurath et al., 2006: Kurath G, Garver KA, Corbeil S, Elliott DG, Anderson ED, LaPatra SE. Protective immunity and lack of histopathological damage two years after DNA vaccination against infectious hematopoietic necrosis virus in trout. Vaccine. 2006; 24(3); 345-354. [PubMed: 16154239].
  6. Lorenzen et al., 2002: Lorenzen N, Lorenzen E, Einer-Jensen K, LaPatra SE. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens. Developmental and comparative immunology. 2002; 26(2); 173-179. [PubMed: 11696382].
  7. Thoulouze et al., 2004: Thoulouze MI, Bouguyon E, Carpentier C, Brémont M. Essential role of the NV protein of Novirhabdovirus for pathogenicity in rainbow trout. Journal of virology. 2004; 78(8); 4098-4107. [PubMed: 15047826].
  8. Wiki: Infectious Hematopoietic Necrosis Virus: Infectious Hematopoietic Necrosis Virus [http://en.wikipedia.org/wiki/Infectious_hematopoietic_necrosis_virus]

infectious laryngotracheitis virus

  1. Esaki et al., 2013: Esaki M, Noland L, Eddins T, Godoy A, Saeki S, Saitoh S, Yasuda A, Dorsey KM. Safety and efficacy of a turkey herpesvirus vector laryngotracheitis vaccine for chickens. Avian diseases. 2013; 57(2); 192-198. [PubMed: 24689173].
  2. Johnson et al., 2010: Johnson DI, Vagnozzi A, Dorea F, Riblet SM, Mundt A, Zavala G, García M. Protection against infectious laryngotracheitis by in ovo vaccination with commercially available viral vector recombinant vaccines. Avian diseases. 2010; 54(4); 1251-1259. [PubMed: 21313847].
  3. Kanabagatte et al., 2014: Kanabagatte Basavarajappa M, Kumar S, Khattar SK, Gebreluul GT, Paldurai A, Samal SK. A recombinant Newcastle disease virus (NDV) expressing infectious laryngotracheitis virus (ILTV) surface glycoprotein D protects against highly virulent ILTV and NDV challenges in chickens. Vaccine. 2014; 32(28); 3555-3563. [PubMed: 24793943].
  4. Loncoman et al., 2018: Loncoman CA, Hartley CA, Coppo MJC, Browning GF, Beltrán G, Riblet S, Freitas CO, García M, Devlin JM. Single Nucleotide Polymorphism Genotyping Analysis Shows That Vaccination Can Limit the Number and Diversity of Recombinant Progeny of Infectious Laryngotracheitis Viruses from the United States. Applied and environmental microbiology. 2018; 84(23); . [PubMed: 30242009].
  5. Vagnozzi et al., 2012: Vagnozzi A, Zavala G, Riblet SM, Mundt A, García M. Protection induced by commercially available live-attenuated and recombinant viral vector vaccines against infectious laryngotracheitis virus in broiler chickens. Avian pathology : journal of the W.V.P.A. 2012; 41(1); 21-31. [PubMed: 22845318].
  6. Zhao et al., 2014: Zhao W, Spatz S, Zhang Z, Wen G, Garcia M, Zsak L, Yu Q. Newcastle disease virus (NDV) recombinants expressing infectious laryngotracheitis virus (ILTV) glycoproteins gB and gD protect chickens against ILTV and NDV challenges. Journal of virology. 2014; 88(15); 8397-8406. [PubMed: 24829337].

Infectious pancreatic necrosis virus

  1. Duan et al., 2022: Duan K, Tang X, Zhao J, Ren G, Shao Y, Lu T, He B, Xu L. An inactivated vaccine against infectious pancreatic necrosis virus in rainbow trout (Oncorhynchus mykiss). Fish & shellfish immunology. 2022; 127; 48-55. [PubMed: 35697270].
  2. Merck - Infectious Pancreatic Necrosis Virus: Infectious Pancreatic Necrosis [http://aqua.merck-animal-health.com/diseases/infectious-pancreatic-necrosis/productadditional_127_113313.aspx]
  3. Mikalsen et al., 2004: Mikalsen AB, Torgersen J, Aleström P, Hellemann AL, Koppang EO, Rimstad E. Protection of atlantic salmon Salmo salar against infectious pancreatic necrosis after DNA vaccination. Diseases of aquatic organisms. 2004; 60(1); 11-20. [PubMed: 15352520].

Infectious salmon anemia virus

  1. Lauscher et al., 2011: Lauscher A, Krossøy B, Frost P, Grove S, König M, Bohlin J, Falk K, Austbø L, Rimstad E. Immune responses in Atlantic salmon (Salmo salar) following protective vaccination against infectious salmon anemia (ISA) and subsequent ISA virus infection. Vaccine. 2011; 29(37); 6392-6401. [PubMed: 21554914].
  2. Mikalsen et al., 2005: Mikalsen AB, Sindre H, Torgersen J, Rimstad E. Protective effects of a DNA vaccine expressing the infectious salmon anemia virus hemagglutinin-esterase in Atlantic salmon. Vaccine. 2005; 23(41); 4895-4905. [PubMed: 16005119].
  3. Rimstad and Mjaaland, 2002: Rimstad E, Mjaaland S. Infectious salmon anaemia virus. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2002; 110(4); 273-282. [PubMed: 12076262].
  4. Wiki: Infectious Salmon anemia virus: Wiki: Infectious Salmon anemia virus [http://en.wikipedia.org/wiki/Infectious_salmon_anemia_virus]

Influenza virus

  1. Abe et al., 2003: Abe T, Takahashi H, Hamazaki H, Miyano-Kurosaki N, Matsuura Y, Takaku H. Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. Journal of immunology (Baltimore, Md. : 1950). 2003; 171(3); 1133-1139. [PubMed: 12874198].
  2. Aflunov Product Info: Aflunov Product Information [http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002094/WC500101080.pdf]
  3. Afluria webpage: Afluria official web page [http://www.afluria.com/]
  4. Andrew et al., 1986: Andrew ME, Coupar BE, Ada GL, Boyle DB. Cell-mediated immune responses to influenza virus antigens expressed by vaccinia virus recombinants. Microbial pathogenesis. 1986; 1(5); 443-452. [PubMed: 3509883].
  5. Barría et al., 2013: Barría MI, Garrido JL, Stein C, Scher E, Ge Y, Engel SM, Kraus TA, Banach D, Moran TM. Localized mucosal response to intranasal live attenuated influenza vaccine in adults. The Journal of infectious diseases. 2013; 207(1); 115-124. [PubMed: 23087433].
  6. Berglund et al., 1998: Berglund P, Smerdou C, Fleeton MN, Tubulekas I, Liljeström P. Enhancing immune responses using suicidal DNA vaccines. Nature biotechnology. 1998; 16(6); 562-565. [PubMed: 9624688].
  7. Bins et al., 2005: Bins AD, Jorritsma A, Wolkers MC, Hung CF, Wu TC, Schumacher TN, Haanen JB. A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression. Nature medicine. 2005; 11(8); 899-904. [PubMed: 15965482].
  8. Block et al., 2008: Block SL, Yogev R, Hayden FG, Ambrose CS, Zeng W, Walker RE. Shedding and immunogenicity of live attenuated influenza vaccine virus in subjects 5-49 years of age. Vaccine. 2008; 26(38); 4940-4946. [PubMed: 18662737].
  9. Bot et al., 1996: Bot A, Bot S, Garcia-Sastre A, Bona C. DNA immunization of newborn mice with a plasmid-expressing nucleoprotein of influenza virus. Viral immunology. 1996; 9(4); 207-210. [PubMed: 8978016].
  10. Bright et al., 2008: Bright RA, Carter DM, Crevar CJ, Toapanta FR, Steckbeck JD, Cole KS, Kumar NM, Pushko P, Smith G, Tumpey TM, Ross TM. Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle. PloS one. 2008; 3(1); e1501. [PubMed: 18231588].
  11. Bublot et al., 2006: Bublot M, Pritchard N, Swayne DE, Selleck P, Karaca K, Suarez DL, Audonnet JC, Mickle TR. Development and use of fowlpox vectored vaccines for avian influenza. Annals of the New York Academy of Sciences. 2006; 1081; 193-201. [PubMed: 17135511].
  12. Bublot et al., 2010: Bublot M, Manvell RJ, Shell W, Brown IH. High level of protection induced by two fowlpox vector vaccines against a highly pathogenic avian influenza H5N1 challenge in specific-pathogen-free chickens. Avian diseases. 2010; 54(1 Suppl); 257-261. [PubMed: 20521642].
  13. Bublot et al., 2010: Bublot M, Richard-Mazet A, Chanavat-Bizzini S, Le Gros FX, Duboeuf M, Stoll A, Palfi V, Niqueux E, Guionie O, Dren N. Immunogenicity of poxvirus vector avian influenza vaccines in Muscovy and Pekin ducks. Avian diseases. 2010; 54(1 Suppl); 232-238. [PubMed: 20521637].
  14. Bucasas et al., 2011: Bucasas KL, Franco LM, Shaw CA, Bray MS, Wells JM, Niño D, Arden N, Quarles JM, Couch RB, Belmont JW. Early patterns of gene expression correlate with the humoral immune response to influenza vaccination in humans. The Journal of infectious diseases. 2011; 203(7); 921-929. [PubMed: 21357945].
  15. Butter et al., 2013: Butter C, Staines K, van Hateren A, Davison TF, Kaufman J. The peptide motif of the single dominantly expressed class I molecule of the chicken MHC can explain the response to a molecular defined vaccine of infectious bursal disease virus (IBDV). Immunogenetics. 2013; 65(8); 609-618. [PubMed: 23644721].
  16. Caillet et al., 2010: Caillet C, Piras F, Bernard MC, de Montfort A, Boudet F, Vogel FR, Hoffenbach A, Moste C, Kusters I. AF03-adjuvanted and non-adjuvanted pandemic influenza A (H1N1) 2009 vaccines induce strong antibody responses in seasonal influenza vaccine-primed and unprimed mice. Vaccine. 2010; 28(18); 3076-3079. [PubMed: 20193791].
  17. Chen et al., 1999: Chen Z, Yoshikawa T, Kadowaki S, Hagiwara Y, Matsuo K, Asanuma H, Aizawa C, Kurata T, Tamura S. Protection and antibody responses in different strains of mouse immunized with plasmid DNAs encoding influenza virus haemagglutinin, neuraminidase and nucleoprotein. The Journal of general virology. 1999; 80 ( Pt 10); 2559-2564. [PubMed: 10573147].
  18. Chen et al., 2001: Chen Z, Kadowaki S, Hagiwara Y, Yoshikawa T, Sata T, Kurata T, Tamura S. Protection against influenza B virus infection by immunization with DNA vaccines. Vaccine. 2001; 19(11-12); 1446-1455. [PubMed: 11163667].
  19. Chen et al., 2009: Chen Q, Kuang H, Wang H, Fang F, Yang Z, Zhang Z, Zhang X, Chen Z. Comparing the ability of a series of viral protein-expressing plasmid DNAs to protect against H5N1 influenza virus. Virus genes. 2009; 38(1); 30-38. [PubMed: 19067149].
  20. Choi et al., 2013: Choi JY, Gwon YD, Kim JK, Cho YD, Heo YK, Cho HS, Choi TJ, Poo HR, Oh YK, Kim YB. Protective efficacy of a human endogenous retrovirus envelope-coated, nonreplicable, baculovirus-based hemagglutin vaccine against pandemic influenza H1N1 2009. PloS one. 2013; 8(11); e80762. [PubMed: 24260476].
  21. Cox et al., 2009: Cox RJ, Major D, Hauge S, Madhun AS, Brokstad KA, Kuhne M, Smith J, Vogel FR, Zambon M, Haaheim LR, Wood J. A cell-based H7N1 split influenza virion vaccine confers protection in mouse and ferret challenge models. Influenza and other respiratory viruses. 2009; 3(3); 107-117. [PubMed: 19453487].
  22. Davis et al., 1996: Davis NL, Brown KW, Johnston RE. A viral vaccine vector that expresses foreign genes in lymph nodes and protects against mucosal challenge. Journal of virology. 1996; 70(6); 3781-3787. [PubMed: 8648713].
  23. Deliyannis et al., 1998: Deliyannis G, Jackson DC, Dyer W, Bates J, Coulter A, Harling-McNabb L, Brown LE. Immunopotentiation of humoral and cellular responses to inactivated influenza vaccines by two different adjuvants with potential for human use. Vaccine. 1998; 16(20); 2058-2068. [PubMed: 9796065].
  24. Donnelly et al., 1997: Donnelly JJ, Friedman A, Ulmer JB, Liu MA. Further protection against antigenic drift of influenza virus in a ferret model by DNA vaccination. Vaccine. 1997; 15(8); 865-868. [PubMed: 9234535].
  25. el et al., 1989: el Guink N, Kris RM, Goodman-Snitkoff G, Small PA Jr, Mannino RJ. Intranasal immunization with proteoliposomes protects against influenza. Vaccine. 1989; 7(2); 147-151. [PubMed: 2546328].
  26. Eliasson et al., 2008: Eliasson DG, El Bakkouri K, Schön K, Ramne A, Festjens E, Löwenadler B, Fiers W, Saelens X, Lycke N. CTA1-M2e-DD: a novel mucosal adjuvant targeted influenza vaccine. Vaccine. 2008; 26(9); 1243-1252. [PubMed: 18243429].
  27. EMA Pandemrix Suppl, 2013: EMA Pandemrix Summary of Product Characteristics [http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000832/WC500038121.pdf]
  28. EMA Pandemrix, 2013: European Medicines Agency (EMA) Pandemrix [http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000832/human_med_000965.jsp&mid=WC0b01ac058001d124]
  29. Epstein et al., 2002: Epstein SL, Tumpey TM, Misplon JA, Lo CY, Cooper LA, Subbarao K, Renshaw M, Sambhara S, Katz JM. DNA vaccine expressing conserved influenza virus proteins protective against H5N1 challenge infection in mice. Emerging infectious diseases. 2002; 8(8); 796-801. [PubMed: 12141964].
  30. Epstein et al., 2005: Epstein SL, Kong WP, Misplon JA, Lo CY, Tumpey TM, Xu L, Nabel GJ. Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein. Vaccine. 2005; 23(46-47); 5404-5410. [PubMed: 16011865].
  31. Fattal-German et al., 1988: Fattal-German M, German A, Bizzini B. Potentiating the effectiveness of influenza vaccination by a combined immunostimulation with P40 immunomodulator: an experimental study in mice. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 1988; 42(1); 73-78. [PubMed: 3408809].
  32. FDA: Afluria: FDA: Afluria influenza virus vaccine information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094043.htm]
  33. FDA: Afluria Quadrivalent: FDA: Afluria Quadrivalent vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM518295.pdf]
  34. FDA: Agriflu: FDA: Agriflu [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm192126.htm]
  35. FDA: CSL H1N1 vaccine: FDA: the H1N1 influenza vaccine from CSL [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm181975.htm]
  36. FDA: Fluarix: FDA: Fluarix [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm112850.htm]
  37. FDA: Fluarix Quadrivalent: FDA: Fluarix Quadrivalent vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM220624.pdf]
  38. FDA: Flublok: FDA: Flublok vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM336020.pdf]
  39. FDA: Flublok Quadrivalent: FDA: Flublok Quadrivalent vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM524684.pdf]
  40. FDA: Flucelvax: FDA: Flucelvax vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM329134.pdf]
  41. FDA: Flucelvax Quadrivalent: FDA: Flucelvax Quadrivalent vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM502899.pdf]
  42. FDA: FluLaval: FDA FluLaval information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm112845.htm]
  43. FDA: Flulaval Approval: FDA: Flulaval approval information [http://www.fda.gov/cber/products/flulaval.htm]
  44. FDA: Flulaval old: FDA Flulaval information [http://www.fda.gov/CbER/label/flulavalLB.pdf]
  45. FDA: Flulaval Quadrivalent: FDA: Flulaval Quadrivalent vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM404086.pdf]
  46. FDA: Flumist: FDA: Flumist Influenza Virus Vaccine [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094047.htm]
  47. FDA: FluMist Quadrivalent: FDA: FluMist Quadrivalent vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM294307.pdf]
  48. FDA: Fluvirin: FDA: Fluvirin Influenza Virus Vaccine [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm112852.htm]
  49. FDA: Fluzone: FDA: Fluzone influenza vaccine information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm112854.htm]
  50. FDA: Fluzone HD: FDA: Fluzone High-dose [http://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM195479.pdf]
  51. FDA: Fluzone ID Quadrivalent: FDA: Fluzone Intradermal Quadrivalent vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM426679.pdf]
  52. FDA: Fluzone Quadrivalent: FDA: Fluzone Quadrivalent vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM356094.pdf]
  53. FDA: Fluzone Quadrivalent SH: FDA: Fluzone Quadrivalent Southern Hemisphere formulation vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM513242.pdf]
  54. FDA: GSK H1N1: FDA: Influenza A (H1N1) 2009 Monovalent Vaccine (GlaxoSmithKline) [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM190377.pdf]
  55. FDA: H1N1 Novartis Vaccine: FDA H1N1 Influenza Vaccine from Novartis Vaccines and Diagnostics Ltd [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm181973.htm]
  56. FDA: H1N1 Vaccine Sanofi Pasteur: FDA: H1N1 Influenza virus vaccine from Sanofi Pasteur [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm181971.htm]
  57. FDA: H5N1 GSK: Influenza A (H5N1) Virus Monovalent Vaccine, Adjuvanted [https://www.fda.gov/downloads/BiologicsBloodVaccines/SafetyAvailability/VaccineSafety/UCM376464.pdf]
  58. FDA: MedImmune H1N1 vaccine: Influenza A (H1N1) 2009 Monovalent Vaccine (MedImmune LLC) [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm181970.htm]
  59. FDA: Sanofi Pasteur H5N1: FDA: Sanofi Pasteur H5N1Influenza virus vaccine information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094044.htm]
  60. Feltquate et al., 1997: Feltquate DM, Heaney S, Webster RG, Robinson HL. Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. Journal of immunology (Baltimore, Md. : 1950). 1997; 158(5); 2278-2284. [PubMed: 9036975].
  61. Ferreira et al., 2012: Ferreira HL, Pirlot JF, Reynard F, van den Berg T, Bublot M, Lambrecht B. Immune responses and protection against H5N1 highly pathogenic avian influenza virus induced by the Newcastle disease virus H5 vaccine in ducks. Avian diseases. 2012; 56(4 Suppl); 940-948. [PubMed: 23402116].
  62. Ferreira et al., 2014: Ferreira HL, Rauw F, Pirlot JF, Reynard F, van den Berg T, Bublot M, Lambrecht B. Comparison of single 1-day-old chick vaccination using a Newcastle disease virus vector with a prime/boost vaccination scheme against a highly pathogenic avian influenza H5N1 challenge. Avian pathology : journal of the W.V.P.A. 2014; 43(1); 68-77. [PubMed: 24320551].
  63. Fisher et al., 2022: Fisher DG, Gnazzo V, Holthausen DJ, López CB. Non-standard viral genome-derived RNA activates TLR3 and type I IFN signaling to induce cDC1-dependent CD8+ T-cell responses during vaccination in mice. Vaccine. 2022; 40(50); 7270-7279. [PubMed: 36333225].
  64. Fluad Press Release: Fluad Press Release from Novartis [http://www.novartisvaccines.com/downloads/newsroom/media-releases/20071019_FluadVACCINEpublication.pdf]
  65. Fluad Product Monograph: Fluad Product Monograph [http://www.novartis.ca/products/en/vaccines-f.shtml]
  66. FluMist website: FluMist official website [http://www.flumist.com/]
  67. Focetria Product Information: Focetria Summary of Product Characteristics [http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000710/WC500023749.pdf]
  68. Fu et al., 1999: Fu TM, Guan L, Friedman A, Schofield TL, Ulmer JB, Liu MA, Donnelly JJ. Dose dependence of CTL precursor frequency induced by a DNA vaccine and correlation with protective immunity against influenza virus challenge. Journal of immunology (Baltimore, Md. : 1950). 1999; 162(7); 4163-4170. [PubMed: 10201942].
  69. Fynan et al., 1993: Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proceedings of the National Academy of Sciences of the United States of America. 1993; 90(24); 11478-11482. [PubMed: 8265577].
  70. Ge et al., 2010: Ge J, Tian G, Zeng X, Jiang Y, Chen H, Bua Z. Generation and evaluation of a Newcastle disease virus-based H9 avian influenza live vaccine. Avian diseases. 2010; 54(1 Suppl); 294-296. [PubMed: 20521648].
  71. Goff et al., 2015: Goff PH, Hayashi T, Martínez-Gil L, Corr M, Crain B, Yao S, Cottam HB, Chan M, Ramos I, Eggink D, Heshmati M, Krammer F, Messer K, Pu M, Fernandez-Sesma A, Palese P, Carson DA. Synthetic Toll-like receptor 4 (TLR4) and TLR7 ligands as influenza virus vaccine adjuvants induce rapid, sustained, and broadly protective responses. Journal of virology. 2015; 89(6); 3221-3235. [PubMed: 25568203].
  72. GSK: FluLaval Tetra: GSK: FluLaval Tetra vaccine information [http://ca.gsk.com/media/590283/flulaval-tetra.pdf]
  73. GSK: Fluviral S/F: Fluviral Product Monograph [http://www.gsk.ca/english/docs-pdf/Fluviral_2009_PM.pdf]
  74. GSK: US Fluarix: GSK: US Fluarix vaccine information [http://us.gsk.com/products/assets/us_fluarix.pdf]
  75. Halbherr et al., 2013: Halbherr SJ, Brostoff T, Tippenhauer M, Locher S, Berger Rentsch M, Zimmer G. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus. PloS one. 2013; 8(6); e66059. [PubMed: 23762463].
  76. Health Canada DPD: Health Canada Drug Product Database [http://www.hc-sc.gc.ca/dhp-mps/prodpharma/databasdon/index-eng.php]
  77. Henke et al., 2006: Henke A, Rohland N, Zell R, Wutzler P. Co-expression of interleukin-2 by a bicistronic plasmid increases the efficacy of DNA immunization to prevent influenza virus infections. Intervirology. 2006; 49(4); 249-252. [PubMed: 16601357].
  78. Hoek et al., 2015: Hoek KL, Samir P, Howard LM, Niu X, Prasad N, Galassie A, Liu Q, Allos TM, Floyd KA, Guo Y, Shyr Y, Levy SE, Joyce S, Edwards KM, Link AJ. A cell-based systems biology assessment of human blood to monitor immune responses after influenza vaccination. PloS one. 2015; 10(2); e0118528. [PubMed: 25706537].
  79. Honda-Okubo et al., 2012: Honda-Okubo Y, Saade F, Petrovsky N. Advaxâ„¢, a polysaccharide adjuvant derived from delta inulin, provides improved influenza vaccine protection through broad-based enhancement of adaptive immune responses. Vaccine. 2012; 30(36); 5373-5381. [PubMed: 22728225].
  80. Huber et al., 2006: Huber VC, McKeon RM, Brackin MN, Miller LA, Keating R, Brown SA, Makarova N, Perez DR, Macdonald GH, McCullers JA. Distinct contributions of vaccine-induced immunoglobulin G1 (IgG1) and IgG2a antibodies to protective immunity against influenza. Clinical and vaccine immunology : CVI. 2006; 13(9); 981-990. [PubMed: 16960108].
  81. Hunt et al., 1988: Hunt LA, Brown DW, Robinson HL, Naeve CW, Webster RG. Retrovirus-expressed hemagglutinin protects against lethal influenza virus infections. Journal of virology. 1988; 62(8); 3014-3019. [PubMed: 2839718].
  82. Intanza Product Monograph: Intanza Protduct Monograph [http://www.sanofipasteur.com/sanofi-pasteur2/sp-media/SP_CA/EN/75/1215/415%20416%20INTANZA%20R0-0510%20En.pdf]
  83. Jazayeri et al., 2012: Jazayeri SD, Ideris A, Zakaria Z, Omar AR. Attenuated Salmonella typhimurium SV4089 as a Potential Carrier of Oral DNA Vaccine in Chickens. Journal of biomedicine & biotechnology. 2012; 2012; 264986. [PubMed: 22701301].
  84. Jiang et al., 2007: Jiang Y, Yu K, Zhang H, Zhang P, Li C, Tian G, Li Y, Wang X, Ge J, Bu Z, Chen H. Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector. Antiviral research. 2007; 75(3); 234-241. [PubMed: 17451817].
  85. Jimenez et al., 2007: Jimenez GS, Planchon R, Wei Q, Rusalov D, Geall A, Enas J, Lalor P, Leamy V, Vahle R, Luke CJ, Rolland A, Kaslow DC, Smith LR. Vaxfectin-formulated influenza DNA vaccines encoding NP and M2 viral proteins protect mice against lethal viral challenge. Human vaccines. 2007; 3(5); 157-164. [PubMed: 17637571].
  86. Kao et al., 2010: Kao RY, Yang D, Lau LS, Tsui WH, Hu L, Dai J, Chan MP, Chan CM, Wang P, Zheng BJ, Sun J, Huang JD, Madar J, Chen G, Chen H, Guan Y, Yuen KY. Identification of influenza A nucleoprotein as an antiviral target. Nature biotechnology. 2010; 28(6); 600-605. [PubMed: 20512121].
  87. Kayamuro et al., 2010: Kayamuro H, Yoshioka Y, Abe Y, Arita S, Katayama K, Nomura T, Yoshikawa T, Kubota-Koketsu R, Ikuta K, Okamoto S, Mori Y, Kunisawa J, Kiyono H, Itoh N, Nagano K, Kamada H, Tsutsumi Y, Tsunoda S. Interleukin-1 family cytokines as mucosal vaccine adjuvants for induction of protective immunity against influenza virus. Journal of virology. 2010; 84(24); 12703-12712. [PubMed: 20881038].
  88. Kingstad-Bakke et al., 2012: Kingstad-Bakke B, Brewoo JN, Mai le Q, Kawaoka Y, Osorio JE. Effects of route and coadministration of recombinant raccoon poxviruses on immune responses and protection against highly pathogenic avian influenza in mice. Vaccine. 2012; 30(45); 6402-6408. [PubMed: 22921740].
  89. Klingbeil et al., 2014: Klingbeil K, Lange E, Teifke JP, Mettenleiter TC, Fuchs W. Immunization of pigs with an attenuated pseudorabies virus recombinant expressing the haemagglutinin of pandemic swine origin H1N1 influenza A virus. The Journal of general virology. 2014; 95(Pt 4); 948-959. [PubMed: 24431235].
  90. Kodihalli et al., 1999: Kodihalli S, Goto H, Kobasa DL, Krauss S, Kawaoka Y, Webster RG. DNA vaccine encoding hemagglutinin provides protective immunity against H5N1 influenza virus infection in mice. Journal of virology. 1999; 73(3); 2094-2098. [PubMed: 9971791].
  91. Kodihalli et al., 2000: Kodihalli S, Kobasa DL, Webster RG. Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines. Vaccine. 2000; 18(23); 2592-2599. [PubMed: 10775793].
  92. Kyriakis et al., 2009: Kyriakis CS, De Vleeschauwer A, Barbé F, Bublot M, Van Reeth K. Safety, immunogenicity and efficacy of poxvirus-based vector vaccines expressing the haemagglutinin gene of a highly pathogenic H5N1 avian influenza virus in pigs. Vaccine. 2009; 27(16); 2258-2264. [PubMed: 19428840].
  93. Laddy et al., 2008: Laddy DJ, Yan J, Kutzler M, Kobasa D, Kobinger GP, Khan AS, Greenhouse J, Sardesai NY, Draghia-Akli R, Weiner DB. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens. PloS one. 2008; 3(6); e2517. [PubMed: 18575608].
  94. Lalor et al., 2008: Lalor PA, Webby RJ, Morrow J, Rusalov D, Kaslow DC, Rolland A, Smith LR. Plasmid DNA-based vaccines protect mice and ferrets against lethal challenge with A/Vietnam/1203/04 (H5N1) influenza virus. The Journal of infectious diseases. 2008; 197(12); 1643-1652. [PubMed: 18513153].
  95. Le et al., 2007: Le Gall-Reculé G, Cherbonnel M, Pelotte N, Blanchard P, Morin Y, Jestin V. Importance of a prime-boost DNA/protein vaccination to protect chickens against low-pathogenic H7 avian influenza infection. Avian diseases. 2007; 51(1 Suppl); 490-494. [PubMed: 17494616].
  96. Ledgerwood et al., 2011: Ledgerwood JE, Wei CJ, Hu Z, Gordon IJ, Enama ME, Hendel CS, McTamney PM, Pearce MB, Yassine HM, Boyington JC, Bailer R, Tumpey TM, Koup RA, Mascola JR, Nabel GJ, Graham BS. DNA priming and influenza vaccine immunogenicity: two phase 1 open label randomised clinical trials. The Lancet infectious diseases. 2011; 11(12); 916-924. [PubMed: 21975270].
  97. Lena et al., 2002: Lena P, Villinger F, Giavedoni L, Miller CJ, Rhodes G, Luciw P. Co-immunization of rhesus macaques with plasmid vectors expressing IFN-gamma, GM-CSF, and SIV antigens enhances anti-viral humoral immunity but does not affect viremia after challenge with highly pathogenic virus. Vaccine. 2002; 20 Suppl 4; A69-79. [PubMed: 12477432].
  98. Li et al., 2011: Li R, Lim A, Ow ST, Phoon MC, Locht C, Chow VT, Alonso S. Development of live attenuated Bordetella pertussis strains expressing the universal influenza vaccine candidate M2e. Vaccine. 2011; 29(33); 5502-5511. [PubMed: 21624415].
  99. Liljebjelke et al., 2010: Liljebjelke KA, Petkov DI, Kapczynski DR. Mucosal vaccination with a codon-optimized hemagglutinin gene expressed by attenuated Salmonella elicits a protective immune response in chickens against highly pathogenic avian influenza. Vaccine. 2010; 28(27); 4430-4437. [PubMed: 20406663].
  100. Liu et al., 2011: Liu J, Chen P, Jiang Y, Wu L, Zeng X, Tian G, Ge J, Kawaoka Y, Bu Z, Chen H. A duck enteritis virus-vectored bivalent live vaccine provides fast and complete protection against H5N1 avian influenza virus infection in ducks. Journal of virology. 2011; 85(21); 10989-10998. [PubMed: 21865383].
  101. Liu et al., 2013: Liu J, Chen P, Jiang Y, Deng G, Shi J, Wu L, Lin Y, Bu Z, Chen H. Recombinant duck enteritis virus works as a single-dose vaccine in broilers providing rapid protection against H5N1 influenza infection. Antiviral research. 2013; 97(3); 329-333. [PubMed: 23267833].
  102. Loudon et al., 2010: Loudon PT, Yager EJ, Lynch DT, Narendran A, Stagnar C, Franchini AM, Fuller JT, White PA, Nyuandi J, Wiley CA, Murphey-Corb M, Fuller DH. GM-CSF increases mucosal and systemic immunogenicity of an H1N1 influenza DNA vaccine administered into the epidermis of non-human primates. PloS one. 2010; 5(6); e11021. [PubMed: 20544035].
  103. Lunn et al., 1999: Lunn DP, Soboll G, Schram BR, Quass J, McGregor MW, Drape RJ, Macklin MD, McCabe DE, Swain WF, Olsen CW. Antibody responses to DNA vaccination of horses using the influenza virus hemagglutinin gene. Vaccine. 1999; 17(18); 2245-2258. [PubMed: 10403592].
  104. Luo et al., 2008: Luo M, Tao P, Li J, Zhou S, Guo D, Pan Z. Immunization with plasmid DNA encoding influenza A virus nucleoprotein fused to a tissue plasminogen activator signal sequence elicits strong immune responses and protection against H5N1 challenge in mice. Journal of virological methods. 2008; 154(1-2); 121-127. [PubMed: 18789973].
  105. Marinaik et al., 2020: Marinaik CB, Kingstad-Bakke B, Lee W, Hatta M, Sonsalla M, Larsen A, Neldner B, Gasper DJ, Kedl RM, Kawaoka Y, Suresh M. Programming Multifaceted Pulmonary T Cell Immunity by Combination Adjuvants. Cell reports. Medicine. 2020; 1(6); 100095. [PubMed: 32984856].
  106. Mayrhofer et al., 2009: Mayrhofer J, Coulibaly S, Hessel A, Holzer GW, Schwendinger M, Brühl P, Gerencer M, Crowe BA, Shuo S, Hong W, Tan YJ, Dietrich B, Sabarth N, Savidis-Dacho H, Kistner O, Barrett PN, Falkner FG. Nonreplicating vaccinia virus vectors expressing the H5 influenza virus hemagglutinin produced in modified Vero cells induce robust protection. Journal of virology. 2009; 83(10); 5192-5203. [PubMed: 19279103].
  107. Mielcarek et al., 2006: Mielcarek N, Debrie AS, Raze D, Quatannens J, Engle J, Goldman WE, Locht C. Attenuated Bordetella pertussis: new live vaccines for intranasal immunisation. Vaccine. 2006; 24 Suppl 2; S2-54-5. [PubMed: 16823926].
  108. Minke et al., 2004: Minke JM, Audonnet JC, Fischer L. Equine viral vaccines: the past, present and future. Veterinary research. 2004; 35(4); 425-443. [PubMed: 15236675].
  109. Mizukami et al., 2014: Mizukami T, Momose H, Kuramitsu M, Takizawa K, Araki K, Furuhata K, Ishii KJ, Hamaguchi I, Yamaguchi K. System vaccinology for the evaluation of influenza vaccine safety by multiplex gene detection of novel biomarkers in a preclinical study and batch release test. PloS one. 2014; 9(7); e101835. [PubMed: 25010690].
  110. Momose et al., 2015: Momose H, Mizukami T, Kuramitsu M, Takizawa K, Masumi A, Araki K, Furuhata K, Yamaguchi K, Hamaguchi I. Establishment of a new quality control and vaccine safety test for influenza vaccines and adjuvants using gene expression profiling. PloS one. 2015; 10(4); e0124392. [PubMed: 25909814].
  111. Muller et al., 1990: Muller S, Plaué S, Samama JP, Valette M, Briand JP, Van Regenmortel MH. Antigenic properties and protective capacity of a cyclic peptide corresponding to site A of influenza virus haemagglutinin. Vaccine. 1990; 8(4); 308-314. [PubMed: 2396470].
  112. Mylan: Abbott Influvac: Mylan: Abbott Influvac vaccine information [http://www.mylan.ca/-/media/mylanca/documents/english/product%20pdf/influvac-pm-2016-06-01.pdf]
  113. Nakaya et al., 2011: Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S, Haining WN, Means AR, Kasturi SP, Khan N, Li GM, McCausland M, Kanchan V, Kokko KE, Li S, Elbein R, Mehta AK, Aderem A, Subbarao K, Ahmed R, Pulendran B. Systems biology of vaccination for seasonal influenza in humans. Nature immunology. 2011; 12(8); 786-795. [PubMed: 21743478].
  114. Niqueux et al., 2013: Niqueux E, Guionie O, Amelot M, Jestin V. Prime-boost vaccination with recombinant H5-fowlpox and Newcastle disease virus vectors affords lasting protection in SPF Muscovy ducks against highly pathogenic H5N1 influenza virus. Vaccine. 2013; 31(38); 4121-4128. [PubMed: 23845804].
  115. Oh et al., 2010: Oh HL, Akerstrom S, Shen S, Bereczky S, Karlberg H, Klingström J, Lal SK, Mirazimi A, Tan YJ. An antibody against a novel and conserved epitope in the HA1 subunit neutralizes numerous H5N1 influenza viruses. Journal of virology. 2010; ; . [PubMed: 20519402].
  116. Olsen et al., 1997: Olsen CW, McGregor MW, Dybdahl-Sissoko N, Schram BR, Nelson KM, Lunn DP, Macklin MD, Swain WF, Hinshaw VS. Immunogenicity and efficacy of baculovirus-expressed and DNA-based equine influenza virus hemagglutinin vaccines in mice. Vaccine. 1997; 15(10); 1149-1156. [PubMed: 9269061].
  117. Paillot et al., 2006: Paillot R, Kydd JH, Sindle T, Hannant D, Edlund Toulemonde C, Audonnet JC, Minke JM, Daly JM. Antibody and IFN-gamma responses induced by a recombinant canarypox vaccine and challenge infection with equine influenza virus. Veterinary immunology and immunopathology. 2006; 112(3-4); 225-233. [PubMed: 16621023].
  118. Park et al., 2006: Park MS, Steel J, García-Sastre A, Swayne D, Palese P. Engineered viral vaccine constructs with dual specificity: avian influenza and Newcastle disease. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103(21); 8203-8208. [PubMed: 16717196].
  119. Patel et al., 2010: Patel A, Tikoo S, Kobinger G. A porcine adenovirus with low human seroprevalence is a promising alternative vaccine vector to human adenovirus 5 in an H5N1 virus disease model. PloS one. 2010; 5(12); e15301. [PubMed: 21179494].
  120. Pertmer et al., 1995: Pertmer TM, Eisenbraun MD, McCabe D, Prayaga SK, Fuller DH, Haynes JR. Gene gun-based nucleic acid immunization: elicitation of humoral and cytotoxic T lymphocyte responses following epidermal delivery of nanogram quantities of DNA. Vaccine. 1995; 13(15); 1427-1430. [PubMed: 8578820].
  121. Pertmer et al., 2001: Pertmer TM, Oran AE, Madorin CA, Robinson HL. Th1 genetic adjuvants modulate immune responses in neonates. Vaccine. 2001; 19(13-14); 1764-1771. [PubMed: 11166902].
  122. Prabakaran et al., 2010: Prabakaran M, Madhan S, Prabhu N, Qiang J, Kwang J. Gastrointestinal delivery of baculovirus displaying influenza virus hemagglutinin protects mice against heterologous H5N1 infection. Journal of virology. 2010; 84(7); 3201-3209. [PubMed: 20071572].
  123. Pushko et al., 2010: Pushko P, Kort T, Nathan M, Pearce MB, Smith G, Tumpey TM. Recombinant H1N1 virus-like particle vaccine elicits protective immunity in ferrets against the 2009 pandemic H1N1 influenza virus. Vaccine. 2010; ; . [PubMed: 20470801].
  124. Qian et al., 2012: Qian C, Chen S, Ding P, Chai M, Xu C, Gan J, Peng D, Liu X. The immune response of a recombinant fowlpox virus coexpressing the HA gene of the H5N1 highly pathogenic avian influenza virus and chicken interleukin 6 gene in ducks. Vaccine. 2012; 30(44); 6279-6286. [PubMed: 22902682].
  125. Rao et al., 2010: Rao SS, Kong WP, Wei CJ, Van Hoeven N, Gorres JP, Nason M, Andersen H, Tumpey TM, Nabel GJ. Comparative efficacy of hemagglutinin, nucleoprotein, and matrix 2 protein gene-based vaccination against H5N1 influenza in mouse and ferret. PloS one. 2010; 5(3); e9812. [PubMed: 20352112].
  126. Rauw et al., 2012: Rauw F, Palya V, Gardin Y, Tatar-Kis T, Dorsey KM, Lambrecht B, van den Berg T. Efficacy of rHVT-AI vector vaccine in broilers with passive immunity against challenge with two antigenically divergent Egyptian clade 2.2.1 HPAI H5N1 strains. Avian diseases. 2012; 56(4 Suppl); 913-922. [PubMed: 23402112].
  127. Raz et al., 1994: Raz E, Carson DA, Parker SE, Parr TB, Abai AM, Aichinger G, Gromkowski SH, Singh M, Lew D, Yankauckas MA. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proceedings of the National Academy of Sciences of the United States of America. 1994; 91(20); 9519-9523. [PubMed: 7937799].
  128. Reichert and Mauler, 1975: Reichert E, Mauler R. Effect of neuraminidase on potency of inactivated influenza virus vaccines in mice. Developments in biological standardization. 1975; 28; 319-323. [PubMed: 1126575].
  129. Richt and García-Sastre, 2009: Richt JA, García-Sastre A. Attenuated influenza virus vaccines with modified NS1 proteins. Current topics in microbiology and immunology. 2009; 333; 177-195. [PubMed: 19768406].
  130. Rieger, 1975: Rieger HJ. [Commitment of hospital physicians to obligatory treatment of prisoners]. Deutsche medizinische Wochenschrift (1946). 1975; 100(15); 847-849. [PubMed: 1122836].
  131. Roberts et al., 1999: Roberts A, Buonocore L, Price R, Forman J, Rose JK. Attenuated vesicular stomatitis viruses as vaccine vectors. Journal of virology. 1999; 73(5); 3723-3732. [PubMed: 10196265].
  132. Robinson et al., 1993: Robinson HL, Hunt LA, Webster RG. Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA. Vaccine. 1993; 11(9); 957-960. [PubMed: 8212843].
  133. Rohde et al., 2013: Rohde J, Amann R, Rziha HJ. New Orf virus (Parapoxvirus) recombinant expressing H5 hemagglutinin protects mice against H5N1 and H1N1 influenza A virus. PloS one. 2013; 8(12); e83802. [PubMed: 24376753].
  134. Rota et al., 1987: Rota PA, Shaw MW, Kendal AP. Comparison of the immune response to variant influenza type B hemagglutinins expressed in vaccinia virus. Virology. 1987; 161(2); 269-275. [PubMed: 3318092].
  135. Roy et al., 2007: Roy S, Kobinger GP, Lin J, Figueredo J, Calcedo R, Kobasa D, Wilson JM. Partial protection against H5N1 influenza in mice with a single dose of a chimpanzee adenovirus vector expressing nucleoprotein. Vaccine. 2007; 25(39-40); 6845-6851. [PubMed: 17728024].
  136. Sanofi Pasteur: Intanza: Sanofi Pasteur: Intanza [http://www.sanofipasteur.ca/sanofi-pasteur2/sp-media/SP_CA/EN/75/1215/415%20416%20INTANZA%20R0-0510%20En.pdf]
  137. Sato-Kaneko et al., 2020: Sato-Kaneko F, Yao S, Lao FS, Shpigelman J, Messer K, Pu M, Shukla NM, Cottam HB, Chan M, Chu PJ, Burkhart D, Schoener R, Matsutani T, Carson DA, Corr M, Hayashi T. A Novel Synthetic Dual Agonistic Liposomal TLR4/7 Adjuvant Promotes Broad Immune Responses in an Influenza Vaccine With Minimal Reactogenicity. Frontiers in immunology. 2020; 11; 1207. [PubMed: 32636840].
  138. Sato-Kaneko et al., 2021: Sato-Kaneko F, Yao S, Lao FS, Nan J, Shpigelman J, Cheng A, Saito T, Messer K, Pu M, Shukla NM, Cottam HB, Chan M, Molina AJ, Corr M, Hayashi T, Carson DA. Mitochondria-dependent synthetic small-molecule vaccine adjuvants for influenza virus infection. Proceedings of the National Academy of Sciences of the United States of America. 2021; 118(23); . [PubMed: 34078669].
  139. Schröer et al., 2011: Schröer D, Veits J, Keil G, Römer-Oberdörfer A, Weber S, Mettenleiter TC. Efficacy of Newcastle disease virus recombinant expressing avian influenza virus H6 hemagglutinin against Newcastle disease and low pathogenic avian influenza in chickens and turkeys. Avian diseases. 2011; 55(2); 201-211. [PubMed: 21793434].
  140. Shukla et al., 2018: Shukla NM, Arimoto KI, Yao S, Fan JB, Zhang Y, Sato-Kaneko F, Lao FS, Hosoya T, Messer K, Pu M, Cottam HB, Carson DA, Hayashi T, Zhang DE, Corr M. Identification of Compounds That Prolong Type I Interferon Signaling as Potential Vaccine Adjuvants. SLAS discovery : advancing life sciences R & D. 2018; 23(9); 960-973. [PubMed: 29751735].
  141. Smith et al., 2010: Smith LR, Wloch MK, Ye M, Reyes LR, Boutsaboualoy S, Dunne CE, Chaplin JA, Rusalov D, Rolland AP, Fisher CL, Al-Ibrahim MS, Kabongo ML, Steigbigel R, Belshe RB, Kitt ER, Chu AH, Moss RB. Phase 1 clinical trials of the safety and immunogenicity of adjuvanted plasmid DNA vaccines encoding influenza A virus H5 hemagglutinin. Vaccine. 2010; 28(13); 2565-2572. [PubMed: 20117262].
  142. Soejoedono et al., 2012: Soejoedono RD, Murtini S, Palya V, Felföldi B, Mató T, Gardin Y. Efficacy of a recombinant HVT-H5 vaccine against challenge with two genetically divergent Indonesian HPAI H5N1 strains. Avian diseases. 2012; 56(4 Suppl); 923-927. [PubMed: 23402113].
  143. Solvay Website: Influvac Manufacter Website [http://www.solvay-influenza.com/aboutvaccination/faqs/0,,2659-2-0,00.htm#7]
  144. Song et al., 2008: Song L, Nakaar V, Kavita U, Price A, Huleatt J, Tang J, Jacobs A, Liu G, Huang Y, Desai P, Maksymiuk G, Takahashi V, Umlauf S, Reiserova L, Bell R, Li H, Zhang Y, McDonald WF, Powell TJ, Tussey L. Efficacious recombinant influenza vaccines produced by high yield bacterial expression: a solution to global pandemic and seasonal needs. PloS one. 2008; 3(5); e2257. [PubMed: 18493310].
  145. Song et al., 2009: Song L, Zhang Y, Yun NE, Poussard AL, Smith JN, Smith JK, Borisevich V, Linde JJ, Zacks MA, Li H, Kavita U, Reiserova L, Liu X, Dumuren K, Balasubramanian B, Weaver B, Parent J, Umlauf S, Liu G, Huleatt J, Tussey L, Paessler S. Superior efficacy of a recombinant flagellin:H5N1 HA globular head vaccine is determined by the placement of the globular head within flagellin. Vaccine. 2009; 27(42); 5875-5884. [PubMed: 19654064].
  146. Tamura et al., 1989: Tamura SI, Samegai Y, Kurata H, Kikuta K, Nagamine T, Aizawa C, Kurata T. Enhancement of protective antibody responses by cholera toxin B subunit inoculated intranasally with influenza vaccine. Vaccine. 1989; 7(3); 257-262. [PubMed: 2781859].
  147. Tamura et al., 1996: Tamura S, Miyata K, Matsuo K, Asanuma H, Takahashi H, Nakajima K, Suzuki Y, Aizawa C, Kurata T. Acceleration of influenza virus clearance by Th1 cells in the nasal site of mice immunized intranasally with adjuvant-combined recombinant nucleoprotein. Journal of immunology (Baltimore, Md. : 1950). 1996; 156(10); 3892-3900. [PubMed: 8621928].
  148. Tao et al., 2009: Tao P, Luo M, Pan R, Ling D, Zhou S, Tien P, Pan Z. Enhanced protective immunity against H5N1 influenza virus challenge by vaccination with DNA expressing a chimeric hemagglutinin in combination with an MHC class I-restricted epitope of nucleoprotein in mice. Antiviral research. 2009; 81(3); 253-260. [PubMed: 19135483].
  149. Tite et al., 1990: Tite JP, Hughes-Jenkins C, O'Callaghan D, Dougan G, Russell SM, Gao XM, Liew FY. Anti-viral immunity induced by recombinant nucleoprotein of influenza A virus. II. Protection from influenza infection and mechanism of protection. Immunology. 1990; 71(2); 202-207. [PubMed: 2172156].
  150. Tompkins et al., 2007: Tompkins SM, Zhao ZS, Lo CY, Misplon JA, Liu T, Ye Z, Hogan RJ, Wu Z, Benton KA, Tumpey TM, Epstein SL. Matrix protein 2 vaccination and protection against influenza viruses, including subtype H5N1. Emerging infectious diseases. 2007; 13(3); 426-435. [PubMed: 17552096].
  151. Tompkins et al., 2007: Tompkins SM, Lin Y, Leser GP, Kramer KA, Haas DL, Howerth EW, Xu J, Kennett MJ, Durbin RK, Durbin JE, Tripp R, Lamb RA, He B. Recombinant parainfluenza virus 5 (PIV5) expressing the influenza A virus hemagglutinin provides immunity in mice to influenza A virus challenge. Virology. 2007; 362(1); 139-150. [PubMed: 17254623].
  152. Tretyakova et al., 2013: Tretyakova I, Pearce MB, Florese R, Tumpey TM, Pushko P. Intranasal vaccination with H5, H7 and H9 hemagglutinins co-localized in a virus-like particle protects ferrets from multiple avian influenza viruses. Virology. 2013; 442(1); 67-73. [PubMed: 23618102].
  153. Vaxigrip Package Insert: Vaxigrip Package Insert [https://www.vaccineshoppecanada.com/secure/pdfs/ca/vaxigrip_e.pdf]
  154. Veits et al., 2006: Veits J, Wiesner D, Fuchs W, Hoffmann B, Granzow H, Starick E, Mundt E, Schirrmeier H, Mebatsion T, Mettenleiter TC, Römer-Oberdörfer A. Newcastle disease virus expressing H5 hemagglutinin gene protects chickens against Newcastle disease and avian influenza. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103(21); 8197-8202. [PubMed: 16717197].
  155. Watanabe et al., 2009: Watanabe S, Watanabe T, Kawaoka Y. Influenza A virus lacking M2 protein as a live attenuated vaccine. Journal of virology. 2009; 83(11); 5947-5950. [PubMed: 19321619].
  156. Watrobska-Swietlikowska, 2019: Watrobska-Swietlikowska D. Compatibility of Maximum Inorganic and Organic Calcium and Phosphate Content in Neonatal Parenteral Solutions. Scientific reports. 2019; 9(1); 10525. [PubMed: 31324864].
  157. Wiki: Influenza: Wiki: Influenza [http://en.wikipedia.org/wiki/Influenza]
  158. Xiao et al., 2013: Xiao H, Liu L, Zhu Q, Tan Z, Yu W, Tang X, Zhan D, Du Y, Wang H, Liu D, Li Z, Yuen KY, Ho DD, Gao GF, Chen Z. A replicating modified vaccinia tiantan strain expressing an avian-derived influenza H5N1 hemagglutinin induce broadly neutralizing antibodies and cross-clade protective immunity in mice. PloS one. 2013; 8(12); e83274. [PubMed: 24358269].
  159. Xu et al., 2012: Xu J, Huang D, Liu S, Lin H, Zhu H, Liu B, Lu C. Immune responses and protective efficacy of a recombinant swinepox virus expressing HA1 against swine H1N1 influenza virus in mice and pigs. Vaccine. 2012; 30(20); 3119-3125. [PubMed: 22391400].
  160. Xu et al., 2013: Xu J, Yang D, Huang D, Xu J, Liu S, Lin H, Zhu H, Liu B, Lu C. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses. Archives of virology. 2013; 158(3); 629-637. [PubMed: 23135159].
  161. Yun et al., 2009: Yun SL, Zhang W, Liu WJ, Zhang XR, Chen SJ, Wu YT, Peng DX, Liu XF. [Construction of recombinant fowlpox virus coexpressing HA gene from H5N1 avian influenza virus and chicken interleukin-2 gene and assessment of its protective efficacy]. Bing du xue bao = Chinese journal of virology / [bian ji, Bing du xue bao bian ji wei yuan hui]. 2009; 25(6); 430-436. [PubMed: 20077933].
  162. Zou et al., 2015: Zou Z, Hu Y, Liu Z, Zhong W, Cao H, Chen H, Jin M. Efficient strategy for constructing duck enteritis virus-based live attenuated vaccine against homologous and heterologous H5N1 avian influenza virus and duck enteritis virus infection. Veterinary research. 2015; 46(1); 42. [PubMed: 25889564].

Japanese encephalitis virus

  1. FDA: Ixiaro: FDA: Ixiaro [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm179132.htm]
  2. FDA: JE-Vax: FDA: JE-Vax vaccine information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094048.htm]
  3. Hua et al., 2014: Hua RH, Liu LK, Huo H, Li YN, Guo LP, Wang XL, Qin CF, Bu ZG. Comprehensive mapping of a novel NS1 epitope conserved in flaviviruses within the Japanese encephalitis virus serocomplex. Virus research. 2014; 185; 103-109. [PubMed: 24631788].
  4. Konishi et al., 1992: Konishi E, Pincus S, Paoletti E, Laegreid WW, Shope RE, Mason PW. A highly attenuated host range-restricted vaccinia virus strain, NYVAC, encoding the prM, E, and NS1 genes of Japanese encephalitis virus prevents JEV viremia in swine. Virology. 1992; 190(1); 454-458. [PubMed: 1326813].
  5. Konishi et al., 2003: Konishi E, Ajiro N, Nukuzuma C, Mason PW, Kurane I. Comparison of protective efficacies of plasmid DNAs encoding Japanese encephalitis virus proteins that induce neutralizing antibody or cytotoxic T lymphocytes in mice. Vaccine. 2003; 21(25-26); 3675-3683. [PubMed: 12922097].
  6. Kulkarni et al., 2012: Kulkarni R, Sapkal G, Gore M. Evaluation of Japanese encephalitis virus polytope DNA vaccine candidate in BALB/c mice. Virus research. 2012; 170(1-2); 118-125. [PubMed: 23007095].
  7. Li et al., 2009: Li Y, Ye J, Cao S, Xiao S, Zhao Q, Liu X, Jin M, Chen H. Immunization with pseudotype baculovirus expressing envelope protein of Japanese encephalitis virus elicits protective immunity in mice. The journal of gene medicine. 2009; 11(1); 57-65. [PubMed: 19006097].
  8. Qian et al., 2015: Qian P, Zhi X, Wang B, Zhang H, Chen H, Li X. Construction and immune efficacy of recombinant pseudorabies virus expressing PrM-E proteins of Japanese encephalitis virus genotype ?. Virology journal. 2015; 12; 214. [PubMed: 26651827].
  9. Raengsakulrach et al., 1999: Raengsakulrach B, Nisalak A, Gettayacamin M, Thirawuth V, Young GD, Myint KS, Ferguson LM, Hoke CH Jr, Innis BL, Vaughn DW. Safety, immunogenicity, and protective efficacy of NYVAC-JEV and ALVAC-JEV recombinant Japanese encephalitis vaccines in rhesus monkeys. The American journal of tropical medicine and hygiene. 1999; 60(3); 343-349. [PubMed: 10466959].
  10. Sheets et al., 2006: Sheets RL, Stein J, Manetz TS, Duffy C, Nason M, Andrews C, Kong WP, Nabel GJ, Gomez PL. Biodistribution of DNA plasmid vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile virus is similar, without integration, despite differing plasmid backbones or gene inserts. Toxicological sciences : an official journal of the Society of Toxicology. 2006; 91(2); 610-619. [PubMed: 16569729].
  11. Wiki: Japanese encephalitis: Wiki: Japanese encephalitis [http://en.wikipedia.org/wiki/Japanese_encephalitis]
  12. Wu et al., 2006: Wu CJ, Li TL, Huang HW, Tao MH, Chan YL. Development of an effective Japanese encephalitis virus-specific DNA vaccine. Microbes and infection / Institut Pasteur. 2006; 8(11); 2578-2586. [PubMed: 16949850].
  13. Xu et al., 2004: Xu G, Xu X, Li Z, He Q, Wu B, Sun S, Chen H. Construction of recombinant pseudorabies virus expressing NS1 protein of Japanese encephalitis (SA14-14-2) virus and its safety and immunogenicity. Vaccine. 2004; 22(15-16); 1846-1853. [PubMed: 15121294].
  14. Yasuda et al., 1990: Yasuda A, Kimura-Kuroda J, Ogimoto M, Miyamoto M, Sata T, Sato T, Takamura C, Kurata T, Kojima A, Yasui K. Induction of protective immunity in animals vaccinated with recombinant vaccinia viruses that express PreM and E glycoproteins of Japanese encephalitis virus. Journal of virology. 1990; 64(6); 2788-2795. [PubMed: 2159544].
  15. Zhao et al., 2003: Zhao Z, Wakita T, Yasui K. Inoculation of plasmids encoding Japanese encephalitis virus PrM-E proteins with colloidal gold elicits a protective immune response in BALB/c mice. Journal of virology. 2003; 77(7); 4248-4260. [PubMed: 12634382].

Klebsiella pneumoniae

  1. Ahmad et al., 2012: Ahmad TA, Haroun M, Hussein AA, El Ashry el SH, El-Sayed LH. Development of a new trend conjugate vaccine for the prevention of Klebsiella pneumoniae. Infectious disease reports. 2012; 4(2); e33. [PubMed: 24470947].
  2. Babu et al., 2017: Babu L, Uppalapati SR, Sripathy MH, Reddy PN. Evaluation of Recombinant Multi-Epitope Outer Membrane Protein-Based Klebsiella pneumoniae Subunit Vaccine in Mouse Model. Frontiers in microbiology. 2017; 8; 1805. [PubMed: 28979250].
  3. Chathley et al., 1996: Chathley UC, Sharma S, Chhibber S. Lipopolysaccharide-induced resistance in mice against ascending urinary tract infection with Klebsiella pneumoniae. Folia microbiologica. 1996; 41(4); 373-376. [PubMed: 9131794].
  4. Chhibber and Bajaj, 1995: Chhibber S, Bajaj J. Polysaccharide-iron-regulated cell surface protein conjugate vaccine: its role in protection against Klebsiella pneumoniae-induced lobar pneumonia. Vaccine. 1995; 13(2); 179-184. [PubMed: 7625113].
  5. Chhibber et al., 2005: Chhibber S, Rani M, Vanashree Y. Immunoprotective potential of polysaccharide-tetanus toxoid conjugate in Klebsiella pneumoniae induced lobar pneumonia in rats. Indian journal of experimental biology. 2005; 43(1); 40-45. [PubMed: 15691064].
  6. Clements et al., 2008: Clements A, Jenney AW, Farn JL, Brown LE, Deliyannis G, Hartland EL, Pearse MJ, Maloney MB, Wesselingh SL, Wijburg OL, Strugnell RA. Targeting subcapsular antigens for prevention of Klebsiella pneumoniae infections. Vaccine. 2008; 26(44); 5649-5653. [PubMed: 18725260].
  7. Cooper and Rowley, 1982: Cooper JM, Rowley D. Resistance to Klebsiella pneumoniae and the importance of two bacterial antigens. The Australian journal of experimental biology and medical science. 1982; 60(6); 629-641. [PubMed: 6820634].
  8. Cryz et al., 1984: Cryz SJ Jr, Fürer E, Germanier R. Protection against fatal Klebsiella pneumoniae burn wound sepsis by passive transfer of anticapsular polysaccharide. Infection and immunity. 1984; 45(1); 139-142. [PubMed: 6376353].
  9. Cryz et al., 1986: Cryz SJ Jr, Fürer E, Germanier R. Immunization against fatal experimental Klebsiella pneumoniae pneumonia. Infection and immunity. 1986; 54(2); 403-407. [PubMed: 3533779].
  10. Deng et al., 2004: Deng JC, Moore TA, Newstead MW, Zeng X, Krieg AM, Standiford TJ. CpG oligodeoxynucleotides stimulate protective innate immunity against pulmonary Klebsiella infection. Journal of immunology (Baltimore, Md. : 1950). 2004; 173(8); 5148-5155. [PubMed: 15470059].
  11. Feldman et al., 2019: Feldman MF, Mayer Bridwell AE, Scott NE, Vinogradov E, McKee SR, Chavez SM, Twentyman J, Stallings CL, Rosen DA, Harding CM. A promising bioconjugate vaccine against hypervirulent Klebsiella pneumoniae. Proceedings of the National Academy of Sciences of the United States of America. 2019; 116(37); 18655-18663. [PubMed: 31455739].
  12. Hegerle et al., 2018: Hegerle N, Choi M, Sinclair J, Amin MN, Ollivault-Shiflett M, Curtis B, Laufer RS, Shridhar S, Brammer J, Toapanta FR, Holder IA, Pasetti MF, Lees A, Tennant SM, Cross AS, Simon R. Development of a broad spectrum glycoconjugate vaccine to prevent wound and disseminated infections with Klebsiella pneumoniae and Pseudomonas aeruginosa. PloS one. 2018; 13(9); e0203143. [PubMed: 30188914].
  13. Hsieh et al., 2013: Hsieh PF, Liu JY, Pan YJ, Wu MC, Lin TL, Huang YT, Wang JT. Klebsiella pneumoniae peptidoglycan-associated lipoprotein and murein lipoprotein contribute to serum resistance, antiphagocytosis, and proinflammatory cytokine stimulation. The Journal of infectious diseases. 2013; 208(10); 1580-1589. [PubMed: 23911714].
  14. Hussein et al., 2018: Hussein KE, Bahey-El-Din M, Sheweita SA. Immunization with the outer membrane proteins OmpK17 and OmpK36 elicits protection against Klebsiella pneumoniae in the murine infection model. Microbial pathogenesis. 2018; 119; 12-18. [PubMed: 29626658].
  15. Jain et al., 2015: Jain RR, Mehta MR, Bannalikar AR, Menon MD. Alginate microparticles loaded with lipopolysaccharide subunit antigen for mucosal vaccination against Klebsiella pneumoniae. Biologicals : journal of the International Association of Biological Standardization. 2015; 43(3); 195-201. [PubMed: 25737397].
  16. Karaolis et al., 2007: Karaolis DK, Newstead MW, Zeng X, Hyodo M, Hayakawa Y, Bhan U, Liang H, Standiford TJ. Cyclic di-GMP stimulates protective innate immunity in bacterial pneumonia. Infection and immunity. 2007; 75(10); 4942-4950. [PubMed: 17646358].
  17. Kuenen et al., 1994: Kuenen JD, van Dijke EE, Hol C, Bootsma HJ, Verhoef J, van Dijk H. Protective effects of orally administered, Klebsiella-containing bacterial lysates in mice. FEMS immunology and medical microbiology. 1994; 8(1); 69-75. [PubMed: 8156053].
  18. Kumar et al., 2020: Kumar A, Harjai K, Chhibber S. Early cytokine response to lethal challenge of Klebsiella pneumoniae averted the prognosis of pneumonia in FyuA immunized mice. Microbial pathogenesis. 2020; 144; 104161. [PubMed: 32194179].
  19. Kurupati et al., 2011: Kurupati P, Ramachandran NP, Poh CL. Protective efficacy of DNA vaccines encoding outer membrane protein A and OmpK36 of Klebsiella pneumoniae in mice. Clinical and vaccine immunology : CVI. 2011; 18(1); 82-88. [PubMed: 21048001].
  20. Lavender et al., 2005: Lavender H, Jagnow JJ, Clegg S. Klebsiella pneumoniae type 3 fimbria-mediated immunity to infection in the murine model of respiratory disease. International journal of medical microbiology : IJMM. 2005; 295(3); 153-159. [PubMed: 16047414].
  21. Lee et al., 2015: Lee WH, Choi HI, Hong SW, Kim KS, Gho YS, Jeon SG. Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity. Experimental & molecular medicine. 2015; 47(9); e183. [PubMed: 26358222].
  22. Malachowa et al., 2019: Malachowa N, Kobayashi SD, Porter AR, Freedman B, Hanley PW, Lovaglio J, Saturday GA, Gardner DJ, Scott DP, Griffin A, Cordova K, Long D, Rosenke R, Sturdevant DE, Bruno D, Martens C, Kreiswirth BN, DeLeo FR. Vaccine Protection against Multidrug-Resistant Klebsiella pneumoniae in a Nonhuman Primate Model of Severe Lower Respiratory Tract Infection. mBio. 2019; 10(6); . [PubMed: 31848292].
  23. Nimier et al., 1999: Nimier K, Wolff F, Allouch PY, Guy-Grand D, Bloy C. Protective effects of RU 41740, a bacterial immunomodulator, against experimental infections: induction of cytokine and immunoglobulin release in mice after oral administration. International journal of immunopharmacology. 1999; 21(9); 561-574. [PubMed: 10501625].
  24. Peng et al., 2021: Peng Z, Wu J, Wang K, Li X, Sun P, Zhang L, Huang J, Liu Y, Hua X, Yu Y, Pan C, Wang H, Zhu L. Production of a Promising Biosynthetic Self-Assembled Nanoconjugate Vaccine against Klebsiella Pneumoniae Serotype O2 in a General Escherichia Coli Host. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2021; 8(14); e2100549. [PubMed: 34032027].
  25. Rafi et al., 2023: Rafi MO, Al-Khafaji K, Mandal SM, Meghla NS, Biswas PK, Rahman MS. A subunit vaccine against pneumonia: targeting Streptococcus pneumoniae and Klebsiella pneumoniae. Network modeling and analysis in health informatics and bioinformatics. 2023; 12(1); 21. [PubMed: 37096010].
  26. Rani et al., 1990: Rani M, Gupta RK, Chhibber S. Protection against Klebsiella pneumoniae induced lobar pneumonia in rats with lipopolysaccharide and related antigens. Canadian journal of microbiology. 1990; 36(12); 885-890. [PubMed: 2081334].
  27. Ravinder et al., 2020: Ravinder M, Liao KS, Cheng YY, Pawar S, Lin TL, Wang JT, Wu CY. A Synthetic Carbohydrate-Protein Conjugate Vaccine Candidate against Klebsiella pneumoniae Serotype K2. The Journal of organic chemistry. 2020; 85(24); 15964-15997. [PubMed: 33108196].
  28. Robert et al., 1981: Robert D, Michel S, Ivanoff B, Cozzone AJ, Fontanges R. On the immunogenicity of ribosomes and ribosomal proteins isolated from Klebsiella pneumoniae and Streptococcus pneumoniae. Microbiology and immunology. 1981; 25(2); 183-194. [PubMed: 7015078].
  29. Robert et al., 1982: Robert D, Bienvenu P, Lafont S, Jouanneteau B, Normier G, Dussourd D'Hinterland L, Fontanges R. An attempt to localize the vaccinating power of Klebsiella pneumoniae ribosomal preparations using saccharose-gradient ultracentrifugation. Microbiology and immunology. 1982; 26(10); 941-950. [PubMed: 6761558].
  30. Rodrigues et al., 2020: Rodrigues MX, Yang Y, de Souza Meira EB Jr, do Carmo Silva J, Bicalho RC. Development and evaluation of a new recombinant protein vaccine (YidR) against Klebsiella pneumoniae infection. Vaccine. 2020; 38(29); 4640-4648. [PubMed: 32444194].
  31. Roe and Jones, 1984: Roe EA, Jones RJ. Vaccination against Klebsiella aerogenes. The Journal of hygiene. 1984; 93(2); 355-363. [PubMed: 6389699].
  32. Roe et al., 1989: Roe EA, Jones RJ, Saunders JR. Immunoprotective extracellular polysaccharides of Klebsiella aerogenes capsular type K1, expressed in Escherichia coli. FEMS microbiology immunology. 1989; 1(5); 253-261. [PubMed: 2517220].
  33. Seeberger et al., 2017: Seeberger PH, Pereira CL, Khan N, Xiao G, Diago-Navarro E, Reppe K, Opitz B, Fries BC, Witzenrath M. A Semi-Synthetic Glycoconjugate Vaccine Candidate for Carbapenem-Resistant Klebsiella pneumoniae. Angewandte Chemie (International ed. in English). 2017; 56(45); 13973-13978. [PubMed: 28815890].
  34. Singh and Sharma, 2001: Singh BR, Sharma VD. Potential of Klebsiella pneumoniae cytotoxin toxoid as vaccine against klebsiellosis in rabbits and mice. Vaccine. 2001; 19(31); 4505-4510. [PubMed: 11483277].
  35. Twentyman et al., 2020: Twentyman J, Morffy Smith C, Nims JS, Dahler AA, Rosen DA. A murine model demonstrates capsule-independent adaptive immune protection in survivors of Klebsiella pneumoniae respiratory tract infection. Disease models & mechanisms. 2020; 13(3); . [PubMed: 32298236].
  36. Wu et al., 2020: Wu G, Ji H, Guo X, Li Y, Ren T, Dong H, Liu J, Liu Y, Shi X, He B. Nanoparticle reinforced bacterial outer-membrane vesicles effectively prevent fatal infection of carbapenem-resistant Klebsiella pneumoniae. Nanomedicine : nanotechnology, biology, and medicine. 2020; 24; 102148. [PubMed: 31887427].

Lassa Fever Virus

  1. Abreu-Mota et al., 2018: Abreu-Mota T, Hagen KR, Cooper K, Jahrling PB, Tan G, Wirblich C, Johnson RF, Schnell MJ. Non-neutralizing antibodies elicited by recombinant Lassa-Rabies vaccine are critical for protection against Lassa fever. Nature communications. 2018; 9(1); 4223. [PubMed: 30310067].
  2. Auperin et al., 1988: Auperin DD, Esposito JJ, Lange JV, Bauer SP, Knight J, Sasso DR, McCormick JB. Construction of a recombinant vaccinia virus expressing the Lassa virus glycoprotein gene and protection of guinea pigs from a lethal Lassa virus infection. Virus research. 1988 Feb; 9(2-3); 233-48. [PubMed: 3354260].
  3. Botten et al., 2006: Botten J, Alexander J, Pasquetto V, Sidney J, Barrowman P, Ting J, Peters B, Southwood S, Stewart B, Rodriguez-Carreno MP, Mothe B, Whitton JL, Sette A, Buchmeier MJ. Identification of protective Lassa virus epitopes that are restricted by HLA-A2. Journal of virology. 2006 Sep; 80(17); 8351-61. [PubMed: 16912286].
  4. Bredenbeek et al., 2006: Bredenbeek PJ, Molenkamp R, Spaan WJ, Deubel V, Marianneau P, Salvato MS, Moshkoff D, Zapata J, Tikhonov I, Patterson J, Carrion R, Ticer A, Brasky K, Lukashevich IS. A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins. Virology. 2006 Feb 20; 345(2); 299-304. [PubMed: 16412488].
  5. Carnec et al., 2018: Carnec X, Mateo M, Page A, Reynard S, Hortion J, Picard C, Yekwa E, Barrot L, Barron S, Vallve A, Raoul H, Carbonnelle C, Ferron F, Baize S. A Vaccine Platform against Arenaviruses Based on a Recombinant Hyperattenuated Mopeia Virus Expressing Heterologous Glycoproteins. Journal of virology. 2018; 92(12); . [PubMed: 29593043].
  6. Cashman et al., 2017: Cashman KA, Wilkinson ER, Shaia CI, Facemire PR, Bell TM, Bearss JJ, Shamblin JD, Wollen SE, Broderick KE, Sardesai NY, Schmaljohn CS. A DNA vaccine delivered by dermal electroporation fully protects cynomolgus macaques against Lassa fever. Human vaccines & immunotherapeutics. 2017; 13(12); 2902-2911. [PubMed: 29045192].
  7. Cheng et al., 2017: Cheng BYH, Nogales A, de la Torre JC, Martínez-Sobrido L. Development of live-attenuated arenavirus vaccines based on codon deoptimization of the viral glycoprotein. Virology. 2017; 501; 35-46. [PubMed: 27855284].
  8. Fischer et al., 2021: Fischer RJ, Purushotham JN, van Doremalen N, Sebastian S, Meade-White K, Cordova K, Letko M, Jeremiah Matson M, Feldmann F, Haddock E, LaCasse R, Saturday G, Lambe T, Gilbert SC, Munster VJ. ChAdOx1-vectored Lassa fever vaccine elicits a robust cellular and humoral immune response and protects guinea pigs against lethal Lassa virus challenge. NPJ vaccines. 2021; 6(1); 32. [PubMed: 33654106].
  9. Fisher-Hoch et al., 2000: Fisher-Hoch SP, Hutwagner L, Brown B, McCormick JB. Effective vaccine for lassa fever. Journal of virology. 2000 Aug; 74(15); 6777-83. [PubMed: 10888616].
  10. Fisher-Hoch et al., 2001: Fisher-Hoch SP, McCormick JB. Towards a human Lassa fever vaccine. Reviews in medical virology. 2001 Sep-Oct; 11(5); 331-41. [PubMed: 11590670].
  11. Geisbert et al., 2005: Geisbert TW, Jones S, Fritz EA, Shurtleff AC, Geisbert JB, Liebscher R, Grolla A, Stroher U, Fernando L, Daddario KM, Guttieri MC, Mothe BR, Larsen T, Hensley LE, Jahrling PB, Feldmann H. Development of a new vaccine for the prevention of Lassa fever. PLoS medicine. 2005 Jun; 2(6); e183. [PubMed: 15971954].
  12. Jiang et al., 2011: Jiang X, Dalebout TJ, Bredenbeek PJ, Carrion R Jr, Brasky K, Patterson J, Goicochea M, Bryant J, Salvato MS, Lukashevich IS. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs. Vaccine. 2011; 29(6); 1248-1257. [PubMed: 21145373].
  13. Lukashevich et al., 2005: Lukashevich IS, Patterson J, Carrion R, Moshkoff D, Ticer A, Zapata J, Brasky K, Geiger R, Hubbard GB, Bryant J, Salvato MS. A live attenuated vaccine for Lassa fever made by reassortment of Lassa and Mopeia viruses. Journal of virology. 2005 Nov; 79(22); 13934-42. [PubMed: 16254329].
  14. Maruyama et al., 2019: Maruyama J, Mateer EJ, Manning JT, Sattler R, Seregin AV, Bukreyeva N, Jones FR, Balint JP, Gabitzsch ES, Huang C, Paessler S. Adenoviral vector-based vaccine is fully protective against lethal Lassa fever challenge in Hartley guinea pigs. Vaccine. 2019; 37(45); 6824-6831. [PubMed: 31561999].
  15. Morrison et al., 1989: Morrison HG, Bauer SP, Lange JV, Esposito JJ, McCormick JB, Auperin DD. Protection of guinea pigs from Lassa fever by vaccinia virus recombinants expressing the nucleoprotein or the envelope glycoproteins of Lassa virus. Virology. 1989; 171(1); 179-188. [PubMed: 2741340].
  16. Rodriguez-Carreno et al., 2005: Rodriguez-Carreno MP, Nelson MS, Botten J, Smith-Nixon K, Buchmeier MJ, Whitton JL. Evaluating the immunogenicity and protective efficacy of a DNA vaccine encoding Lassa virus nucleoprotein. Virology. 2005; 335(1); 87-98. [PubMed: 15823608].
  17. Salami et al., 2019: Salami K, Gouglas D, Schmaljohn C, Saville M, Tornieporth N. A review of Lassa fever vaccine candidates. Current opinion in virology. 2019; 37; 105-111. [PubMed: 31472333].
  18. Watrobska-Swietlikowska, 2019: Watrobska-Swietlikowska D. Compatibility of Maximum Inorganic and Organic Calcium and Phosphate Content in Neonatal Parenteral Solutions. Scientific reports. 2019; 9(1); 10525. [PubMed: 31324864].
  19. Zapata et al., 2013: Zapata JC, Poonia B, Bryant J, Davis H, Ateh E, George L, Crasta O, Zhang Y, Slezak T, Jaing C, Pauza CD, Goicochea M, Moshkoff D, Lukashevich IS, Salvato MS. An attenuated Lassa vaccine in SIV-infected rhesus macaques does not persist or cause arenavirus disease but does elicit Lassa virus-specific immunity. Virology journal. 2013; 10; 52. [PubMed: 23402317].

Lawsonia intracellularis

  1. Guedes and Gebhart, 2003: Guedes RM, Gebhart CJ. Onset and duration of fecal shedding, cell-mediated and humoral immune responses in pigs after challenge with a pathogenic isolate or attenuated vaccine strain of Lawsonia intracellularis. Veterinary microbiology. 2003; 91(2-3); 135-145. [PubMed: 12458163].
  2. Kroll et al., 2004: Kroll JJ, Roof MB, McOrist S. Evaluation of protective immunity in pigs following oral administration of an avirulent live vaccine of Lawsonia intracellularis. American journal of veterinary research. 2004; 65(5); 559-565. [PubMed: 15141873].
  3. MicrobeWiki: Lawsonia intracellularis: Lawsonia intracellularis [http://microbewiki.kenyon.edu/index.php/Lawsonia_intracellularis]

Leishmania amazonensis

  1. Campbell et al., 2003: Campbell K, Diao H, Ji J, Soong L. DNA immunization with the gene encoding P4 nuclease of Leishmania amazonensis protects mice against cutaneous Leishmaniasis. Infection and immunity. 2003; 71(11); 6270-6278. [PubMed: 14573646].
  2. Campbell et al., 2004: Campbell K, Popov V, Soong L. Identification and molecular characterization of a gene encoding a protective Leishmania amazonensis Trp-Asp (WD) protein. Infection and immunity. 2004; 72(4); 2194-2202. [PubMed: 15039343].
  3. Champsi and McMahon-Pratt, 1988: Champsi J, McMahon-Pratt D. Membrane glycoprotein M-2 protects against Leishmania amazonensis infection. Infection and immunity. 1988; 56(12); 3272-3279. [PubMed: 3182080].
  4. Duarte et al., 2017: Duarte MC, Lage DP, Martins VT, Costa LE, Carvalho AMRS, Ludolf F, Santos TTO, Vale DL, Roatt BM, Menezes-Souza D, Fernandes AP, Tavares CAP, Coelho EAF. A vaccine composed of a hypothetical protein and the eukaryotic initiation factor 5a from Leishmania braziliensis cross-protection against Leishmania amazonensis infection. Immunobiology. 2017; 222(2); 251-260. [PubMed: 27693018].
  5. Dumonteil et al., 2000: Dumonteil E, Andrade-Narvarez F, Escobedo-Ortegon J, Ramirez-Sierra MJ, Valencia-Pacheco G, Flores-Serrano A, Canto-Lara S, Arjona-Torres A. Comparative study of DNA vaccines encoding various antigens against Leishmania mexicana. Developments in biologicals. 2000; 104; 135-141. [PubMed: 11713811].
  6. Fedeli et al., 2010: Fedeli CE, Ferreira JH, Mussalem JS, Longo-Maugéri IM, Gentil LG, dos Santos MR, Katz S, Barbiéri CL. Partial protective responses induced by a recombinant cysteine proteinase from Leishmania (Leishmania) amazonensis in a murine model of cutaneous leishmaniasis. Experimental parasitology. 2010; 124(2); 153-158. [PubMed: 19735658].

Leishmania donovani

  1. Aguilar-Be et al., 2005: Aguilar-Be I, da Silva Zardo R, Paraguai de Souza E, Borja-Cabrera GP, Rosado-Vallado M, Mut-Martin M, García-Miss Mdel R, Palatnik de Sousa CB, Dumonteil E. Cross-protective efficacy of a prophylactic Leishmania donovani DNA vaccine against visceral and cutaneous murine leishmaniasis. Infection and immunity. 2005; 73(2); 812-819. [PubMed: 15664920].
  2. Arora et al., 2011: Arora SK, Masih S, Vasishta RK. Efficacy of Leishmania donovani ribosomal P1 gene as DNA vaccine in experimental visceral leishmaniasis. Experimental parasitology. 2011; ; . [PubMed: 21640106].
  3. Bhaumik et al., 2009: Bhaumik S, Basu R, Sen S, Naskar K, Roy S. KMP-11 DNA immunization significantly protects against L. donovani infection but requires exogenous IL-12 as an adjuvant for comparable protection against L. major. Vaccine. 2009; 27(9); 1306-1316. [PubMed: 19162111].
  4. Bhowmick and Ali, 2009: Bhowmick S, Ali N. Identification of novel Leishmania donovani antigens that help define correlates of vaccine-mediated protection in visceral leishmaniasis. PloS one. 2009; 4(6); e5820. [PubMed: 19503834].
  5. Bhowmick et al., 2008: Bhowmick S, Ravindran R, Ali N. gp63 in stable cationic liposomes confers sustained vaccine immunity to susceptible BALB/c mice infected with Leishmania donovani. Infection and immunity. 2008; 76(3); 1003-1015. [PubMed: 18195029].
  6. Borja-Cabrera et al., 2002: Borja-Cabrera GP, Correia Pontes NN, da Silva VO, Paraguai de Souza E, Santos WR, Gomes EM, Luz KG, Palatnik M, Palatnik de Sousa CB. Long lasting protection against canine kala-azar using the FML-QuilA saponin vaccine in an endemic area of Brazil (São Gonçalo do Amarante, RN). Vaccine. 2002; 20(27-28); 3277-3284. [PubMed: 12213397].
  7. Chakravarty et al., 2011: Chakravarty J, Kumar S, Trivedi S, Rai VK, Singh A, Ashman JA, Laughlin EM, Coler RN, Kahn SJ, Beckmann AM, Cowgill KD, Reed SG, Sundar S, Piazza FM. A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine for use in the prevention of visceral leishmaniasis. Vaccine. 2011; 29(19); 3531-3537. [PubMed: 21414377].
  8. Henriquez et al., 2010: Henriquez FL, Campbell SA, Roberts CW, Mullen AB, Burchmore R, Carter KC. Vaccination with recombinant Leishmania donovani gamma-glutamylcysteine synthetase fusion protein protects against L. donovani infection. The Journal of parasitology. 2010; 96(5); 929-936. [PubMed: 20950100].
  9. Kumar et al., 2017: Kumar M, Ranjan K, Singh V, Pathak C, Pappachan A, Singh DD. Hydrophilic Acylated Surface Protein A (HASPA) of Leishmania donovani: Expression, Purification and Biophysico-Chemical Characterization. The protein journal. 2017; 36(4); 343-351. [PubMed: 28634775].
  10. McAtee et al., 2017: McAtee CP, Seid CA, Hammond M, Hudspeth E, Keegan BP, Liu Z, Wei J, Zhan B, Arjona-Sabido R, Cruz-Chan V, Dumonteil E, Hotez PJ, Bottazzi ME. Expression, purification, immunogenicity and protective efficacy of a recombinant nucleoside hydrolase from Leishmania donovani, a vaccine candidate for preventing cutaneous leishmaniasis. Protein expression and purification. 2017; 130; 129-136. [PubMed: 27773761].
  11. Merck Manual: Leishmaniasis: Leishmaniasis [http://www.merck.com/mmpe/sec14/ch186/ch186f.html]
  12. Mizbani et al., 2009: Mizbani A, Taheri T, Zahedifard F, Taslimi Y, Azizi H, Azadmanesh K, Papadopoulou B, Rafati S. Recombinant Leishmania tarentolae expressing the A2 virulence gene as a novel candidate vaccine against visceral leishmaniasis. Vaccine. 2009; 28(1); 53-62. [PubMed: 19818721].
  13. Nagill and Kaur, 2010: Nagill R, Kaur S. Enhanced efficacy and immunogenicity of 78kDa antigen formulated in various adjuvants against murine visceral leishmaniasis. Vaccine. 2010; 28(23); 4002-4012. [PubMed: 20093205].
  14. Osman et al., 2017: Osman M, Mistry A, Keding A, Gabe R, Cook E, Forrester S, Wiggins R, Di Marco S, Colloca S, Siani L, Cortese R, Smith DF, Aebischer T, Kaye PM, Lacey CJ. A third generation vaccine for human visceral leishmaniasis and post kala azar dermal leishmaniasis: First-in-human trial of ChAd63-KH. PLoS neglected tropical diseases. 2017; 11(5); e0005527. [PubMed: 28498840].
  15. Schroeder et al., 2011: Schroeder J, Brown N, Kaye P, Aebischer T. Single dose novel Salmonella vaccine enhances resistance against visceralizing L. major and L. donovani infection in susceptible BALB/c mice. PLoS neglected tropical diseases. 2011; 5(12); e1406. [PubMed: 22216363].
  16. Selvapandiyan et al., 2009: Selvapandiyan A, Dey R, Nylen S, Duncan R, Sacks D, Nakhasi HL. Intracellular replication-deficient Leishmania donovani induces long lasting protective immunity against visceral leishmaniasis. Journal of immunology (Baltimore, Md. : 1950). 2009; 183(3); 1813-1820. [PubMed: 19592661].
  17. Singh et al., 2018: Singh MK, Jamal F, Dubey AK, Shivam P, Kumari S, Pushpanjali, Ahmed G, Dikhit MR, Narayan S, Das VNR, Pandey K, Sinha KK, Das P, Singh SK. Co-factor-independent phosphoglycerate mutase of Leishmania donovani modulates macrophage signalling and promotes T-cell repertoires bearing epitopes for both MHC-I and MHC-II. Parasitology. 2018; 145(3); 292-306. [PubMed: 29140228].
  18. Stäger et al., 2000: Stäger S, Smith DF, Kaye PM. Immunization with a recombinant stage-regulated surface protein from Leishmania donovani induces protection against visceral leishmaniasis. Journal of immunology (Baltimore, Md. : 1950). 2000; 165(12); 7064-7071. [PubMed: 11120835].
  19. Sukumaran and Madhubala, 2004: Sukumaran B, Madhubala R. Leishmaniasis: current status of vaccine development. Current molecular medicine. 2004; 4(6); 667-679. [PubMed: 15357215].
  20. Tewary et al., 2006: Tewary P, Saxena S, Madhubala R. Co-administration of IL-12 DNA with rORFF antigen confers long-term protective immunity against experimental visceral leishmaniaisis. Vaccine. 2006; 24(13); 2409-2416. [PubMed: 16413950].
  21. WD: Leishmania donovani: Leishmania donovani [http://www.wrongdiagnosis.com/medical/leishmania_donovani.htm]

Leishmania infantum

  1. Carrion et al., 2011: Carrion J, Folgueira C, Soto M, Fresno M, Requena JM. Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation. Parasites & vectors. 2011; 4(1); 150. [PubMed: 21794145].
  2. Dias et al., 2018: Dias DS, Ribeiro PAF, Martins VT, Lage DP, Ramos FF, Dias ALT, Rodrigues MR, Portela ÁSB, Costa LE, Caligiorne RB, Steiner BT, Chávez-Fumagalli MA, Salles BCS, Santos TTO, Silveira JAG, Magalhães-Soares DF, Roatt BM, Machado-de-Ávila RA, Duarte MC, Menezes-Souza D, Silva ES, Galdino AS, Coelho EAF. Recombinant prohibitin protein of Leishmania infantum acts as a vaccine candidate and diagnostic marker against visceral leishmaniasis. Cellular immunology. 2018; 323; 59-69. [PubMed: 29128045].
  3. Gonzalo et al., 2001: Gonzalo RM, Rodríguez JR, Rodríguez D, González-Aseguinolaza G, Larraga V, Esteban M. Protective immune response against cutaneous leishmaniasis by prime/booster immunization regimens with vaccinia virus recombinants expressing Leishmania infantum p36/LACK and IL-12 in combination with purified p36. Microbes and infection / Institut Pasteur. 2001; 3(9); 701-711. [PubMed: 11489418].
  4. Goto et al., 2007: Goto Y, Bogatzki LY, Bertholet S, Coler RN, Reed SG. Protective immunization against visceral leishmaniasis using Leishmania sterol 24-c-methyltransferase formulated in adjuvant. Vaccine. 2007; 25(42); 7450-7458. [PubMed: 17804125].
  5. Iborra et al., 2003: Iborra S, Soto M, Carrión J, Nieto A, Fernández E, Alonso C, Requena JM. The Leishmania infantum acidic ribosomal protein P0 administered as a DNA vaccine confers protective immunity to Leishmania major infection in BALB/c mice. Infection and immunity. 2003; 71(11); 6562-6572. [PubMed: 14573678].
  6. Moreno et al., 2007: Moreno J, Nieto J, Masina S, Cañavate C, Cruz I, Chicharro C, Carrillo E, Napp S, Reymond C, Kaye PM, Smith DF, Fasel N, Alvar J. Immunization with H1, HASPB1 and MML Leishmania proteins in a vaccine trial against experimental canine leishmaniasis. Vaccine. 2007; 25(29); 5290-5300. [PubMed: 17576026].
  7. Mortazavidehkordi et al., 2016: Mortazavidehkordi N, Farjadfar A, Khanahmad H, Ghayour Najafabadi Z, Hashemi N, Fallah A, Najafi A, Kia V, Hejazi SH. Evaluation of a novel lentiviral vaccine expressing KMP11-HASPB fusion protein against Leishmania infantum in BALB/c mice. Parasite immunology. 2016; 38(11); 670-677. [PubMed: 27540714].
  8. Saljoughian et al., 2013: Saljoughian N, Taheri T, Zahedifard F, Taslimi Y, Doustdari F, Bolhassani A, Doroud D, Azizi H, Heidari K, Vasei M, Namvar Asl N, Papadopoulou B, Rafati S. Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral leishmaniasis. PLoS neglected tropical diseases. 2013; 7(4); e2174. [PubMed: 23638195].
  9. Wiki: Leishmania infantum: Leishmania infantum [http://en.wikipedia.org/wiki/Leishmania_infantum]

Leishmania major

  1. Ahmed et al., 2009: Ahmed SB, Touihri L, Chtourou Y, Dellagi K, Bahloul C. DNA based vaccination with a cocktail of plasmids encoding immunodominant Leishmania (Leishmania) major antigens confers full protection in BALB/c mice. Vaccine. 2009; 27(1); 99-9106. [PubMed: 18951941].
  2. Ameen, 2010: Ameen M. Cutaneous leishmaniasis: advances in disease pathogenesis, diagnostics and therapeutics. Clinical and experimental dermatology. 2010; 35(7); 699-705. [PubMed: 20831602].
  3. Bhaumik et al., 2009: Bhaumik S, Basu R, Sen S, Naskar K, Roy S. KMP-11 DNA immunization significantly protects against L. donovani infection but requires exogenous IL-12 as an adjuvant for comparable protection against L. major. Vaccine. 2009; 27(9); 1306-1316. [PubMed: 19162111].
  4. Casella and Mitchell, 2008: Casella CR, Mitchell TC. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cellular and molecular life sciences : CMLS. 2008; 65(20); 3231-3240. [PubMed: 18668203].
  5. Chenik et al., 2006: Chenik M, Louzir H, Ksontini H, Dilou A, Abdmouleh I, Dellagi K. Vaccination with the divergent portion of the protein histone H2B of Leishmania protects susceptible BALB/c mice against a virulent challenge with Leishmania major. Vaccine. 2006; 24(14); 2521-2529. [PubMed: 16417957].
  6. Coler et al., 2002: Coler RN, Skeiky YA, Bernards K, Greeson K, Carter D, Cornellison CD, Modabber F, Campos-Neto A, Reed SG. Immunization with a polyprotein vaccine consisting of the T-Cell antigens thiol-specific antioxidant, Leishmania major stress-inducible protein 1, and Leishmania elongation initiation factor protects against leishmaniasis. Infection and immunity. 2002; 70(8); 4215-4225. [PubMed: 12117930].
  7. Handman et al., 1995: Handman E, Symons FM, Baldwin TM, Curtis JM, Scheerlinck JP. Protective vaccination with promastigote surface antigen 2 from Leishmania major is mediated by a TH1 type of immune response. Infection and immunity. 1995; 63(11); 4261-4267. [PubMed: 7591056].
  8. Hezarjaribi et al., 2013: Hezarjaribi HZ, Ghaffarifar F, Dalimi A, Sharifi Z, Jorjani O. Effect of IL-22 on DNA vaccine encoding LACK gene of Leishmania major in BALB/c mice. Experimental parasitology. 2013; 134(3); 341-348. [PubMed: 23541883].
  9. Louis et al., 2019: Louis L, Clark M, Wise MC, Glennie N, Wong A, Broderick K, Uzonna J, Weiner DB, Scott P. Intradermal Synthetic DNA Vaccination Generates Leishmania-Specific T Cells in the Skin and Protection against Leishmania major. Infection and immunity. 2019; 87(8); . [PubMed: 31182618].
  10. Mou et al., 2015: Mou Z, Li J, Boussoffara T, Kishi H, Hamana H, Ezzati P, Hu C, Yi W, Liu D, Khadem F, Okwor I, Jia P, Shitaoka K, Wang S, Ndao M, Petersen C, Chen J, Rafati S, Louzir H, Muraguchi A, Wilkins JA, Uzonna JE. Identification of broadly conserved cross-species protective Leishmania antigen and its responding CD4+ T cells. Science translational medicine. 2015; 7(310); 310ra167. [PubMed: 26491077].
  11. Naggan et al., 1972: Naggan L, Gunders AE, Michaeli D. Follow-up study of a vaccination programme against cutaneous leishmaniasis. II. Vaccination with a recently isolated strain of L. tropica from Jericho. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1972; 66(2); 239-243. [PubMed: 5048790].
  12. Nascimento et al., 2010: Nascimento E, Fernandes DF, Vieira EP, Campos-Neto A, Ashman JA, Alves FP, Coler RN, Bogatzki LY, Kahn SJ, Beckmann AM, Pine SO, Cowgill KD, Reed SG, Piazza FM. A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine when used in combination with meglumine antimoniate for the treatment of cutaneous leishmaniasis. Vaccine. 2010; 28(40); 6581-6587. [PubMed: 20688040].
  13. Rafati et al., 2002: Rafati S, Kariminia A, Seyde-Eslami S, Narimani M, Taheri T, Lebbatard M. Recombinant cysteine proteinases-based vaccines against Leishmania major in BALB/c mice: the partial protection relies on interferon gamma producing CD8(+) T lymphocyte activation. Vaccine. 2002; 20(19-20); 2439-2447. [PubMed: 12057598].
  14. Rafati et al., 2006: Rafati S, Ghaemimanesh F, Zahedifard F. Comparison of potential protection induced by three vaccination strategies (DNA/DNA, Protein/Protein and DNA/Protein) against Leishmania major infection using Signal Peptidase type I in BALB/c mice. Vaccine. 2006; 24(16); 3290-3297. [PubMed: 16481076].
  15. Ramirez et al., 2014: Ramirez L, Corvo L, Duarte MC, Chávez-Fumagalli MA, Valadares DG, Santos DM, de Oliveira CI, Escutia MR, Alonso C, Bonay P, Tavares CA, Coelho EA, Soto M. Cross-protective effect of a combined L5 plus L3 Leishmania major ribosomal protein based vaccine combined with a Th1 adjuvant in murine cutaneous and visceral leishmaniasis. Parasites & vectors. 2014; 7; 3. [PubMed: 24382098].
  16. Reithinger et al., 2007: Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous leishmaniasis. The Lancet infectious diseases. 2007; 7(9); 581-596. [PubMed: 17714672].
  17. Ricardo-Carter et al., 2013: Ricardo-Carter C, Favila M, Polando RE, Cotton RN, Bogard Horner K, Condon D, Ballhorn W, Whitcomb JP, Yadav M, Geister RL, Schorey JS, McDowell MA. Leishmania major inhibits IL-12 in macrophages by signalling through CR3 (CD11b/CD18) and down-regulation of ETS-mediated transcription. Parasite immunology. 2013; 35(12); 409-420. [PubMed: 23834512].
  18. Salehi-Sangani et al., 2019: Salehi-Sangani G, Mohebali M, Jajarmi V, Khamesipour A, Bandehpour M, Mahmoudi M, Zahedi-Zavaram H. Immunization against Leishmania major infection in BALB/c mice using a subunit-based DNA vaccine derived from TSA, LmSTI1, KMP11, and LACK predominant antigens. Iranian journal of basic medical sciences. 2019; 22(12); 1493-1501. [PubMed: 32133069].
  19. Schroeder et al., 2011: Schroeder J, Brown N, Kaye P, Aebischer T. Single dose novel Salmonella vaccine enhances resistance against visceralizing L. major and L. donovani infection in susceptible BALB/c mice. PLoS neglected tropical diseases. 2011; 5(12); e1406. [PubMed: 22216363].
  20. Solioz et al., 1999: Solioz N, Blum-Tirouvanziam U, Jacquet R, Rafati S, Corradin G, Mauël J, Fasel N. The protective capacities of histone H1 against experimental murine cutaneous leishmaniasis. Vaccine. 1999; 18(9-10); 850-859. [PubMed: 10580198].
  21. Walker et al., 1998: Walker PS, Scharton-Kersten T, Rowton ED, Hengge U, Bouloc A, Udey MC, Vogel JC. Genetic immunization with glycoprotein 63 cDNA results in a helper T cell type 1 immune response and protection in a murine model of leishmaniasis. Human gene therapy. 1998; 9(13); 1899-1907. [PubMed: 9741428].
  22. Zahedifard et al., 2014: Zahedifard F, Gholami E, Taheri T, Taslimi Y, Doustdari F, Seyed N, Torkashvand F, Meneses C, Papadopoulou B, Kamhawi S, Valenzuela JG, Rafati S. Enhanced protective efficacy of nonpathogenic recombinant leishmania tarentolae expressing cysteine proteinases combined with a sand fly salivary antigen. PLoS neglected tropical diseases. 2014; 8(3); e2751. [PubMed: 24675711].

Leptospira spp.

  1. Atzingen et al., 2012: Atzingen MV, Vieira ML, Oliveira R, Domingos RF, Mendes RS, Barros AT, Gonçales AP, de Morais ZM, Vasconcellos SA, Nascimento AL. Evaluation of immunoprotective activity of six leptospiral proteins in the hamster model of leptospirosis. The open microbiology journal. 2012; 6; 79-87. [PubMed: 23173023].
  2. Conrad et al., 2017: Conrad NL, Cruz McBride FW, Souza JD, Silveira MM, Félix S, Mendonça KS, Santos CS, Athanazio DA, Medeiros MA, Reis MG, Dellagostin OA, McBride AJ. LigB subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis. PLoS neglected tropical diseases. 2017; 11(3); e0005441. [PubMed: 28301479].
  3. Evangelista et al., 2017: Evangelista KV, Lourdault K, Matsunaga J, Haake DA. Immunoprotective properties of recombinant LigA and LigB in a hamster model of acute leptospirosis. PloS one. 2017; 12(7); e0180004. [PubMed: 28704385].
  4. Fernandes et al., 2017: Fernandes LGV, Teixeira AF, Filho AFS, Souza GO, Vasconcellos SA, Heinemann MB, Romero EC, Nascimento ALTO. Immune response and protective profile elicited by a multi-epitope chimeric protein derived from Leptospira interrogans. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2017; 57; 61-69. [PubMed: 28161462].
  5. Forster et al., 2013: Forster KM, Hartwig DD, Seixas FK, Bacelo KL, Amaral M, Hartleben CP, Dellagostin OA. A Conserved Region of Leptospiral Immunoglobulin-Like A and B Proteins as a DNA Vaccine Elicits a Prophylactic Immune Response against Leptospirosis. Clinical and vaccine immunology : CVI. 2013; 20(5); 725-731. [PubMed: 23486420].
  6. Humphryes et al., 2014: Humphryes PC, Weeks ME, AbuOun M, Thomson G, Núñez A, Coldham NG. Vaccination with leptospiral outer membrane lipoprotein LipL32 reduces kidney invasion of Leptospira interrogans serovar canicola in hamsters. Clinical and vaccine immunology : CVI. 2014; 21(4); 546-551. [PubMed: 24521782].
  7. Lin et al., 2016: Lin X, Xiao G, Luo D, Kong L, Chen X, Sun D, Yan J. Chimeric epitope vaccine against Leptospira interrogans infection and induced specific immunity in guinea pigs. BMC microbiology. 2016; 16(1); 241. [PubMed: 27737644].
  8. Maneewatch et al., 2007: Maneewatch S, Tapchaisri P, Sakolvaree Y, Klaysing B, Tongtawe P, Chaisri U, Songserm T, Wongratanacheewin S, Srimanote P, Chongsa-nguanz M, Chaicumpa W. OmpL1 DNA vaccine cross-protects against heterologous Leptospira spp. challenge. Asian Pacific journal of allergy and immunology / launched by the Allergy and Immunology Society of Thailand. 2007; 25(1); 75-82. [PubMed: 17891923].
  9. Umthong et al., 2015: Umthong S, Buaklin A, Jacquet A, Sangjun N, Kerdkaew R, Patarakul K, Palaga T. Immunogenicity of a DNA and Recombinant Protein Vaccine Combining LipL32 and Loa22 for Leptospirosis Using Chitosan as a Delivery System. Journal of microbiology and biotechnology. 2015; 25(4); 526-536. [PubMed: 25348693].
  10. Vijayachari et al., 2015: Vijayachari P, Vedhagiri K, Mallilankaraman K, Mathur PP, Sardesai NY, Weiner DB, Ugen KE, Muthumani K. Immunogenicity of a novel enhanced consensus DNA vaccine encoding the leptospiral protein LipL45. Human vaccines & immunotherapeutics. 2015; 11(8); 1945-1953. [PubMed: 26020621].
  11. Wiki: Leptospirosis: Wiki: Leptospirosis [http://en.wikipedia.org/wiki/Leptospirosis]

Listeria monocytogenes

  1. Brockstedt et al., 2005: Brockstedt DG, Bahjat KS, Giedlin MA, Liu W, Leong M, Luckett W, Gao Y, Schnupf P, Kapadia D, Castro G, Lim JY, Sampson-Johannes A, Herskovits AA, Stassinopoulos A, Bouwer HG, Hearst JE, Portnoy DA, Cook DN, Dubensky TW Jr. Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity. Nature medicine. 2005; 11(8); 853-860. [PubMed: 16041382].
  2. Cornell et al., 1999: Cornell KA, Bouwer HG, Hinrichs DJ, Barry RA. Genetic immunization of mice against Listeria monocytogenes using plasmid DNA encoding listeriolysin O. Journal of immunology (Baltimore, Md. : 1950). 1999; 163(1); 322-329. [PubMed: 10384131].
  3. Darji et al., 2003: Darji A, Mohamed W, Domann E, Chakraborty T. Induction of immune responses by attenuated isogenic mutant strains of Listeria monocytogenes. Vaccine. 2003; 21 Suppl 2; S102-109. [PubMed: 12763691].
  4. Grenningloh et al., 2008: Grenningloh R, Darj A, Bauer H, zur Lage S, Chakraborty T, Jacobs T, Weiss S. Liposome-encapsulated antigens induce a protective CTL response against Listeria monocytogenes independent of CD4+ T cell help. Scandinavian journal of immunology. 2008; 67(6); 594-602. [PubMed: 18433404].
  5. Jiang et al., 2007: Jiang S, Rasmussen RA, Nolan KM, Frankel FR, Lieberman J, McClure HM, Williams KM, Babu US, Raybourne RB, Strobert E, Ruprecht RM. Live attenuated Listeria monocytogenes expressing HIV Gag: immunogenicity in rhesus monkeys. Vaccine. 2007; 25(42); 7470-7479. [PubMed: 17854955].
  6. Orgun and Way, 2008: Orgun NN, Way SS. A critical role for phospholipase C in protective immunity conferred by listeriolysin O-deficient Listeria monocytogenes. Microbial pathogenesis. 2008; 44(2); 159-163. [PubMed: 17888620].
  7. Ramaswamy et al., 2007: Ramaswamy V, Cresence VM, Rejitha JS, Lekshmi MU, Dharsana KS, Prasad SP, Vijila HM. Listeria--review of epidemiology and pathogenesis. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi. 2007; 40(1); 4-13. [PubMed: 17332901].
  8. Wiki: L. monocytogenes: Wiki: Listeria monocytogenes [http://en.wikipedia.org/wiki/Listeria_monocytogenes]

Lymphocytic choriomeningitis virus

  1. CDC - LCMV: Lymphocytic Choriomeningitis [http://www.cdc.gov/ncidod/dvrd/spb/mnpages/dispages/lcmv/qa.htm]
  2. Coon et al., 1999: Coon B, An LL, Whitton JL, von Herrath MG. DNA immunization to prevent autoimmune diabetes. The Journal of clinical investigation. 1999; 104(2); 189-194. [PubMed: 10411548].
  3. Hassett et al., 2000: Hassett DE, Slifka MK, Zhang J, Whitton JL. Direct ex vivo kinetic and phenotypic analyses of CD8(+) T-cell responses induced by DNA immunization. Journal of virology. 2000; 74(18); 8286-8291. [PubMed: 10954526].
  4. Krolik et al., 2021: Krolik M, Csepregi L, Hartmann F, Engetschwiler C, Flatz L. Recombinant lymphocytic choriomeningitis virus-based vaccine vector protects type I interferon receptor deficient mice from viral challenge. Vaccine. 2021; 39(8); 1257-1264. [PubMed: 33518468].
  5. Petrini et al., 2011: Petrini S, Ramadori G, Corradi A, Borghetti P, Lombardi G, Villa R, Bottarelli E, Guercio A, Amici A, Ferrari M. Evaluation of safety and efficacy of DNA vaccines against bovine herpesvirus-1 (BoHV-1) in calves. Comparative immunology, microbiology and infectious diseases. 2011; 34(1); 3-10. [PubMed: 19906427].
  6. Rottembourg et al., 2010: Rottembourg D, Filippi CM, Bresson D, Ehrhardt K, Estes EA, Oldham JE, von Herrath MG. Essential role for TLR9 in prime but not prime-boost plasmid DNA vaccination to activate dendritic cells and protect from lethal viral infection. Journal of immunology (Baltimore, Md. : 1950). 2010; 184(12); 7100-7107. [PubMed: 20483769].

Mannheimia haemolytica

  1. Homchampa et al., 1994: Homchampa P, Strugnell RA, Adler B. Construction and vaccine potential of an aroA mutant of Pasteurella haemolytica. Veterinary microbiology. 1994; 42(1); 35-44. [PubMed: 7839583].
  2. Rice et al., 2007: Rice JA, Carrasco-Medina L, Hodgins DC, Shewen PE. Mannheimia haemolytica and bovine respiratory disease. Animal health research reviews / Conference of Research Workers in Animal Diseases. 2007; 8(2); 117-128. [PubMed: 18218156].

Marburg Virus

  1. Bausch et al., 2007: Bausch DG, Geisbert TW. Development of vaccines for Marburg hemorrhagic fever. Expert review of vaccines. 2007 Feb; 6(1); 57-74. [PubMed: 17280479].
  2. Daddario-DiCaprio et al., 2006: Daddario-DiCaprio KM, Geisbert TW, Geisbert JB, Stroher U, Hensley LE, Grolla A, Fritz EA, Feldmann F, Feldmann H, Jones SM. Cross-protection against Marburg virus strains by using a live, attenuated recombinant vaccine. Journal of virology. 2006; 80(19); 9659-9666. [PubMed: 16973570].
  3. Dye et al., 2016: Dye JM, Warfield KL, Wells JB, Unfer RC, Shulenin S, Vu H, Nichols DK, Aman MJ, Bavari S. Virus-Like Particle Vaccination Protects Nonhuman Primates from Lethal Aerosol Exposure with Marburgvirus (VLP Vaccination Protects Macaques against Aerosol Challenges). Viruses. 2016; 8(4); 94. [PubMed: 27070636].
  4. Geisbert et al., 2010: Geisbert TW, Bailey M, Geisbert JB, Asiedu C, Roederer M, Grazia-Pau M, Custers J, Jahrling P, Goudsmit J, Koup R, Sullivan NJ. Vector choice determines immunogenicity and potency of genetic vaccines against Angola Marburg virus in nonhuman primates. Journal of virology. 2010; 84(19); 10386-10394. [PubMed: 20660192].
  5. Hevey et al., 1997: Hevey M, Negley D, Geisbert J, Jahrling P, Schmaljohn A. Antigenicity and vaccine potential of Marburg virus glycoprotein expressed by baculovirus recombinants. Virology. 1997 Dec 8; 239(1); 206-16. [PubMed: 9426460 ].
  6. Hevey et al., 1998: Hevey M, Negley D, Pushko P, Smith J, Schmaljohn A. Marburg virus vaccines based upon alphavirus replicons protect guinea pigs and nonhuman primates. Virology. 1998 Nov 10; 251(1); 28-37. [PubMed: 9813200 ].
  7. Jones et al., 2005: Jones SM, Feldmann H, Ströher U, Geisbert JB, Fernando L, Grolla A, Klenk HD, Sullivan NJ, Volchkov VE, Fritz EA, Daddario KM, Hensley LE, Jahrling PB, Geisbert TW. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nature medicine. 2005; 11(7); 786-790. [PubMed: 15937495].
  8. Mohamadzadeh et al., 2007: Mohamadzadeh M, Chen L, Schmaljohn AL. How Ebola and Marburg viruses battle the immune system. Nature reviews. Immunology. 2007; 7(7); 556-567. [PubMed: 17589545].
  9. Riemenschneider et al., 2003: Riemenschneider J, Garrison A, Geisbert J, Jahrling P, Hevey M, Negley D, Schmaljohn A, Lee J, Hart MK, Vanderzanden L, Custer D, Bray M, Ruff A, Ivins B, Bassett A, Rossi C, Schmaljohn C. Comparison of individual and combination DNA vaccines for B. anthracis, Ebola virus, Marburg virus and Venezuelan equine encephalitis virus. Vaccine. 2003; 21(25-26); 4071-4080. [PubMed: 12922144 ].
  10. Swenson et al., 2005: Swenson DL, Warfield KL, Negley DL, Schmaljohn A, Aman MJ, Bavari S. Virus-like particles exhibit potential as a pan-filovirus vaccine for both Ebola and Marburg viral infections. Vaccine. 2005; 23(23); 3033-3042. [PubMed: 15811650].
  11. Swenson et al., 2008: Swenson DL, Wang D, Luo M, Warfield KL, Woraratanadharm J, Holman DH, Dong JY, Pratt WD. Vaccine to confer to nonhuman primates complete protection against multistrain Ebola and Marburg virus infections. Clinical and vaccine immunology : CVI. 2008; 15(3); 460-467. [PubMed: 18216185].
  12. Tiemessen et al., 2022: Tiemessen MM, Solforosi L, Dekking L, Czapska-Casey D, Serroyen J, Sullivan NJ, Volkmann A, Pau MG, Callendret B, Schuitemaker H, Luhn K, Zahn R, Roozendaal R. Protection against Marburg Virus and Sudan Virus in NHP by an Adenovector-Based Trivalent Vaccine Regimen Is Correlated to Humoral Immune Response Levels. Vaccines. 2022; 10(8); . [PubMed: 36016151].
  13. Volkova et al., 2021: Volkova NV, Pyankov OV, Ivanova AV, Isaeva AA, Zybkina AV, Kazachinskaya EI, Shcherbakov DN. Prototype of a DNA Vaccine against Marburg Virus. Bulletin of experimental biology and medicine. 2021; 170(4); 475-478. [PubMed: 33713231].
  14. Wang et al., 2006: Wang D, Schmaljohn AL, Raja NU, Trubey CM, Juompan LY, Luo M, Deitz SB, Yu H, Woraratanadharm J, Holman DH, Moore KM, Swain BM, Pratt WD, Dong JY. De novo syntheses of Marburg virus antigens from adenovirus vectors induce potent humoral and cellular immune responses. Vaccine. 2006 Apr 5; 24(15); 2975-86. [PubMed: 16530297 ].
  15. Warfield et al., 2004: Warfield KL, Swenson DL, Negley DL, Schmaljohn AL, Aman MJ, Bavari S. Marburg virus-like particles protect guinea pigs from lethal Marburg virus infection. Vaccine. 2004 Sep 3; 22(25-26); 3495-502. [PubMed: 15308377 ].
  16. Woolsey et al., 2022: Woolsey C, Cross RW, Agans KN, Borisevich V, Deer DJ, Geisbert JB, Gerardi C, Latham TE, Fenton KA, Egan MA, Eldridge JH, Geisbert TW, Matassov D. A highly attenuated Vesiculovax vaccine rapidly protects nonhuman primates against lethal Marburg virus challenge. PLoS neglected tropical diseases. 2022; 16(5); e0010433. [PubMed: 35622847].
  17. Zhu et al., 2022: Zhu W, Liu G, Cao W, He S, Leung A, Ströher U, Fairchild MJ, Nichols R, Crowell J, Fusco J, Banadyga L. A Cloned Recombinant Vesicular Stomatitis Virus-Vectored Marburg Vaccine, PHV01, Protects Guinea Pigs from Lethal Marburg Virus Disease. Vaccines. 2022; 10(7); . [PubMed: 35891170].

Marek's disease virus

  1. Darteil et al., 1995: Darteil R, Bublot M, Laplace E, Bouquet JF, Audonnet JC, Rivière M. Herpesvirus of turkey recombinant viruses expressing infectious bursal disease virus (IBDV) VP2 immunogen induce protection against an IBDV virulent challenge in chickens. Virology. 1995; 211(2); 481-490. [PubMed: 7645252].
  2. Hughes and Rivailler, 2007: Hughes AL, Rivailler P. Phylogeny and recombination history of gallid herpesvirus 2 (Marek's disease virus) genomes. Virus research. 2007; 130(1-2); 28-33. [PubMed: 17566585].
  3. Lee et al., 2003: Lee LE, Witter RL, Reddy SM, Wu P, Yanagida N, Yoshida S. Protection and synergism by recombinant fowl pox vaccines expressing multiple genes from Marek's disease virus. Avian diseases. 2003; 47(3); 549-558. [PubMed: 14562881].

Measles virus

  1. Brinckmann et al., 1991: Brinckmann UG, Bankamp B, Reich A, ter Meulen V, Liebert UG. Efficacy of individual measles virus structural proteins in the protection of rats from measles encephalitis. The Journal of general virology. 1991; 72 ( Pt 10); 2491-2500. [PubMed: 1833505].
  2. Drillien et al., 1988: Drillien R, Spehner D, Kirn A, Giraudon P, Buckland R, Wild F, Lecocq JP. Protection of mice from fatal measles encephalitis by vaccination with vaccinia virus recombinants encoding either the hemagglutinin or the fusion protein. Proceedings of the National Academy of Sciences of the United States of America. 1988; 85(4); 1252-1256. [PubMed: 3422488].
  3. FDA: Attenuvax: FDA: Attenuvax information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm203032.htm]
  4. FDA: MMR-II: FDA: MMR-II [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094050.htm]
  5. FDA: ProQuad: FDA: ProQuad Vaccine [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094051.htm]
  6. Gillet et al., 2009: Gillet Y, Habermehl P, Thomas S, Eymin C, Fiquet A. Immunogenicity and safety of concomitant administration of a measles, mumps and rubella vaccine (M-M-RvaxPro) and a varicella vaccine (VARIVAX) by intramuscular or subcutaneous routes at separate injection sites: a randomised clinical trial. BMC medicine. 2009; 7; 16. [PubMed: 19366435].
  7. Griffin et al., 2008: Griffin DE, Pan CH, Moss WJ. Measles vaccines. Frontiers in bioscience : a journal and virtual library. 2008; 13; 1352-1370. [PubMed: 17981635].
  8. GSK: Priorix: GSK: Priorix Product Information [http://www.gsk.ca/english/docs-pdf/Priorix_PM_20081103_EN.pdf]
  9. GSK: Priorix-Tetra: GSK: Priorix-Tetra Product Information [http://www.gsk.ca/english/docs-pdf/Priorix-Tetra_PM_20090908_EN.pdf]
  10. Martinez et al., 1997: Martinez X, Brandt C, Saddallah F, Tougne C, Barrios C, Wild F, Dougan G, Lambert PH, Siegrist CA. DNA immunization circumvents deficient induction of T helper type 1 and cytotoxic T lymphocyte responses in neonates and during early life. Proceedings of the National Academy of Sciences of the United States of America. 1997; 94(16); 8726-8731. [PubMed: 9238045].
  11. Pan et al., 2010: Pan CH, Greer CE, Hauer D, Legg HS, Lee EY, Bergen MJ, Lau B, Adams RJ, Polo JM, Griffin DE. A chimeric alphavirus replicon particle vaccine expressing the hemagglutinin and fusion proteins protects juvenile and infant rhesus macaques from measles. Journal of virology. 2010; 84(8); 3798-3807. [PubMed: 20130066].
  12. Spreng et al., 2000: Spreng S, Gentschev I, Goebel W, Weidinger G, ter Meulen V, Niewiesk S. Salmonella vaccines secreting measles virus epitopes induce protective immune responses against measles virus encephalitis. Microbes and infection / Institut Pasteur. 2000; 2(14); 1687-1692. [PubMed: 11137042].
  13. Taylor et al., 1992: Taylor J, Weinberg R, Tartaglia J, Richardson C, Alkhatib G, Briedis D, Appel M, Norton E, Paoletti E. Nonreplicating viral vectors as potential vaccines: recombinant canarypox virus expressing measles virus fusion (F) and hemagglutinin (HA) glycoproteins. Virology. 1992; 187(1); 321-328. [PubMed: 1736535].
  14. Wiki: Measles: Wiki: Measles [http://en.wikipedia.org/wiki/Measles]
  15. Yanagi et al., 2006: Yanagi Y, Takeda M, Ohno S. Measles virus: cellular receptors, tropism and pathogenesis. The Journal of general virology. 2006; 87(Pt 10); 2767-2779. [PubMed: 16963735].

MERS-CoV

  1. Agrawal et al., 2016: Agrawal AS, Tao X, Algaissi A, Garron T, Narayanan K, Peng BH, Couch RB, Tseng CT. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Human vaccines & immunotherapeutics. 2016; 12(9); 2351-2356. [PubMed: 27269431].
  2. Bodmer et al., 2018: Bodmer BS, Fiedler AH, Hanauer JRH, Prüfer S, Mühlebach MD. Live-attenuated bivalent measles virus-derived vaccines targeting Middle East respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate mouse model. Virology. 2018; 521; 99-9107. [PubMed: 29902727].
  3. Chen et al., 2017: Chen Y, Lu S, Jia H, Deng Y, Zhou J, Huang B, Yu Y, Lan J, Wang W, Lou Y, Qin K, Tan W. A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein. Emerging microbes & infections. 2017; 6(5); e37. [PubMed: 28536429].
  4. Chi et al., 2017: Chi H, Zheng X, Wang X, Wang C, Wang H, Gai W, Perlman S, Yang S, Zhao J, Xia X. DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice. Vaccine. 2017; 35(16); 2069-2075. [PubMed: 28314561].
  5. Deng et al., 2018: Deng Y, Lan J, Bao L, Huang B, Ye F, Chen Y, Yao Y, Wang W, Qin C, Tan W. Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of middle east respiratory syndrome coronavirus. Emerging microbes & infections. 2018; 7(1); 60. [PubMed: 29618723].
  6. Folegatti et al., 2020: Folegatti PM, Bittaye M, Flaxman A, Lopez FR, Bellamy D, Kupke A, Mair C, Makinson R, Sheridan J, Rohde C, Halwe S, Jeong Y, Park YS, Kim JO, Song M, Boyd A, Tran N, Silman D, Poulton I, Datoo M, Marshal J, Themistocleous Y, Lawrie A, Roberts R, Berrie E, Becker S, Lambe T, Hill A, Ewer K, Gilbert S. Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. The Lancet. Infectious diseases. 2020; ; . [PubMed: 32325038].
  7. Guo et al., 2015: Guo X, Deng Y, Chen H, Lan J, Wang W, Zou X, Hung T, Lu Z, Tan W. Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus. Immunology. 2015; 145(4); 476-484. [PubMed: 25762305].
  8. Kato et al., 2019: Kato H, Takayama-Ito M, Iizuka-Shiota I, Fukushi S, Posadas-Herrera G, Horiya M, Satoh M, Yoshikawa T, Yamada S, Harada S, Fujii H, Shibamura M, Inagaki T, Morimoto K, Saijo M, Lim CK. Development of a recombinant replication-deficient rabies virus-based bivalent-vaccine against MERS-CoV and rabies virus and its humoral immunogenicity in mice. PloS one. 2019; 14(10); e0223684. [PubMed: 31589656].
  9. Kim et al., 2014: Kim E, Okada K, Kenniston T, Raj VS, AlHajri MM, Farag EA, AlHajri F, Osterhaus AD, Haagmans BL, Gambotto A. Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice. Vaccine. 2014; 32(45); 5975-5982. [PubMed: 25192975].
  10. Koch et al., 2020: Koch T, Dahlke C, Fathi A, Kupke A, Krähling V, Okba NMA, Halwe S, Rohde C, Eickmann M, Volz A, Hesterkamp T, Jambrecina A, Borregaard S, Ly ML, Zinser ME, Bartels E, Poetsch JSH, Neumann R, Fux R, Schmiedel S, Lohse AW, Haagmans BL, Sutter G, Becker S, Addo MM. Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: an open-label, phase 1 trial. The Lancet. Infectious diseases. 2020; ; . [PubMed: 32325037].
  11. Liu et al., 2018: Liu R, Wang J, Shao Y, Wang X, Zhang H, Shuai L, Ge J, Wen Z, Bu Z. A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization. Antiviral research. 2018; 150; 30-38. [PubMed: 29246504].
  12. Malczyk et al., 2015: Malczyk AH, Kupke A, Prüfer S, Scheuplein VA, Hutzler S, Kreuz D, Beissert T, Bauer S, Hubich-Rau S, Tondera C, Eldin HS, Schmidt J, Vergara-Alert J, Süzer Y, Seifried J, Hanschmann KM, Kalinke U, Herold S, Sahin U, Cichutek K, Waibler Z, Eickmann M, Becker S, Mühlebach MD. A Highly Immunogenic and Protective Middle East Respiratory Syndrome Coronavirus Vaccine Based on a Recombinant Measles Virus Vaccine Platform. Journal of virology. 2015; 89(22); 11654-11667. [PubMed: 26355094].
  13. Modjarrad et al., 2019: Modjarrad K, Roberts CC, Mills KT, Castellano AR, Paolino K, Muthumani K, Reuschel EL, Robb ML, Racine T, Oh MD, Lamarre C, Zaidi FI, Boyer J, Kudchodkar SB, Jeong M, Darden JM, Park YK, Scott PT, Remigio C, Parikh AP, Wise MC, Patel A, Duperret EK, Kim KY, Choi H, White S, Bagarazzi M, May JM, Kane D, Lee H, Kobinger G, Michael NL, Weiner DB, Thomas SJ, Maslow JN. Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. The Lancet. Infectious diseases. 2019; 19(9); 1013-1022. [PubMed: 31351922].
  14. Munster et al., 2017: Munster VJ, Wells D, Lambe T, Wright D, Fischer RJ, Bushmaker T, Saturday G, van Doremalen N, Gilbert SC, de Wit E, Warimwe GM. Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model. NPJ vaccines. 2017; 2; 28. [PubMed: 29263883].
  15. Ng et al., 2016: Ng OW, Chia A, Tan AT, Jadi RS, Leong HN, Bertoletti A, Tan YJ. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. 2016; 34(17); 2008-2014. [PubMed: 26954467].
  16. Song et al., 2013: Song F, Fux R, Provacia LB, Volz A, Eickmann M, Becker S, Osterhaus AD, Haagmans BL, Sutter G. Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies. Journal of virology. 2013; 87(21); 11950-11954. [PubMed: 23986586].
  17. Wang et al., 2015: Wang L, Shi W, Joyce MG, Modjarrad K, Zhang Y, Leung K, Lees CR, Zhou T, Yassine HM, Kanekiyo M, Yang ZY, Chen X, Becker MM, Freeman M, Vogel L, Johnson JC, Olinger G, Todd JP, Bagci U, Solomon J, Mollura DJ, Hensley L, Jahrling P, Denison MR, Rao SS, Subbarao K, Kwong PD, Mascola JR, Kong WP, Graham BS. Evaluation of candidate vaccine approaches for MERS-CoV. Nature communications. 2015; 6; 7712. [PubMed: 26218507].
  18. Wang et al., 2017: Wang C, Zheng X, Gai W, Zhao Y, Wang H, Wang H, Feng N, Chi H, Qiu B, Li N, Wang T, Gao Y, Yang S, Xia X. MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques. Oncotarget. 2017; 8(8); 12686-12694. [PubMed: 27050368].
  19. Zhao et al., 2016: Zhao J, Zhao J, Mangalam AK, Channappanavar R, Fett C, Meyerholz DK, Agnihothram S, Baric RS, David CS, Perlman S. Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses. Immunity. 2016; 44(6); 1379-1391. [PubMed: 27287409].

Mink enteritis virus

  1. Wki: Mink enteritis virus: Wki: Mink enteritis virus [http://en.wikipedia.org/wiki/Mink_enteritis_virus]

Mumps virus

  1. FDA: MMR-II: FDA: MMR-II [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094050.htm]
  2. FDA: ProQuad: FDA: ProQuad Vaccine [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094051.htm]
  3. Hviid et al., 2008: Hviid A, Rubin S, Mühlemann K. Mumps. Lancet. 2008; 371(9616); 932-944. [PubMed: 18342688].
  4. Liang et al., 2008: Liang Y, Ma S, Yang Z, Liu L, Wang L, Wang J, Jiang L, Shi C, Dong C, Li Q. Immunogenicity and safety of a novel formalin-inactivated and alum-adjuvanted candidate subunit vaccine for mumps. Vaccine. 2008; 26(33); 4276-4283. [PubMed: 18597904].
  5. Merck: Mumpsvax: Merck: Mumpsvax information [http://www.merck.com/product/usa/pi_circulars/m/mumpsvax/mumpsvax_pi.pdf]
  6. Šantak et al., 2015: Šantak M, Örvell C, Gulija TK. Identification of conformational neutralization sites on the fusion protein of mumps virus. The Journal of general virology. 2015; 96(Pt 5); 982-990. [PubMed: 25614584].
  7. Somboonthum et al., 2007: Somboonthum P, Yoshii H, Okamoto S, Koike M, Gomi Y, Uchiyama Y, Takahashi M, Yamanishi K, Mori Y. Generation of a recombinant Oka varicella vaccine expressing mumps virus hemagglutinin-neuraminidase protein as a polyvalent live vaccine. Vaccine. 2007; 25(52); 8741-8755. [PubMed: 18053621].

Murine Cytomegalovirus

  1. González et al., 1996: González Armas JC, Morello CS, Cranmer LD, Spector DH. DNA immunization confers protection against murine cytomegalovirus infection. Journal of virology. 1996; 70(11); 7921-7928. [PubMed: 8892915].
  2. Krmpotic et al., 2003: Krmpotic A, Bubic I, Polic B, Lucin P, Jonjic S. Pathogenesis of murine cytomegalovirus infection. Microbes and infection / Institut Pasteur. 2003; 5(13); 1263-1277. [PubMed: 14623023].
  3. Wang et al., 2013: Wang H, Yao Y, Huang C, Chen Q, Chen J, Chen Z. Immunization with cytomegalovirus envelope glycoprotein M and glycoprotein N DNA vaccines can provide mice with complete protection against a lethal murine cytomegalovirus challenge. Virologica Sinica. 2013; ; . [PubMed: 23715998].
  4. Wang et al., 2014: Wang H, Yao Y, Huang C, Fu X, Chen Q, Zhang H, Chen J, Fang F, Xie Z, Chen Z. An adjuvanted inactivated murine cytomegalovirus (MCMV) vaccine induces potent and long-term protective immunity against a lethal challenge with virulent MCMV. BMC infectious diseases. 2014; 14; 195. [PubMed: 24720840].
  5. Wang et al., 2015: Wang H, Huang C, Dong J, Yao Y, Xie Z, Liu X, Zhang W, Fang F, Chen Z. Complete protection of mice against lethal murine cytomegalovirus challenge by immunization with DNA vaccines encoding envelope glycoprotein complex III antigens gH, gL and gO. PloS one. 2015; 10(3); e0119964. [PubMed: 25803721].

Murine leukemia virus

  1. MicrobeWiki - Murine Leukemia Virus: Murine Leukemia Virus (MuLV) [http://microbewiki.kenyon.edu/index.php/Murine_Leukemia_Virus_(MuLV)]
  2. Sarzotti et al., 1997: Sarzotti M, Dean TA, Remington MP, Ly CD, Furth PA, Robbins DS. Induction of cytotoxic T cell responses in newborn mice by DNA immunization. Vaccine. 1997; 15(8); 795-797. [PubMed: 9234516].

Mycobacterium avium

  1. Martin et al., 2003: Martin E, Kamath AT, Briscoe H, Britton WJ. The combination of plasmid interleukin-12 with a single DNA vaccine is more effective than Mycobacterium bovis (bacille Calmette-Guèrin) in protecting against systemic Mycobacterim avium infection. Immunology. 2003; 109(2); 308-314. [PubMed: 12757627].
  2. Park et al., 2011: Park KT, Allen AJ, Bannantine JP, Seo KS, Hamilton MJ, Abdellrazeq GS, Rihan HM, Grimm A, Davis WC. Evaluation of two mutants of Mycobacterium avium subsp. paratuberculosis as candidates for a live attenuated vaccine for Johne's disease. Vaccine. 2011; ; . [PubMed: 21565243].
  3. WebMD - Mycobacterium avium complex: HIV, AIDS, and Mycobacterium Avium Complex [http://www.webmd.com/hiv-aids/guide/aids-hiv-opportunistic-infections-mycobacterium-avium-complex]

Mycobacterium bovis

  1. Buddle et al., 2013: Buddle BM, Hewinson RG, Vordermeier HM, Wedlock DN. Subcutaneous administration of a 10-fold-lower dose of a commercial human tuberculosis vaccine, Mycobacterium bovis bacillus Calmette-Guerin Danish, induced levels of protection against bovine tuberculosis and responses in the tuberculin intradermal test similar to those induced by a standard cattle dose. Clinical and vaccine immunology : CVI. 2013; 20(10); 1559-1562. [PubMed: 23925885].
  2. Teixeira et al., 2006: Teixeira FM, Teixeira HC, Ferreira AP, Rodrigues MF, Azevedo V, Macedo GC, Oliveira SC. DNA vaccine using Mycobacterium bovis Ag85B antigen induces partial protection against experimental infection in BALB/c mice. Clinical and vaccine immunology : CVI. 2006; 13(8); 930-935. [PubMed: 16893994].

Mycobacterium marinum

  1. Medscape - Mycobacterium marinum: Mycobacterium Marinum [http://emedicine.medscape.com/article/223363-overview]
  2. Pasnik and Smith, 2005: Pasnik DJ, Smith SA. Immunogenic and protective effects of a DNA vaccine for Mycobacterium marinum in fish. Veterinary immunology and immunopathology. 2005; 103(3-4); 195-206. [PubMed: 15621306].

Mycobacterium tuberculosis

  1. Aagaard et al., 2011: Aagaard C, Hoang T, Dietrich J, Cardona PJ, Izzo A, Dolganov G, Schoolnik GK, Cassidy JP, Billeskov R, Andersen P. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nature medicine. 2011; 17(2); 189-194. [PubMed: 21258338].
  2. Agger et al., 2002: Agger EM, Andersen P. A novel TB vaccine; towards a strategy based on our understanding of BCG failure. Vaccine. 2002 Nov 22; 21(1-2); 7-14. [PubMed: 12443657 ].
  3. Aguilar et al., 2006: Aguilar LD, Infante E, Bianco MV, Cataldi A, Bigi F, Pando RH. Immunogenicity and protection induced by Mycobacterium tuberculosis mce-2 and mce-3 mutants in a Balb/c mouse model of progressive pulmonary tuberculosis. Vaccine. 2006; 24(13); 2333-2342. [PubMed: 16388878].
  4. Bertholet et al., 2010: Bertholet S, Ireton GC, Ordway DJ, Windish HP, Pine SO, Kahn M, Phan T, Orme IM, Vedvick TS, Baldwin SL, Coler RN, Reed SG. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Science translational medicine. 2010; 2(53); 53ra74. [PubMed: 20944089].
  5. Buddle et al., 1995: Buddle BM, Keen D, Thomson A, Jowett G, McCarthy AR, Heslop J, De Lisle GW, Stanford JL, Aldwell FE. Protection of cattle from bovine tuberculosis by vaccination with BCG by the respiratory or subcutaneous route, but not by vaccination with killed Mycobacterium vaccae. Research in veterinary science. 1995; 59(1); 10-16. [PubMed: 8525078].
  6. Cai et al., 2005: Cai H, Yu DH, Tian X, Zhu YX. Coadministration of interleukin 2 plasmid DNA with combined DNA vaccines significantly enhances the protective efficacy against Mycobacterium tuberculosis. DNA and cell biology. 2005; 24(10); 605-613. [PubMed: 16225391].
  7. Chandra et al., 2006: Chandra S, Kaur M, Midha S, Bhatnagar R, Banerjee-Bhatnagar N. Evaluation of the ability of N-terminal fragment of lethal factor of Bacillus anthracis for delivery of Mycobacterium T cell antigen ESAT-6 into cytosol of antigen presenting cells to elicit effective cytotoxic T lymphocyte response. Biochemical and biophysical research communications. 2006 Dec 22; 351(3); 702-7. [PubMed: 17084814 ].
  8. Chiong et al., 2011: Chiong E, Kesavan A, Mahendran R, Chan YH, Sng JH, Lim YK, Kamaraj R, Tan TM, Esuvaranathan K. NRAMP1 and hGPX1 gene polymorphism and response to bacillus Calmette-Guérin therapy for bladder cancer. European urology. 2011; 59(3); 430-437. [PubMed: 21163569].
  9. Collins et al., 2005: Collins DM, Skou B, White S, Bassett S, Collins L, For R, Hurr K, Hotter G, de Lisle GW. Generation of attenuated Mycobacterium bovis strains by signature-tagged mutagenesis for discovery of novel vaccine candidates. Infection and immunity. 2005 Apr; 73(4); 2379-86. [PubMed: 15784584].
  10. De et al., 1999: De Lisle GW, Wilson T, Collins DM, Buddle BM. Vaccination of guinea pigs with nutritionally impaired avirulent mutants of Mycobacterium bovis protects against tuberculosis. Infection and immunity. 1999 May; 67(5); 2624-6. [PubMed: 10225931 ].
  11. Dillon et al., 1999: Dillon DC, Alderson MR, Day CH, Lewinsohn DM, Coler R, Bement T, Campos-Neto A, Skeiky YA, Orme IM, Roberts A, Steen S, Dalemans W, Badaro R, Reed SG. Molecular characterization and human T-cell responses to a member of a novel Mycobacterium tuberculosis mtb39 gene family. Infection and immunity. 1999; 67(6); 2941-2950. [PubMed: 10338503].
  12. Dou et al., 2010: Dou J, Tang Q, Yu F, Yang H, Zhao F, Xu W, Wang J, Hu W, Hu K, Liou C, Feng He X, Wang Y. Investigation of immunogenic effect of the BCG priming and Ag85A- GM-CSF boosting in Balb/c mice model. Immunobiology. 2010; 215(2); 133-142. [PubMed: 19450898].
  13. Ducati et al., 2006: Ducati RG, Ruffino-Netto A, Basso LA, Santos DS. The resumption of consumption-- a review on tuberculosis. Memorias do Instituto Oswaldo Cruz. 2006 Nov; 101(7); 697-714. [PubMed: 17160276].
  14. Ernst et al., 2007: Ernst JD, Trevejo-Nunez G, Banaiee N. Genomics and the evolution, pathogenesis, and diagnosis of tuberculosis. The Journal of clinical investigation. 2007 Jul; 117(7); 1738-45. [PubMed: 17607348].
  15. Falero-Diaz et al., 2000: Falero-Diaz G, Challacombe S, Banerjee D, Douce G, Boyd A, Ivanyi J. Intranasal vaccination of mice against infection with Mycobacterium tuberculosis. Vaccine. 2000; 18(28); 3223-3229. [PubMed: 10869767].
  16. FDA: BCG Vaccine: FDA: BCG Vaccine vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM202934.pdf]
  17. Fletcher, 2007: Fletcher HA. Correlates of immune protection from tuberculosis. Current molecular medicine. 2007 May; 7(3); 319-25. [PubMed: 17504116].
  18. Fonseca et al., 2001: Fonseca DP, Benaissa-Trouw B, van Engelen M, Kraaijeveld CA, Snippe H, Verheul AF. Induction of cell-mediated immunity against Mycobacterium tuberculosis using DNA vaccines encoding cytotoxic and helper T-cell epitopes of the 38-kilodalton protein. Infection and immunity. 2001 Aug; 69(8); 4839-45. [PubMed: 11447158].
  19. Fontán et al., 2008: Fontán PA, Aris V, Alvarez ME, Ghanny S, Cheng J, Soteropoulos P, Trevani A, Pine R, Smith I. Mycobacterium tuberculosis sigma factor E regulon modulates the host inflammatory response. The Journal of infectious diseases. 2008; 198(6); 877-885. [PubMed: 18657035].
  20. Gartner et al., 2008: Gartner T, Romano M, Suin V, Kalai M, Korf H, De Baetselier P, Huygen K. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine co-expressing pro-apoptotic caspase-3. Vaccine. 2008; 26(11); 1458-1470. [PubMed: 18280621].
  21. Geiman et al., 2004: Geiman DE, Kaushal D, Ko C, Tyagi S, Manabe YC, Schroeder BG, Fleischmann RD, Morrison NE, Converse PJ, Chen P, Bishai WR. Attenuation of late-stage disease in mice infected by the Mycobacterium tuberculosis mutant lacking the SigF alternate sigma factor and identification of SigF-dependent genes by microarray analysis. Infection and immunity. 2004; 72(3); 1733-1745. [PubMed: 14977982].
  22. Goldstone et al., 2009: Goldstone RM, Goonesekera SD, Bloom BR, Sampson SL. The transcriptional regulator Rv0485 modulates the expression of a pe and ppe gene pair and is required for Mycobacterium tuberculosis virulence. Infection and immunity. 2009; 77(10); 4654-4667. [PubMed: 19651861].
  23. Grode et al., 2005: Grode L, Seiler P, Baumann S, Hess J, Brinkmann V, Nasser Eddine A, Mann P, Goosmann C, Bandermann S, Smith D, Bancroft GJ, Reyrat JM, van Soolingen D, Raupach B, Kaufmann SH. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guérin mutants that secrete listeriolysin. The Journal of clinical investigation. 2005; 115(9); 2472-2479. [PubMed: 16110326].
  24. Gupta et al., 2007: Gupta UD, Katoch VM, McMurray DN. Current status of TB vaccines. Vaccine. 2007 May 10; 25(19); 3742-51. [PubMed: 17321015].
  25. Hall et al., 2009: Hall LJ, Clare S, Pickard D, Clark SO, Kelly DL, El Ghany MA, Hale C, Dietrich J, Andersen P, Marsh PD, Dougan G. Characterisation of a live Salmonella vaccine stably expressing the Mycobacterium tuberculosis Ag85B-ESAT6 fusion protein. Vaccine. 2009; 27(49); 6894-6904. [PubMed: 19755145].
  26. Hamasur et al., 2003: Hamasur B, Haile M, Pawlowski A, Schroder U, Williams A, Hatch G, Hall G, Marsh P, Kallenius G, Svenson SB. Mycobacterium tuberculosis arabinomannan-protein conjugates protect against tuberculosis. Vaccine. 2003 Sep 8; 21(25-26); 4081-93. [PubMed: 12922145].
  27. He et al., 2002: He Y, Vemulapalli R, Schurig GG. Recombinant Ochrobactrum anthropi expressing Brucella abortus Cu,Zn superoxide dismutase protects mice against B. abortus infection only after switching of immune responses to Th1 type. Infection and immunity. 2002; 70(5); 2535-2543. [PubMed: 11953393].
  28. Hernandez et al., 2010: Hernandez Pando R, Aguilar LD, Smith I, Manganelli R. Immunogenicity and protection induced by a Mycobacterium tuberculosis sigE mutant in a BALB/c mouse model of progressive pulmonary tuberculosis. Infection and immunity. 2010; 78(7); 3168-3176. [PubMed: 20457786].
  29. Hess et al., 1998: Hess J, Miko D, Catic A, Lehmensiek V, Russell DG, Kaufmann SH. Mycobacterium bovis Bacille Calmette-Guerin strains secreting listeriolysin of Listeria monocytogenes. Proceedings of the National Academy of Sciences of the United States of America. 1998 Apr 28; 95(9); 5299-304. [PubMed: 9560270].
  30. Hess et al., 1999: Hess J, Kaufmann SH. Live antigen carriers as tools for improved anti-tuberculosis vaccines. FEMS immunology and medical microbiology. 1999 Feb; 23(2); 165-73. [PubMed: 10076914 ].
  31. Hinchey et al., 2007: Hinchey J, Lee S, Jeon BY, Basaraba RJ, Venkataswamy MM, Chen B, Chan J, Braunstein M, Orme IM, Derrick SC, Morris SL, Jacobs WR, Porcelli SA. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. The Journal of clinical investigation. 2007 Aug 1; 117(8); 2279-2288. [PubMed: 17671656].
  32. Hinchey et al., 2011: Hinchey J, Jeon BY, Alley H, Chen B, Goldberg M, Derrick S, Morris S, Jacobs WR Jr, Porcelli SA, Lee S. Lysine auxotrophy combined with deletion of the SecA2 gene results in a safe and highly immunogenic candidate live attenuated vaccine for tuberculosis. PloS one. 2011; 6(1); e15857. [PubMed: 21264335].
  33. Hondalus et al., 2000: Hondalus MK, Bardarov S, Russell R, Chan J, Jacobs WR Jr, Bloom BR. Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis. Infection and immunity. 2000; 68(5); 2888-2898. [PubMed: 10768986].
  34. Horwitz et al., 2000: Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic' S. Recombinant bacillus calmette-guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proceedings of the National Academy of Sciences of the United States of America. 2000 Dec 5; 97(25); 13853-8. [PubMed: 11095745].
  35. Hwang et al., 2005: Hwang SA, Kruzel ML, Actor JK. Lactoferrin augments BCG vaccine efficacy to generate T helper response and subsequent protection against challenge with virulent Mycobacterium tuberculosis. International immunopharmacology. 2005; 5(3); 591-599. [PubMed: 15683854].
  36. Im et al., 2007: Im EJ, Saubi N, Virgili G, Sander C, Teoh D, Gatell JM, McShane H, Joseph J, Hanke T. Vaccine Platform for Prevention of Tuberculosis and Mother-to-Child Transmission of HIV-1 through Breastfeeding. Journal of virology. 2007 Jun 27; ; . [PubMed: 17596303].
  37. Infante et al., 2005: Infante E, Aguilar LD, Gicquel B, Pando RH. Immunogenicity and protective efficacy of the Mycobacterium tuberculosis fadD26 mutant. Clinical and experimental immunology. 2005; 141(1); 21-28. [PubMed: 15958066].
  38. Kamath et al., 1999: Kamath AT, Feng CG, Macdonald M, Briscoe H, Britton WJ. Differential protective efficacy of DNA vaccines expressing secreted proteins of Mycobacterium tuberculosis. Infection and immunity. 1999 Apr; 67(4); 1702-7. [PubMed: 10085007].
  39. Kaufmann, 2005: Kaufmann SH. Recent findings in immunology give tuberculosis vaccines a new boost. Trends in immunology. 2005 Dec; 26(12); 660-7. [PubMed: 16246622 ].
  40. Khatri et al., 2014: Khatri B, Whelan A, Clifford D, Petrera A, Sander P, Vordermeier HM. BCG ÃŽâ€zmp1 vaccine induces enhanced antigen specific immune responses in cattle. Vaccine. 2014; ; . [PubMed: 24394444].
  41. Khera et al., 2005: Khera A, Singh R, Shakila H, Rao V, Dhar N, Narayanan PR, Parmasivan CN, Ramanathan VD, Tyagi AK. Elicitation of efficient, protective immune responses by using DNA vaccines against tuberculosis. Vaccine. 2005 Dec 1; 23(48-49); 5655-65. [PubMed: 16157425 ].
  42. Kolibab et al., 2010: Kolibab K, Yang A, Derrick SC, Waldmann TA, Perera LP, Morris SL. Highly persistent and effective prime/boost regimens against tuberculosis that use a multivalent modified vaccine virus Ankara-based tuberculosis vaccine with interleukin-15 as a molecular adjuvant. Clinical and vaccine immunology : CVI. 2010; 17(5); 793-801. [PubMed: 20357059].
  43. Kumar et al., 2003: Kumar P, Amara RR, Challu VK, Chadda VK, Satchidanandam V. The Apa protein of Mycobacterium tuberculosis stimulates gamma interferon-secreting CD4+ and CD8+ T cells from purified protein derivative-positive individuals and affords protection in a guinea pig model. Infection and immunity. 2003; 71(4); 1929-1937. [PubMed: 12654810].
  44. Langermans et al., 2001: Langermans JA, Andersen P, van Soolingen D, Vervenne RA, Frost PA, van der Laan T, van Pinxteren LA, van den Hombergh J, Kroon S, Peekel I, Florquin S, Thomas AW. Divergent effect of bacillus Calmette-Guérin (BCG) vaccination on Mycobacterium tuberculosis infection in highly related macaque species: implications for primate models in tuberculosis vaccine research. Proceedings of the National Academy of Sciences of the United States of America. 2001; 98(20); 11497-11502. [PubMed: 11562492].
  45. Li et al., 1999: Li Z, Howard A, Kelley C, Delogu G, Collins F, Morris S. Immunogenicity of DNA vaccines expressing tuberculosis proteins fused to tissue plasminogen activator signal sequences. Infection and immunity. 1999; 67(9); 4780-4786. [PubMed: 10456931].
  46. Lowrie et al., 1997: Lowrie DB, Silva CL, Colston MJ, Ragno S, Tascon RE. Protection against tuberculosis by a plasmid DNA vaccine. Vaccine. 1997; 15(8); 834-838. [PubMed: 9234527].
  47. Luo et al., 2004: Luo XD, Zhu DY, Chen Q, Jiang Y, Jiang S, Yang C. [A study of the protective effect of the DNA vaccine encoding tubercle antigen 85B with MPT64 in mice challenged with Mycobacterium tuberculosis]. Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases. 2004; 27(9); 611-616. [PubMed: 15498274].
  48. Martin et al., 2006: Martin C, Williams A, Hernandez-Pando R, Cardona PJ, Gormley E, Bordat Y, Soto CY, Clark SO, Hatch GJ, Aguilar D, Ausina V, Gicquel B. The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine. 2006 Apr 24; 24(17); 3408-19. [PubMed: 16564606 ].
  49. McShane et al., 2005: McShane H, Pathan AA, Sander CR, Goonetilleke NP, Fletcher HA, Hill AV. Boosting BCG with MVA85A: the first candidate subunit vaccine for tuberculosis in clinical trials. Tuberculosis (Edinburgh, Scotland). 2005 Jan-Mar; 85(1-2); 47-52. [PubMed: 15687027].
  50. Miki et al., 2004: Miki K, Nagata T, Tanaka T, Kim YH, Uchijima M, Ohara N, Nakamura S, Okada M, Koide Y. Induction of protective cellular immunity against Mycobacterium tuberculosis by recombinant attenuated self-destructing Listeria monocytogenes strains harboring eukaryotic expression plasmids for antigen 85 complex and MPB/MPT51. Infection and immunity. 2004; 72(4); 2014-2021. [PubMed: 15039321].
  51. Mollenkopf et al., 2001: Mollenkopf HJ, Groine-Triebkorn D, Andersen P, Hess J, Kaufmann SH. Protective efficacy against tuberculosis of ESAT-6 secreted by a live Salmonella typhimurium vaccine carrier strain and expressed by naked DNA. Vaccine. 2001 Jul 16; 19(28-29); 4028-35. [PubMed: 11427279].
  52. Morris et al., 2000: Morris S, Kelley C, Howard A, Li Z, Collins F. The immunogenicity of single and combination DNA vaccines against tuberculosis. Vaccine. 2000; 18(20); 2155-2163. [PubMed: 10715531].
  53. Mukai et al., 2014: Mukai T, Tsukamoto Y, Maeda Y, Tamura T, Makino M. Efficient activation of human T cells of both CD4 and CD8 subsets by urease-deficient recombinant Mycobacterium bovis BCG that produced a heat shock protein 70-M. tuberculosis-derived major membrane protein II fusion protein. Clinical and vaccine immunology : CVI. 2014; 21(1); 1-11. [PubMed: 24152387].
  54. Mustafa, 2009: Mustafa AS. Th1 cell reactivity and HLA-DR binding prediction for promiscuous recognition of MPT63 (Rv1926c), a major secreted protein of Mycobacterium tuberculosis. Scandinavian journal of immunology. 2009; 69(3); 213-222. [PubMed: 19281533].
  55. Oksanen et al., 2013: Oksanen KE, Halfpenny NJ, Sherwood E, Harjula SK, Hammarén MM, Ahava MJ, Pajula ET, Lahtinen MJ, Parikka M, Rämet M. An adult zebrafish model for preclinical tuberculosis vaccine development. Vaccine. 2013; 31(45); 5202-5209. [PubMed: 24055305].
  56. Olsen et al., 2001: Olsen, A.W., L.A.H. van Pinxteren, P.B Rasmussen, and P. Andersen. Protection of Mice with a Tuberculosis Subunit Vaccine Based on a Fusion Protein of Antigen 85B and ESAT-6. Infect. Immun.. 2001; 69(5); 2773-2778.
  57. Palma et al., 2007: Palma C, Iona E, Giannoni F, Pardini M, Brunori L, Orefici G, Fattorini L, Cassone A. The Ag85B protein of Mycobacterium tuberculosis may turn a protective immune response induced by Ag85B-DNA vaccine into a potent but non-protective Th1 immune response in mice. Cellular microbiology. 2007; 9(6); 1455-1465. [PubMed: 17250590].
  58. Palma et al., 2010: Palma C, Vendetti S, Cassone A. Role of 4-1BB receptor in the control played by CD8(+) T cells on IFN-gamma production by Mycobacterium tuberculosis antigen-specific CD4(+) T Cells. PloS one. 2010; 5(6); e11019. [PubMed: 20544034].
  59. Parra et al., 2004: Parra M, Pickett T, Delogu G, Dheenadhayalan V, Debrie AS, Locht C, Brennan MJ. The mycobacterial heparin-binding hemagglutinin is a protective antigen in the mouse aerosol challenge model of tuberculosis. Infection and immunity. 2004; 72(12); 6799-6805. [PubMed: 15557600].
  60. Perez et al., 2001: Perez E, Samper S, Bordas Y, Guilhot C, Gicquel B, Martin C. An essential role for phoP in Mycobacterium tuberculosis virulence. Molecular microbiology. 2001 Jul; 41(1); 179-87. [PubMed: 11454210].
  61. Pinto et al., 2004: Pinto R, Saunders BM, Camacho LR, Britton WJ, Gicquel B, Triccas JA. Mycobacterium tuberculosis defective in phthiocerol dimycocerosate translocation provides greater protective immunity against tuberculosis than the existing bacille Calmette-Guérin vaccine. The Journal of infectious diseases. 2004; 189(1); 105-112. [PubMed: 14702160].
  62. Quintana et al., 2003: Quintana FJ, Carmi P, Mor F, Cohen IR. DNA fragments of the human 60-kDa heat shock protein (HSP60) vaccinate against adjuvant arthritis: identification of a regulatory HSP60 peptide. Journal of immunology (Baltimore, Md. : 1950). 2003; 171(7); 3533-3541. [PubMed: 14500649].
  63. Randhawa et al., 2011: Randhawa AK, Shey MS, Keyser A, Peixoto B, Wells RD, de Kock M, Lerumo L, Hughes J, Hussey G, Hawkridge A, Kaplan G, Hanekom WA, Hawn TR. Association of human TLR1 and TLR6 deficiency with altered immune responses to BCG vaccination in South African infants. PLoS pathogens. 2011; 7(8); e1002174. [PubMed: 21852947].
  64. Sambandamurthy et al., 2002: Sambandamurthy VK, Wang X, Chen B, Russell RG, Derrick S, Collins FM, Morris SL, Jacobs WR Jr. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nature medicine. 2002; 8(10); 1171-1174. [PubMed: 12219086].
  65. Sambandamurthy et al., 2006: Sambandamurthy VK, Derrick SC, Hsu T, Chen B, Larsen MH, Jalapathy KV, Chen M, Kim J, Porcelli SA, Chan J, Morris SL, Jacobs WR Jr. Mycobacterium tuberculosis DeltaRD1 DeltapanCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis. Vaccine. 2006; 24(37-39); 6309-6320. [PubMed: 16860907].
  66. Singh et al., 2011: Singh VK, Srivastava V, Singh V, Rastogi N, Roy R, Shaw AK, Dwivedi AK, Srivastava R, Srivastava BS. Overexpression of Rv3097c in Mycobacterium bovis BCG abolished the efficacy of BCG vaccine to protect against Mycobacterium tuberculosis infection in mice. Vaccine. 2011; 29(29-30); 4754-4760. [PubMed: 21565242].
  67. Singhal et al., 2011: Singhal A, Mathys V, Kiass M, Creusy C, Delaire B, Aliouat el M, Dartois V, Kaplan G, Bifani P. BCG induces protection against Mycobacterium tuberculosis infection in the Wistar rat model. PloS one. 2011; 6(12); e28082. [PubMed: 22162757].
  68. Skeiky et al., 2004: Skeiky YA, Alderson MR, Ovendale PJ, Guderian JA, Brandt L, Dillon DC, Campos-Neto A, Lobet Y, Dalemans W, Orme IM, Reed SG. Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. Journal of immunology (Baltimore, Md. : 1950). 2004 Jun 15; 172(12); 7618-28. [PubMed: 15187142].
  69. Skeiky et al., 2005: Skeiky YA, Alderson MR, Ovendale PJ, Lobet Y, Dalemans W, Orme IM, Reed SG, Campos-Neto A. Protection of mice and guinea pigs against tuberculosis induced by immunization with a single Mycobacterium tuberculosis recombinant antigen, MTB41. Vaccine. 2005; 23(30); 3937-3945. [PubMed: 15917115].
  70. Skerry et al., 2013: Skerry C, Pokkali S, Pinn M, Be NA, Harper J, Karakousis PC, Jain SK. Vaccination with recombinant Mycobacterium tuberculosis PknD attenuates bacterial dissemination to the brain in guinea pigs. PloS one. 2013; 8(6); e66310. [PubMed: 23776655].
  71. Smith et al., 2001: Smith DA, Parish T, Stoker NG, Bancroft GJ. Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infection and immunity. 2001; 69(2); 1142-1150. [PubMed: 11160012].
  72. Stephens et al., 2007: Stephens DS, Greenwood B, Brandtzaeg P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet. 2007; 369(9580); 2196-2210. [PubMed: 17604802].
  73. Sugawara et al., 2007: Sugawara I, Li Z, Sun L, Udagawa T, Taniyama T. Recombinant BCG Tokyo (Ag85A) protects cynomolgus monkeys (Macaca fascicularis) infected with H37Rv Mycobacterium tuberculosis. Tuberculosis (Edinburgh, Scotland). 2007 Aug 24; ; . [PubMed: 17720625 ].
  74. Sun et al., 2004: Sun R, Converse PJ, Ko C, Tyagi S, Morrison NE, Bishai WR. Mycobacterium tuberculosis ECF sigma factor sigC is required for lethality in mice and for the conditional expression of a defined gene set. Molecular microbiology. 2004; 52(1); 25-38. [PubMed: 15049808].
  75. SWEDBERG, 1951: SWEDBERG B. Studies in experimental tuberculosis; an investigation of some problems of immunity and resistance. Acta medica Scandinavica. Supplementum. 1951; 254; 1-120. [PubMed: 14837707].
  76. Sweeney et al., 2011: Sweeney KA, Dao DN, Goldberg MF, Hsu T, Venkataswamy MM, Henao-Tamayo M, Ordway D, Sellers RS, Jain P, Chen B, Chen M, Kim J, Lukose R, Chan J, Orme IM, Porcelli SA, Jacobs WR Jr. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nature medicine. 2011; 17(10); 1261-1268. [PubMed: 21892180].
  77. Tanghe et al., 1999: Tanghe A, Lefèvre P, Denis O, D'Souza S, Braibant M, Lozes E, Singh M, Montgomery D, Content J, Huygen K. Immunogenicity and protective efficacy of tuberculosis DNA vaccines encoding putative phosphate transport receptors. Journal of immunology (Baltimore, Md. : 1950). 1999; 162(2); 1113-1119. [PubMed: 9916741].
  78. Thom et al., 2012: Thom RE, Elmore MJ, Williams A, Andrews SC, Drobniewski F, Marsh PD, Tree JA. The expression of ferritin, lactoferrin, transferrin receptor and solute carrier family 11A1 in the host response to BCG-vaccination and Mycobacterium tuberculosis challenge. Vaccine. 2012; 30(21); 3159-3168. [PubMed: 22426328].
  79. Tsenova et al., 2006: Tsenova L, Harbacheuski R, Moreira AL, Ellison E, Dalemans W, Alderson MR, Mathema B, Reed SG, Skeiky YA, Kaplan G. Evaluation of the Mtb72F polyprotein vaccine in a rabbit model of tuberculous meningitis. Infection and immunity. 2006; 74(4); 2392-2401. [PubMed: 16552069].
  80. Verreck et al., 2001: Verreck FA, de Vries RR, Ottenhoff TH. Setting a course for intervening in host-pathogen interactions. Trends in immunology. 2001 Nov; 22(11); 588-90. [PubMed: 11698199 ].
  81. Verreck et al., 2009: Verreck FA, Vervenne RA, Kondova I, van Kralingen KW, Remarque EJ, Braskamp G, van der Werff NM, Kersbergen A, Ottenhoff TH, Heidt PJ, Gilbert SC, Gicquel B, Hill AV, Martin C, McShane H, Thomas AW. MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PloS one. 2009; 4(4); e5264. [PubMed: 19367339].
  82. Vipond et al., 2006: Vipond J, Clark SO, Hatch GJ, Vipond R, Marie Agger E, Tree JA, Williams A, Marsh PD. Re-formulation of selected DNA vaccine candidates and their evaluation as protein vaccines using a guinea pig aerosol infection model of tuberculosis. Tuberculosis (Edinburgh, Scotland). 2006 May-Jul; 86(3-4); 218-24. [PubMed: 16520093].
  83. Vordermeier et al., 2004: Vordermeier HM, Rhodes SG, Dean G, Goonetilleke N, Huygen K, Hill AV, Hewinson RG, Gilbert SC. Cellular immune responses induced in cattle by heterologous prime-boost vaccination using recombinant viruses and bacille Calmette-Guerin. Immunology. 2004 Jul; 112(3); 461-70. [PubMed: 15196215].
  84. Wang et al., 2004: Wang J, Thorson L, Stokes RW, Santosuosso M, Huygen K, Zganiacz A, Hitt M, Xing Z. Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. Journal of immunology (Baltimore, Md. : 1950). 2004; 173(10); 6357-6365. [PubMed: 15528375].
  85. Wang et al., 2009: Wang QL, Pan Q, Ma Y, Wang K, Sun P, Liu S, Zhang XL. An attenuated Salmonella-vectored vaccine elicits protective immunity against Mycobacterium tuberculosis. Vaccine. 2009; 27(48); 6712-6722. [PubMed: 19733584].
  86. Wang et al., 2010: Wang D, Xu J, Feng Y, Liu Y, Mchenga SS, Shan F, Sasaki J, Lu C. Liposomal oral DNA vaccine (mycobacterium DNA) elicits immune response. Vaccine. 2010; 28(18); 3134-3142. [PubMed: 20197133].
  87. Wang et al., 2012: Wang C, Fu R, Chen Z, Tan K, Chen L, Teng X, Lu J, Shi C, Fan X. Immunogenicity and protective efficacy of a novel recombinant BCG strain overexpressing antigens Ag85A and Ag85B. Clinical & developmental immunology. 2012; 2012; 563838. [PubMed: 22570667].
  88. Wu et al., 2008: Wu Y, Woodworth JS, Shin DS, Morris S, Behar SM. Vaccine-elicited 10-kilodalton culture filtrate protein-specific CD8+ T cells are sufficient to mediate protection against Mycobacterium tuberculosis infection. Infection and immunity. 2008; 76(5); 2249-2255. [PubMed: 18332205].
  89. Xu et al., 2014: Xu Y, Yang E, Wang J, Li R, Li G, Liu G, Song N, Huang Q, Kong C, Wang H. Prime-boost BCG vaccination with lentivirus-vectored and DNA-based vaccines expressing antigens Ag85B and Rv3425 improves protective efficacy against M. tuberculosis in mice. Immunology. 2014; ; . [PubMed: 24773322].
  90. Zaks et al., 2006: Zaks K, Jordan M, Guth A, Sellins K, Kedl R, Izzo A, Bosio C, Dow S. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. Journal of immunology (Baltimore, Md. : 1950). 2006; 176(12); 7335-7345. [PubMed: 16751377].

Mycoplasma gallisepticum

  1. Barbour et al., 2000: Barbour EK, Hamadeh SK, Eidt A. Infection and immunity in broiler chicken breeders vaccinated with a temperature-sensitive mutant of Mycoplasma gallisepticum and impact on performance of offspring. Poultry science. 2000; 79(12); 1730-1735. [PubMed: 11194034].
  2. Gates et al., 2008: Gates AE, Frasca S, Nyaoke A, Gorton TS, Silbart LK, Geary SJ. Comparative assessment of a metabolically attenuated Mycoplasma gallisepticum mutant as a live vaccine for the prevention of avian respiratory mycoplasmosis. Vaccine. 2008; 26(16); 2010-2019. [PubMed: 18342996].
  3. Kumar et al., 2003: Kumar P, Amara RR, Challu VK, Chadda VK, Satchidanandam V. The Apa protein of Mycobacterium tuberculosis stimulates gamma interferon-secreting CD4+ and CD8+ T cells from purified protein derivative-positive individuals and affords protection in a guinea pig model. Infection and immunity. 2003; 71(4); 1929-1937. [PubMed: 12654810].
  4. Merck Vet Manual: M. gallisepticum: Merck Veterinary Manual- Mycoplasma gallisepticum Infection [http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/203402.htm]
  5. Saito et al., 1993: Saito S, Fujisawa A, Ohkawa S, Nishimura N, Abe T, Kodama K, Kamogawa K, Aoyama S, Iritani Y, Hayashi Y. Cloning and DNA sequence of a 29 kilodalton polypeptide gene of Mycoplasma gallisepticum as a possible protective antigen. Vaccine. 1993; 11(10); 1061-1066. [PubMed: 8212828].
  6. Wijesurendra et al., 2017: Wijesurendra DS, Kanci A, Tivendale KA, Devlin JM, Wawegama NK, Bacci B, Noormohammadi AH, Markham PF, Browning GF. Immune responses to vaccination and infection with Mycoplasma gallisepticum in turkeys. Avian pathology : journal of the W.V.P.A. 2017; 46(5); 464-473. [PubMed: 28345962].
  7. Wiki: Mycoplasma gallisepticum: Mycoplasma gallisepticum [http://en.wikipedia.org/wiki/Mycoplasma_gallisepticum]

Mycoplasma hyopneumoniae

  1. Chen et al., 2006: Chen AY, Fry SR, Forbes-Faulkner J, Daggard GE, Mukkur TK. Comparative immunogenicity of M. hyopneumoniae NrdF encoded in different expression systems delivered orally via attenuated S. typhimurium aroA in mice. Veterinary microbiology. 2006; 114(3-4); 252-259. [PubMed: 16426773].
  2. Chen et al., 2006: Chen AY, Fry SR, Forbes-Faulkner J, Daggard G, Mukkur TK. Evaluation of the immunogenicity of the P97R1 adhesin of Mycoplasma hyopneumoniae as a mucosal vaccine in mice. Journal of medical microbiology. 2006; 55(Pt 7); 923-929. [PubMed: 16772421].
  3. Feng et al., 2014: Feng ZX, Bai Y, Yao JT, Pharr GT, Wan XF, Xiao SB, Chi LZ, Gan Y, Wang HY, Wei YN, Liu MJ, Xiong QY, Bai FF, Li B, Wu XS, Shao GQ. Use of serological and mucosal immune responses to Mycoplasma hyopneumoniae antigens P97R1, P46 and P36 in the diagnosis of infection. Veterinary journal (London, England : 1997). 2014; 202(1); 128-133. [PubMed: 25066030].
  4. King et al., 1997: King KW, Faulds DH, Rosey EL, Yancey RJ Jr. Characterization of the gene encoding Mhp1 from Mycoplasma hyopneumoniae and examination of Mhp1's vaccine potential. Vaccine. 1997; 15(1); 25-35. [PubMed: 9041663].
  5. Leal et al., 2016: Leal FM, Virginio VG, Martello CL, Paes JA, Borges TJ, Jaeger N, Bonorino C, Ferreira HB. Mycoplasma hyopneumoniae and Mycoplasma flocculare differential domains from orthologous surface proteins induce distinct cellular immune responses in mice. Veterinary microbiology. 2016; 190; 50-57. [PubMed: 27283856].
  6. Maes et al., 2008: Maes D, Segales J, Meyns T, Sibila M, Pieters M, Haesebrouck F. Control of Mycoplasma hyopneumoniae infections in pigs. Veterinary microbiology. 2008; 126(4); 297-309. [PubMed: 17964089].
  7. Okamba et al., 2010: Okamba FR, Arella M, Music N, Jia JJ, Gottschalk M, Gagnon CA. Potential use of a recombinant replication-defective adenovirus vector carrying the C-terminal portion of the P97 adhesin protein as a vaccine against Mycoplasma hyopneumoniae in swine. Vaccine. 2010; 28(30); 4802-4809. [PubMed: 20472025].
  8. Simionatto et al., 2012: Simionatto S, Marchioro SB, Galli V, Brum CB, Klein CS, Rebelatto R, Silva EF, Borsuk S, Conceição FR, Dellagostin OA. Immunological characterization of Mycoplasma hyopneumoniae recombinant proteins. Comparative immunology, microbiology and infectious diseases. 2012; 35(2); 209-216. [PubMed: 22304900].
  9. Wiki: M. hyopneumoniae: Wiki: Mycoplasma hyopneumoniae [http://en.wikipedia.org/wiki/Mycoplasma_hyopneumoniae]

Mycoplasma synoviae

  1. MicrobeWiki: Mycoplasma synoviae: Mycoplasma synoviae [http://microbewiki.kenyon.edu/index.php/Mycoplasma_synoviae]
  2. Morrow et al., 1998: Morrow CJ, Markham JF, Whithear KG. Production of temperature-sensitive clones of Mycoplasma synoviae for evaluation as live vaccines. Avian diseases. 1998; 42(4); 667-670. [PubMed: 9876833].

Neisseria meningitidis

  1. Carmenate et al., 2004: Carmenate T, Canaán L, Alvarez A, Delgado M, González S, Menéndez T, Rodés L, Guillén G. Effect of conjugation methodology on the immunogenicity and protective efficacy of meningococcal group C polysaccharide-P64k protein conjugates. FEMS immunology and medical microbiology. 2004; 40(3); 193-199. [PubMed: 15039094].
  2. Comanducci et al., 2002: Comanducci M, Bambini S, Brunelli B, Adu-Bobie J, Aricò B, Capecchi B, Giuliani MM, Masignani V, Santini L, Savino S, Granoff DM, Caugant DA, Pizza M, Rappuoli R, Mora M. NadA, a novel vaccine candidate of Neisseria meningitidis. The Journal of experimental medicine. 2002; 195(11); 1445-1454. [PubMed: 12045242].
  3. FDA: BEXSERO: FDA: BEXSERO vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM431447.pdf]
  4. FDA: Menactra: FDA: Menactra [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM131170.pdf]
  5. FDA: MenHibrix: FDA: MenHibrix Package insert [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm308566.htm]
  6. FDA: Menomune– A/C/Y/W-135: FDA Menomune– A/C/Y/W-135 Neisseria meningitidis vaccine [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM308370.pdf]
  7. FDA: Menveo: FDA: Menveo [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm201342.htm]
  8. FDA: TRUMENBA: FDA: TRUMENBA vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM421139.pdf]
  9. Giuliani et al., 2006: Giuliani MM, Adu-Bobie J, Comanducci M, Aricò B, Savino S, Santini L, Brunelli B, Bambini S, Biolchi A, Capecchi B, Cartocci E, Ciucchi L, Di Marcello F, Ferlicca F, Galli B, Luzzi E, Masignani V, Serruto D, Veggi D, Contorni M, Morandi M, Bartalesi A, Cinotti V, Mannucci D, Titta F, Ovidi E, Welsch JA, Granoff D, Rappuoli R, Pizza M. A universal vaccine for serogroup B meningococcus. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103(29); 10834-10839. [PubMed: 16825336].
  10. GSK: Menjugate: GSK: Menjugate vaccine information [https://ca.gsk.com/media/1213633/menjugate.pdf]
  11. Li et al., 2004: Li Y, Sun YH, Ison C, Levine MM, Tang CM. Vaccination with attenuated Neisseria meningitidis strains protects against challenge with live Meningococci. Infection and immunity. 2004; 72(1); 345-351. [PubMed: 14688114].
  12. Li et al., 2014: Li S, Rouphael N, Duraisingham S, Romero-Steiner S, Presnell S, Davis C, Schmidt DS, Johnson SE, Milton A, Rajam G, Kasturi S, Carlone GM, Quinn C, Chaussabel D, Palucka AK, Mulligan MJ, Ahmed R, Stephens DS, Nakaya HI, Pulendran B. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nature immunology. 2014; 15(2); 195-204. [PubMed: 24336226].
  13. Lissolo et al., 1995: Lissolo L, Maitre-Wilmotte G, Dumas P, Mignon M, Danve B, Quentin-Millet MJ. Evaluation of transferrin-binding protein 2 within the transferrin-binding protein complex as a potential antigen for future meningococcal vaccines. Infection and immunity. 1995; 63(3); 884-890. [PubMed: 7868259].
  14. Martin et al., 1997: Martin D, Cadieux N, Hamel J, Brodeur BR. Highly conserved Neisseria meningitidis surface protein confers protection against experimental infection. The Journal of experimental medicine. 1997; 185(7); 1173-1183. [PubMed: 9104804].
  15. O'dwyer et al., 2004: O'dwyer CA, Reddin K, Martin D, Taylor SC, Gorringe AR, Hudson MJ, Brodeur BR, Langford PR, Kroll JS. Expression of heterologous antigens in commensal Neisseria spp.: preservation of conformational epitopes with vaccine potential. Infection and immunity. 2004; 72(11); 6511-6518. [PubMed: 15501782].
  16. Pfizer: NeisVac-C: Pfizer: NeisVac-C vaccine information [http://www.pfizer.ca/sites/g/files/g10017036/f/201505/NeisVac-C_PM_182023_31Mar2015_EN.pdf]
  17. Pfizer: NIMENRIX: Pfizer: NIMENRIX vaccine information [http://www.pfizer.ca/sites/g/files/g10028126/f/201604/Nimenrix_PM_184020_23Mar2016_E.pdf]
  18. Pizza et al., 2000: Pizza M, Scarlato V, Masignani V, Giuliani MM, Aricò B, Comanducci M, Jennings GT, Baldi L, Bartolini E, Capecchi B, Galeotti CL, Luzzi E, Manetti R, Marchetti E, Mora M, Nuti S, Ratti G, Santini L, Savino S, Scarselli M, Storni E, Zuo P, Broeker M, Hundt E, Knapp B, Blair E, Mason T, Tettelin H, Hood DW, Jeffries AC, Saunders NJ, Granoff DM, Venter JC, Moxon ER, Grandi G, Rappuoli R. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science (New York, N.Y.). 2000; 287(5459); 1816-1820. [PubMed: 10710308].
  19. Pizza et al., 2008: Pizza M, Donnelly J, Rappuoli R. Factor H-binding protein, a unique meningococcal vaccine antigen. Vaccine. 2008; 26 Suppl 8; I46-48. [PubMed: 19388164].
  20. Prinz et al., 2003: Prinz DM, Smithson SL, Kieber-Emmons T, Westerink MA. Induction of a protective capsular polysaccharide antibody response to a multiepitope DNA vaccine encoding a peptide mimic of meningococcal serogroup C capsular polysaccharide. Immunology. 2003; 110(2); 242-249. [PubMed: 14511238].
  21. Saukkonen et al., 1989: Saukkonen K, Leinonen M, Abdillahi H, Poolman JT. Comparative evaluation of potential components for group B meningococcal vaccine by passive protection in the infant rat and in vitro bactericidal assay. Vaccine. 1989; 7(4); 325-328. [PubMed: 2510417].
  22. Stephens et al., 2007: Stephens DS, Greenwood B, Brandtzaeg P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet. 2007; 369(9580); 2196-2210. [PubMed: 17604802].
  23. Sun et al., 2005: Sun Y, Li Y, Exley RM, Winterbotham M, Ison C, Smith H, Tang CM. Identification of novel antigens that protect against systemic meningococcal infection. Vaccine. 2005; 23(32); 4136-4141. [PubMed: 15964482].
  24. Textbook of Bacteriology: Staphylococcus bacteriaPrint this Page Pathogenic Neisseriae: Gonorrhea, Neonatal Ophthalmia and Meningococcal Meningitis [http://textbookofbacteriology.net/neisseria]
  25. West et al., 2001: West D, Reddin K, Matheson M, Heath R, Funnell S, Hudson M, Robinson A, Gorringe A. Recombinant Neisseria meningitidis transferrin binding protein A protects against experimental meningococcal infection. Infection and immunity. 2001; 69(3); 1561-1567. [PubMed: 11179327].

Neospora caninum

  1. Alaeddine et al., 2005: Alaeddine F, Keller N, Leepin A, Hemphill A. Reduced infection and protection from clinical signs of cerebral neosporosis in C57BL/6 mice vaccinated with recombinant microneme antigen NcMIC1. The Journal of parasitology. 2005; 91(3); 657-665. [PubMed: 16108562].
  2. Buxton et al., 2002: Buxton D, McAllister MM, Dubey JP. The comparative pathogenesis of neosporosis. Trends in parasitology. 2002; 18(12); 546-552. [PubMed: 12482540].
  3. Cannas et al., 2003: Cannas A, Naguleswaran A, Müller N, Eperon S, Gottstein B, Hemphill A. Vaccination of mice against experimental Neospora caninum infection using NcSAG1- and NcSRS2-based recombinant antigens and DNA vaccines. Parasitology. 2003; 126(Pt 4); 303-312. [PubMed: 12741509].
  4. Cho et al., 2005: Cho JH, Chung WS, Song KJ, Na BK, Kang SW, Song CY, Kim TS. Protective efficacy of vaccination with Neospora caninum multiple recombinant antigens against experimental Neospora caninum infection. The Korean journal of parasitology. 2005; 43(1); 19-25. [PubMed: 15793355].
  5. Debache et al., 2010: Debache K, Guionaud C, Alaeddine F, Hemphill A. Intraperitoneal and intra-nasal vaccination of mice with three distinct recombinant Neospora caninum antigens results in differential effects with regard to protection against experimental challenge with Neospora caninum tachyzoites. Parasitology. 2010; 137(2); 229-240. [PubMed: 19835644].
  6. Dubey, 2003: Dubey JP. Review of Neospora caninum and neosporosis in animals. The Korean journal of parasitology. 2003; 41(1); 1-16. [PubMed: 12666725].
  7. Ellis et al., 2008: Ellis J, Miller C, Quinn H, Ryce C, Reichel MP. Evaluation of recombinant proteins of Neospora caninum as vaccine candidates (in a mouse model). Vaccine. 2008; 26(47); 5989-5996. [PubMed: 18789996].
  8. Jenkins et al., 2004: Jenkins MC, Tuo W, Dubey JP. Evaluation of vaccination with Neospora caninum protein for prevention of fetal loss associated with experimentally induced neosporosis in sheep. American journal of veterinary research. 2004; 65(10); 1404-1408. [PubMed: 15524328].
  9. Nishimura et al., 2013: Nishimura M, Kohara J, Kuroda Y, Hiasa J, Tanaka S, Muroi Y, Kojima N, Furuoka H, Nishikawa Y. Oligomannose-coated liposome-entrapped dense granule protein 7 induces protective immune response to Neospora caninum in cattle. Vaccine. 2013; 31(35); 3528-3535. [PubMed: 23742998].
  10. Ramamoorthy et al., 2007: Ramamoorthy S, Sanakkayala N, Vemulapalli R, Jain N, Lindsay DS, Schurig GS, Boyle SM, Sriranganathan N. Prevention of vertical transmission of Neospora caninum in C57BL/6 mice vaccinated with Brucella abortus strain RB51 expressing N. caninum protective antigens. International journal for parasitology. 2007; 37(13); 1531-1538. [PubMed: 17575983].
  11. Romero et al., 2004: Romero JJ, Pérez E, Frankena K. Effect of a killed whole Neospora caninum tachyzoite vaccine on the crude abortion rate of Costa Rican dairy cows under field conditions. Veterinary parasitology. 2004; 123(3-4); 149-159. [PubMed: 15325041].
  12. Vemulapalli et al., 2007: Vemulapalli R, Sanakkayala N, Gulani J, Schurig GG, Boyle SM, Lindsay DS, Sriranganathan N. Reduced cerebral infection of Neospora caninum in BALB/c mice vaccinated with recombinant Brucella abortus RB51 strains expressing N. caninum SRS2 and GRA7 proteins. Veterinary parasitology. 2007; 148(3-4); 219-230. [PubMed: 17651896].
  13. Wiki: Neospora caninum: Neospora caninum [http://en.wikipedia.org/wiki/Neospora_caninum]
  14. Yang et al., 2015: Yang D, Liu J, Hao P, Wang J, Lei T, Shan D, Liu Q. MIC3, a novel cross-protective antigen expressed in Toxoplasma gondii and Neospora caninum. Parasitology research. 2015; 114(10); 3791-3799. [PubMed: 26141436].

Newcastle disease virus

  1. Boursnell et al., 1990: Boursnell ME, Green PF, Samson AC, Campbell JI, Deuter A, Peters RW, Millar NS, Emmerson PT, Binns MM. A recombinant fowlpox virus expressing the hemagglutinin-neuraminidase gene of Newcastle disease virus (NDV) protects chickens against challenge by NDV. Virology. 1990; 178(1); 297-300. [PubMed: 2167557].
  2. Esaki et al., 2013: Esaki M, Godoy A, Rosenberger JK, Rosenberger SC, Gardin Y, Yasuda A, Dorsey KM. Protection and antibody response caused by turkey herpesvirus vector Newcastle disease vaccine. Avian diseases. 2013; 57(4); 750-755. [PubMed: 24597117].
  3. Kumar et al., 2011: Kumar S, Nayak B, Collins PL, Samal SK. Evaluation of the Newcastle disease virus F and HN proteins in protective immunity by using a recombinant avian paramyxovirus type 3 vector in chickens. Journal of virology. 2011; 85(13); 6521-6534. [PubMed: 21525340].
  4. Lee et al., 2008: Lee YJ, Sung HW, Choi JG, Lee EK, Yoon H, Kim JH, Song CS. Protection of chickens from Newcastle disease with a recombinant baculovirus subunit vaccine expressing the fusion and hemagglutininneuraminidase proteins. Journal of veterinary science. 2008; 9(3); 301-308. [PubMed: 18716451].
  5. Meeusen et al., 2007: Meeusen EN, Walker J, Peters A, Pastoret PP, Jungersen G. Current status of veterinary vaccines. Clinical microbiology reviews. 2007; 20(3); 489-510. [PubMed: 17630337].
  6. Sakaguchi et al., 1996: Sakaguchi M, Nakamura H, Sonoda K, Hamada F, Hirai K. Protection of chickens from Newcastle disease by vaccination with a linear plasmid DNA expressing the F protein of Newcastle disease virus. Vaccine. 1996; 14(8); 747-752. [PubMed: 8817820].
  7. Wiki: Newcastle disease: Newcastle disease [http://en.wikipedia.org/wiki/Newcastle_disease_virus]
  8. Wu et al., 2000: Wu YT, Peng DX, Liu XF, Liu WZ, Zhang RK. [A recombinant fowlpox virus expressing the fusion protein of Newcastle disease virus strain F48E8 and its protective efficacy]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology. 2000; 16(5); 591-594. [PubMed: 11191764].

Nipah virus

  1. Foster et al., 2022: Foster SL, Woolsey C, Borisevich V, Agans KN, Prasad AN, Deer DJ, Geisbert JB, Dobias NS, Fenton KA, Cross RW, Geisbert TW. A recombinant VSV-vectored vaccine rapidly protects nonhuman primates against lethal Nipah virus disease. Proceedings of the National Academy of Sciences of the United States of America. 2022; 119(12); e2200065119. [PubMed: 35286211].
  2. Freeman and Levenson, 1966: Freeman V, Levenson G. Salaries paid by public health nursing services--1966. Nursing outlook. 1966; 14(12); 60-63. [PubMed: 05178901].
  3. Geisbert et al., 2021: Geisbert TW, Bobb K, Borisevich V, Geisbert JB, Agans KN, Cross RW, Prasad AN, Fenton KA, Yu H, Fouts TR, Broder CC, Dimitrov AS. A single dose investigational subunit vaccine for human use against Nipah virus and Hendra virus. NPJ vaccines. 2021; 6(1); 23. [PubMed: 33558494].
  4. Guillaume et al., 2004: Guillaume V, Contamin H, Loth P, Georges-Courbot MC, Lefeuvre A, Marianneau P, Chua KB, Lam SK, Buckland R, Deubel V, Wild TF. Nipah virus: vaccination and passive protection studies in a hamster model. Journal of virology. 2004; 78(2); 834-840. [PubMed: 14694115].
  5. Guillaume et al., 2006: Guillaume V, Contamin H, Loth P, Grosjean I, Courbot MC, Deubel V, Buckland R, Wild TF. Antibody prophylaxis and therapy against Nipah virus infection in hamsters. Journal of virology. 2006; 80(4); 1972-1978. [PubMed: 16439553].
  6. Weingartl et al., 2006: Weingartl HM, Berhane Y, Caswell JL, Loosmore S, Audonnet JC, Roth JA, Czub M. Recombinant nipah virus vaccines protect pigs against challenge. Journal of virology. 2006; 80(16); 7929-7938. [PubMed: 16873250].
  7. Wiki: Nipah virus: Henipavirus [http://en.wikipedia.org/wiki/Henipavirus]
  8. Yoneda et al., 2013: Yoneda M, Georges-Courbot MC, Ikeda F, Ishii M, Nagata N, Jacquot F, Raoul H, Sato H, Kai C. Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge. PloS one. 2013; 8(3); e58414. [PubMed: 23516477].

Orf Virus

  1. Wassie et al., 2019: Wassie T, Fanmei Z, Jiang X, Liu G, Girmay S, Min Z, Chenhui L, Bo DD, Ahmed S. Recombinant B2L and Kisspeptin-54 DNA Vaccine Induces Immunity Against Orf Virus and Inhibits Spermatogenesis In Rats. Scientific reports. 2019; 9(1); 16262. [PubMed: 31700161].
  2. Wiki: Orf disease: Wiki: Orf Disease [http://en.wikipedia.org/wiki/Orf_disease]
  3. Zhao et al., 2011: Zhao K, He W, Gao W, Lu H, Han T, Li J, Zhang X, Zhang B, Wang G, Su G, Zhao Z, Song D, Gao F. Orf virus DNA vaccines expressing ORFV 011 and ORFV 059 chimeric protein enhances immunogenicity. Virology journal. 2011; 8; 562. [PubMed: 22204310].

Parainfluenza virus

  1. August et al., 2022: August A, Shaw CA, Lee H, Knightly C, Kalidindia S, Chu L, Essink BJ, Seger W, Zaks T, Smolenov I, Panther L. Safety and Immunogenicity of an mRNA-Based Human Metapneumovirus and Parainfluenza Virus Type 3 Combined Vaccine in Healthy Adults. Open forum infectious diseases. 2022; 9(7); ofac206. [PubMed: 35794943].
  2. CDC - Human Parainfluenza Viruses: Human Parainfluenza Viruses [http://www.cdc.gov/parainfluenza/about/overview.html]
  3. Englund et al., 2013: Englund JA, Karron RA, Cunningham CK, Larussa P, Melvin A, Yogev R, Handelsman E, Siberry GK, Thumar B, Schappell E, Bull CV, Chu HY, Schaap-Nutt A, Buchholz U, Collins PL, Schmidt AC. Safety and infectivity of two doses of live-attenuated recombinant cold-passaged human parainfluenza type 3 virus vaccine rHPIV3cp45 in HPIV3-seronegative young children. Vaccine. 2013; 31(48); 5706-5712. [PubMed: 24103895].
  4. Gomez et al., 2009: Gomez M, Mufson MA, Dubovsky F, Knightly C, Zeng W, Losonsky G. Phase-I study MEDI-534, of a live, attenuated intranasal vaccine against respiratory syncytial virus and parainfluenza-3 virus in seropositive children. The Pediatric infectious disease journal. 2009; 28(7); 655-658. [PubMed: 19483659].
  5. Kobayashi et al., 2013: Kobayashi H, Iwatsuki-Horimoto K, Kiso M, Uraki R, Ichiko Y, Takimoto T, Kawaoka Y. A replication-incompetent influenza virus bearing the HN glycoprotein of human parainfluenza virus as a bivalent vaccine. Vaccine. 2013; 31(52); 6239-6246. [PubMed: 24144478].
  6. Le et al., 2012: Le Bayon JC, Lina B, Rosa-Calatrava M, Boivin G. Recent developments with live-attenuated recombinant paramyxovirus vaccines. Reviews in medical virology. 2012; ; . [PubMed: 22570186].
  7. Makula et al., 1978: Makula RA, Torregrossa RE, Isle HB. Identification and synthesis of acyl-phosphatidylglycerol in Acinetobacter sp. HO1-N. Journal of bacteriology. 1978; 133(3); 1530-1532. [PubMed: 00641017].

Pasteurella multocida

  1. Dagleish et al., 2007: Dagleish MP, Hodgson JC, Ataei S, Finucane A, Finlayson J, Sales J, Parton R, Coote JG. Safety and protective efficacy of intramuscular vaccination with a live aroA derivative of Pasteurella multocida B:2 against experimental hemorrhagic septicemia in calves. Infection and immunity. 2007; 75(12); 5837-5844. [PubMed: 17875632].
  2. Gong et al., 2013: Gong Q, Qu N, Niu M, Qin C, Cheng M, Sun X, Zhang A. Immune responses and protective efficacy of a novel DNA vaccine encoding outer membrane protein of avian Pasteurella multocida. Veterinary immunology and immunopathology. 2013; 152(3-4); 317-324. [PubMed: 23340446].
  3. Harper et al., 2006: Harper M, Boyce JD, Adler B. Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS microbiology letters. 2006; 265(1); 1-10. [PubMed: 17107417].
  4. Muneer et al., 1994: Muneer R, Akhtar S, Afzal M. Evaluation of three oil-adjuvant vaccines against Pasteurella multocida in buffalo calves. Revue scientifique et technique (International Office of Epizootics). 1994; 13(3); 837-843. [PubMed: 7949356].
  5. Tan et al., 2010: Tan HY, Nagoor NH, Sekaran SD. Cloning, expression and protective capacity of 37 kDa outer membrane protein gene (ompH) of Pasteurella multocida serotype B:2. Tropical biomedicine. 2010; 27(3); 430-441. [PubMed: 21399583].
  6. Wiki: P. multocida: Wiki: Pasteurella multocida [http://en.wikipedia.org/wiki/Pasteurella_multocida]

Pigeonpox virus

  1. Merck Animal Health USA: PP-Vax(TM) [https://www.merck-animal-health-usa.com/species/poultry/products/pp-vac]
  2. Vriends et al., 2005: Matthew M Vriends; Tommy E Erskine; Diane Jacky; Michele Earle-Bridges. Pox and Pigeon-Related Viruses. 74-76. Pigeons. 2005. Barron's, Hauppauge, NY.

Piscirickettsia salmonis

  1. Fryer and Hedrick, 2003: Fryer JL, Hedrick RP. Piscirickettsia salmonis: a Gram-negative intracellular bacterial pathogen of fish. Journal of fish diseases. 2003; 26(5); 251-262. [PubMed: 12962234].

Plasmodium spp.

  1. Adams et al., 2002: Adams S, Brown H, Turner G. Breaking down the blood-brain barrier: signaling a path to cerebral malaria?. Trends in parasitology. 2002 Aug; 18(8); 360-6. [PubMed: 12377286].
  2. Aidoo et al., 2000: Aidoo M, Lalvani A, Gilbert SC, Hu JT, Daubersies P, Hurt N, Whittle HC, Druihle P, Hill AV. Cytotoxic T-lymphocyte epitopes for HLA-B53 and other HLA types in the malaria vaccine candidate liver-stage antigen 3. Infection and immunity. 2000 Jan; 68(1); 227-32. [PubMed: 10603392].
  3. Alonso et al., 2004: Alonso PL, Sacarlal J, Aponte JJ, Leach A, Macete E, Milman J, Mandomando I, Spiessens B, Guinovart C, Espasa M, Bassat Q, Aide P, Ofori-Anyinam O, Navia MM, Corachan S, Ceuppens M, Dubois MC, Demoitie MA, Dubovsky F, Menendez C, Tornieporth N, Ballou WR, Thompson R, Cohen J. Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. Lancet. 2004 Oct 16-22; 364(9443); 1411-20. [PubMed: 15488216].
  4. Alves et al., 2017: Alves E, Salman AM, Leoratti F, Lopez-Camacho C, Viveros-Sandoval ME, Lall A, El-Turabi A, Bachmann MF, Hill AV, Janse CJ, Khan SM, Reyes-Sandoval A. Evaluation of Plasmodium vivax Cell-Traversal Protein for Ookinetes and Sporozoites as a Preerythrocytic P. vivax Vaccine. Clinical and vaccine immunology : CVI. 2017; 24(4); . [PubMed: 28179403].
  5. Arévalo-Herrera et al., 2022: Arévalo-Herrera M, Gaitán X, Larmat-Delgado M, Caicedo MA, Herrera SM, Henao-Giraldo J, Castellanos A, Devaud JC, Pannatier A, Oñate J, Corradin G, Herrera S. Randomized clinical trial to assess the protective efficacy of a Plasmodium vivax CS synthetic vaccine. Nature communications. 2022; 13(1); 1603. [PubMed: 35338131].
  6. Arevalo-Herrera et al., 2005: Arevalo-Herrera M, Solarte Y, Yasnot MF, Castellanos A, Rincon A, Saul A, Mu J, Long C, Miller L, Herrera S. Induction of transmission-blocking immunity in Aotus monkeys by vaccination with a Plasmodium vivax clinical grade PVS25 recombinant protein. The American journal of tropical medicine and hygiene. 2005 Nov; 73(5 Suppl); 32-7. [PubMed: 16291764].
  7. Asante et al., 2011: Asante KP, Abdulla S, Agnandji S, Lyimo J, Vekemans J, Soulanoudjingar S, Owusu R, Shomari M, Leach A, Jongert E, Salim N, Fernandes JF, Dosoo D, Chikawe M, Issifou S, Osei-Kwakye K, Lievens M, Paricek M, Möller T, Apanga S, Mwangoka G, Dubois MC, Madi T, Kwara E, Minja R, Hounkpatin AB, Boahen O, Kayan K, Adjei G, Chandramohan D, Carter T, Vansadia P, Sillman M, Savarese B, Loucq C, Lapierre D, Greenwood B, Cohen J, Kremsner P, Owusu-Agyei S, Tanner M, Lell B. Safety and efficacy of the RTS,S/AS01E candidate malaria vaccine given with expanded-programme-on-immunisation vaccines: 19 month follow-up of a randomised, open-label, phase 2 trial. The Lancet. Infectious diseases. 2011; 11(10); 741-749. [PubMed: 21782519].
  8. Aucouturier et al., 2002: Aucouturier J, Dupuis L, Deville S, Ascarateil S, Ganne V. Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert review of vaccines. 2002; 1(1); 111-118. [PubMed: 12908518].
  9. Audran et al., 2005: Audran R, Cachat M, Lurati F, Soe S, Leroy O, Corradin G, Druilhe P, Spertini F. Phase I malaria vaccine trial with a long synthetic peptide derived from the merozoite surface protein 3 antigen. Infection and immunity. 2005 Dec; 73(12); 8017-26. [PubMed: 16299295].
  10. Aw et al., 2021: Aw R, Ashik MR, Islam AAZM, Khan I, Mainuddin M, Islam MA, Ahasan MM, Polizzi KM. Production and purification of an active CRM197 in Pichia pastoris and its immunological characterization using a Vi-typhoid antigen vaccine. Vaccine. 2021; 39(51); 7379-7386. [PubMed: 34774362].
  11. Bauza et al., 2014: Bauza K, Malinauskas T, Pfander C, Anar B, Jones EY, Billker O, Hill AV, Reyes-Sandoval A. Efficacy of a Plasmodium vivax malaria vaccine using ChAd63 and modified vaccinia Ankara expressing thrombospondin-related anonymous protein as assessed with transgenic Plasmodium berghei parasites. Infection and immunity. 2014; 82(3); 1277-1286. [PubMed: 24379295].
  12. BenMohamed et al., 2004: BenMohamed L, Thomas A, Druilhe P. Long-term multiepitopic cytotoxic-T-lymphocyte responses induced in chimpanzees by combinations of Plasmodium falciparum liver-stage peptides and lipopeptides. Infection and immunity. 2004 Aug; 72(8); 4376-84. [PubMed: 15271893].
  13. Bennett et al., 2014: Phase 1 Clinical Trial With Controlled Human Malaria Infection (CHMI) to Evaluate the Safety and Efficacy of the Plasmodium Falciparum Vaccine Candidate FMP012 Administered Intramuscularly With AS01B Adjuvant System in Healthy Malaria-Naïve Adults [https://clinicaltrials.gov/ct2/show/NCT02174978?term=vaccine&cond=malaria&draw=2&rank=32]
  14. Bergmann-Leitner et al., 2007: Bergmann-Leitner ES, Duncan EH, Leitner WW, Neutzner A, Savranskaya T, Angov E, Tsokos GC. C3d-defined complement receptor-binding peptide p28 conjugated to circumsporozoite protein provides protection against Plasmodium berghei. Vaccine. 2007; 25(45); 7732-7736. [PubMed: 17931754].
  15. Bergmann-Leitner et al., 2010: Bergmann-Leitner ES, Mease RM, De La Vega P, Savranskaya T, Polhemus M, Ockenhouse C, Angov E. Immunization with pre-erythrocytic antigen CelTOS from Plasmodium falciparum elicits cross-species protection against heterologous challenge with Plasmodium berghei. PloS one. 2010; 5(8); e12294. [PubMed: 20808868].
  16. Bjerkan et al., 2021: Bjerkan L, Visweswaran GRR, Gudjonsson A, Labbé GM, Quinkert D, Pattinson DJ, Spång HCL, Draper SJ, Bogen B, Braathen R. APC-Targeted DNA Vaccination Against Reticulocyte-Binding Protein Homolog 5 Induces Plasmodium falciparum-Specific Neutralizing Antibodies and T Cell Responses. Frontiers in immunology. 2021; 12; 720550. [PubMed: 34733274].
  17. Bledsoe, 2005: Bledsoe GH. Malaria primer for clinicians in the United States. Southern medical journal. 2005 Dec; 98(12); 1197-204; quiz 1205, 1230. [PubMed: 16440920].
  18. Bojang et al., 2001: Bojang KA, Milligan PJ, Pinder M, Vigneron L, Alloueche A, Kester KE, Ballou WR, Conway DJ, Reece WH, Gothard P, Yamuah L, Delchambre M, Voss G, Greenwood BM, Hill A, McAdam KP, Tornieporth N, Cohen JD, Doherty T. Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. Lancet. 2001 Dec 8; 358(9297); 1927-34. [PubMed: 11747915].
  19. Bonnefoy et al., 1994: Bonnefoy S, Gysin J, Blisnick T, Guillotte M, Carcy B, Pereira da Silva L, Mercereau-Puijalon O. Immunogenicity and antigenicity of a Plasmodium falciparum protein fraction (90-110 kDa) able to protect squirrel monkeys against asexual blood stages. Vaccine. 1994; 12(1); 32-40. [PubMed: 8303938].
  20. Bracho et al., 2009: Bracho G, Zayas C, Wang L, Coppel R, Pérez O, Petrovsky N. AFCo1, a meningococcal B-derived cochleate adjuvant, strongly enhances antibody and T-cell immunity against Plasmodium falciparum merozoite surface protein 4 and 5. Malaria journal. 2009; 8; 35. [PubMed: 19250541].
  21. Breman, 2001: Breman JG. The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. The American journal of tropical medicine and hygiene. 2001 Jan-Feb; 64(1-2 Suppl); 1-11. [PubMed: 11425172].
  22. Bruna-Romero et al., 2004: Bruna-Romero O, Rocha CD, Tsuji M, Gazzinelli RT. Enhanced protective immunity against malaria by vaccination with a recombinant adenovirus encoding the circumsporozoite protein of Plasmodium lacking the GPI-anchoring motif. Vaccine. 2004 Sep 9; 22(27-28); 3575-84. [PubMed: 15315836].
  23. Burgess et al., 2005: Burgess BR, Schuck P, Garboczi DN. Dissection of merozoite surface protein 3, a representative of a family of Plasmodium falciparum surface proteins, reveals an oligomeric and highly elongated molecule. The Journal of biological chemistry. 2005 Nov 4; 280(44); 37236-45. [PubMed: 16135515].
  24. Butler et al., 2011: Butler NS, Schmidt NW, Vaughan AM, Aly AS, Kappe SH, Harty JT. Superior antimalarial immunity after vaccination with late liver stage-arresting genetically attenuated parasites. Cell host & microbe. 2011; 9(6); 451-462. [PubMed: 21669394].
  25. Cao et al., 2022: Cao Y, Hayashi CTH, Zavala F, Tripathi AK, Simonyan H, Young CN, Clark LC, Usuda Y, Van Parys JM, Kumar N. Effective Functional Immunogenicity of a DNA Vaccine Combination Delivered via In Vivo Electroporation Targeting Malaria Infection and Transmission. Vaccines. 2022; 10(7); . [PubMed: 35891298].
  26. Carter et al., 1995: Carter R, Coulson A, Bhatti S, Taylor BJ, Elliott JF. Predicted disulfide-bonded structures for three uniquely related proteins of Plasmodium falciparum, Pfs230, Pfs48/45 and Pf12. Molecular and biochemical parasitology. 1995 May; 71(2); 203-10. [PubMed: 7477102].
  27. Carvalho et al., 2004: Carvalho LJ, Oliveira SG, Theisen M, Alves FA, Andrade MC, Zanini GM, Brígido MC, Oeuvray C, Póvoa MM, Muniz JA, Druilhe P, Daniel-Ribeiro CT. Immunization of Saimiri sciureus monkeys with Plasmodium falciparum merozoite surface protein-3 and glutamate-rich protein suggests that protection is related to antibody levels. Scandinavian journal of immunology. 2004; 59(4); 363-372. [PubMed: 15049780].
  28. Castellanos et al., 2007: Castellanos A, Arevalo-Herrera M, Restrepo N, Gulloso L, Corradin G, Herrera S. Plasmodium vivax thrombospondin related adhesion protein: immunogenicity and protective efficacy in rodents and Aotus monkeys. Memorias do Instituto Oswaldo Cruz. 2007 Jun; 102(3); 411-6. [PubMed: 17568948].
  29. Chen et al., 2000: Chen Q, Schlichtherle M, Wahlgren M. Molecular aspects of severe malaria. Clinical microbiology reviews. 2000 Jul; 13(3); 439-50. [PubMed: 10885986].
  30. Chichester et al., 2018: Chichester JA, Green BJ, Jones RM, Shoji Y, Miura K, Long CA, Lee CK, Ockenhouse CF, Morin MJ, Streatfield SJ, Yusibov V. Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: A Phase 1 dose-escalation study in healthy adults. Vaccine. 2018; 36(39); 5865-5871. [PubMed: 30126674].
  31. Coelho et al., 2019: Coelho CH, Gazzinelli-Guimaraes PH, Howard J, Barnafo E, Alani NAH, Muratova O, McCormack A, Kelnhofer E, Urban JF Jr, Narum DL, Anderson C, Langhorne J, Nutman TB, Duffy PE. Chronic helminth infection does not impair immune response to malaria transmission blocking vaccine Pfs230D1-EPA/Alhydrogel® in mice. Vaccine. 2019; 37(8); 1038-1045. [PubMed: 30685251].
  32. Coelho et al., 2021: Coelho CH, Tang WK, Burkhardt M, Galson JD, Muratova O, Salinas ND, Alves E Silva TL, Reiter K, MacDonald NJ, Nguyen V, Herrera R, Shimp R, Narum DL, Byrne-Steele M, Pan W, Hou X, Brown B, Eisenhower M, Han J, Jenkins BJ, Doritchamou JYA, Smelkinson MG, Vega-Rodríguez J, Trück J, Taylor JJ, Sagara I, Healy SA, Renn JP, Tolia NH, Duffy PE. A human monoclonal antibody blocks malaria transmission and defines a highly conserved neutralizing epitope on gametes. Nature communications. 2021; 12(1); 1750. [PubMed: 33741942].
  33. Cooper et al., 2004: Cooper CL, Davis HL, Morris ML, Efler SM, Adhami MA, Krieg AM, Cameron DW, Heathcote J. CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind phase I/II study. Journal of clinical immunology. 2004; 24(6); 693-701. [PubMed: 15622454].
  34. Coutant et al., 2012: Coutant F, Sanchez David RY, Félix T, Boulay A, Caleechurn L, Souque P, Thouvenot C, Bourgouin C, Beignon AS, Charneau P. A nonintegrative lentiviral vector-based vaccine provides long-term sterile protection against malaria. PloS one. 2012; 7(11); e48644. [PubMed: 23133649].
  35. Daly and Long, 1993: Daly TM, Long CA. A recombinant 15-kilodalton carboxyl-terminal fragment of Plasmodium yoelii yoelii 17XL merozoite surface protein 1 induces a protective immune response in mice. Infection and immunity. 1993; 61(6); 2462-2467. [PubMed: 8363656].
  36. Daubersies et al., 2000: Daubersies P, Thomas AW, Millet P, Brahimi K, Langermans JA, Ollomo B, BenMohamed L, Slierendregt B, Eling W, Van Belkum A, Dubreuil G, Meis JF, Guérin-Marchand C, Cayphas S, Cohen J, Gras-Masse H, Druilhe P. Protection against Plasmodium falciparum malaria in chimpanzees by immunization with the conserved pre-erythrocytic liver-stage antigen 3. Nature medicine. 2000; 6(11); 1258-1263. [PubMed: 11062538].
  37. Day et al., 2024: A Safety, Immunogenicity and Efficacy Study of PvRII/​Matrix-M in Healthy Thai Adults Living in Thailand [https://clinicaltrials.gov/study/NCT05380388]
  38. de Graaf et al., 2021: de Graaf H, Payne RO, Taylor I, Miura K, Long CA, Elias SC, Zaric M, Minassian AM, Silk SE, Li L, Poulton ID, Baker M, Draper SJ, Gbesemete D, Brendish NJ, Martins F, Marini A, Mekhaiel D, Edwards NJ, Roberts R, Vekemans J, Moyle S, Faust SN, Berrie E, Lawrie AM, Hill F, Hill AVS, Biswas S. Safety and Immunogenicity of ChAd63/MVA Pfs25-IMX313 in a Phase I First-in-Human Trial. Frontiers in immunology. 2021; 12; 694759. [PubMed: 34335606].
  39. Dobaño and Doolan, 2007: Dobaño C, Doolan DL. Identification of minimal CD8+ and CD4+ T cell epitopes in the Plasmodium yoelii hepatocyte erythrocyte protein 17kDa. Molecular immunology. 2007; 44(11); 3037-3048. [PubMed: 17303242].
  40. Doolan et al., 1996: Doolan DL, Sedegah M, Hedstrom RC, Hobart P, Charoenvit Y, Hoffman SL. Circumventing genetic restriction of protection against malaria with multigene DNA immunization: CD8+ cell-, interferon gamma-, and nitric oxide-dependent immunity. The Journal of experimental medicine. 1996; 183(4); 1739-1746. [PubMed: 8666931].
  41. Douradinha et al., 2007: Douradinha B, van Dijk MR, Ataide R, van Gemert GJ, Thompson J, Franetich JF, Mazier D, Luty AJ, Sauerwein R, Janse CJ, Waters AP, Mota MM. Genetically attenuated P36p-deficient Plasmodium berghei sporozoites confer long-lasting and partial cross-species protection. International journal for parasitology. 2007; 37(13); 1511-1519. [PubMed: 17604034].
  42. Dubé et al., 2020: Dubé JY, McIntosh F, Zarruk JG, David S, Nigou J, Behr MA. Synthetic mycobacterial molecular patterns partially complete Freund's adjuvant. Scientific reports. 2020; 10(1); 5874. [PubMed: 32246076].
  43. Duffy et al. 2021: Study of the Transmission-Blocking Vaccine Pfs230D1-EPA/Matrix-M Against Malaria in Adults in Mali [https://clinicaltrials.gov/ct2/show/NCT05135273?term=vaccine&cond=Malaria%2CFalciparum&draw=2&rank=2]
  44. Dunachie et al., 2006: Dunachie SJ, Walther M, Epstein JE, Keating S, Berthoud T, Andrews L, Andersen RF, Bejon P, Goonetilleke N, Poulton I, Webster DP, Butcher G, Watkins K, Sinden RE, Levine GL, Richie TL, Schneider J, Kaslow D, Gilbert SC, Carucci DJ, Hill AV. A DNA prime-modified vaccinia virus ankara boost vaccine encoding thrombospondin-related adhesion protein but not circumsporozoite protein partially protects healthy malaria-naive adults against Plasmodium falciparum sporozoite challenge. Infection and immunity. 2006; 74(10); 5933-5942. [PubMed: 16988273].
  45. Eksi et al., 2006: Eksi S, Czesny B, van Gemert GJ, Sauerwein RW, Eling W, Williamson KC. Malaria transmission-blocking antigen, Pfs230, mediates human red blood cell binding to exflagellating male parasites and oocyst production. Molecular microbiology. 2006 Aug; 61(4); 991-8. [PubMed: 16879650].
  46. El et al., 2010: El Sahly HM, Patel SM, Atmar RL, Lanford TA, Dube T, Thompson D, Lee Sim BK, Long C, Keitel WA. The Safety and Immunogenicity of Recombinant EBA 175-RII NG Malaria Vaccine in Healthy Adults Living in a Non-Endemic Area. Clinical and vaccine immunology : CVI. 2010; ; . [PubMed: 20702657].
  47. Escalante et al., 1998: Escalante AA, Freeland DE, Collins WE, Lal AA. The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proceedings of the National Academy of Sciences of the United States of America. 1998 Jul 7; 95(14); 8124-9. [PubMed: 9653151].
  48. Eslava et al., 2010: Eslava I, Payares G, Pernia BM, Holder AA, Spencer LM. Suppressive and additive effects in protection mediated by combinations of monoclonal antibodies specific for merozoite surface protein 1 of Plasmodium yoelii. Malaria journal. 2010; 9; 46. [PubMed: 20146804].
  49. Etlinger et al., 1991: Etlinger HM, Caspers P, Matile H, Schoenfeld HJ, Stueber D, Takacs B. Ability of recombinant or native proteins to protect monkeys against heterologous challenge with Plasmodium falciparum. Infection and immunity. 1991; 59(10); 3498-3503. [PubMed: 1894356].
  50. Fanning et al., 2003: Fanning SL, Czesny B, Sedegah M, Carucci DJ, van Gemert GJ, Eling W, Williamson KC. A glycosylphosphatidylinositol anchor signal sequence enhances the immunogenicity of a DNA vaccine encoding Plasmodium falciparum sexual-stage antigen, Pfs230. Vaccine. 2003 Jul 4; 21(23); 3228-35. [PubMed: 12804852].
  51. Fantin et al., 2021: Fantin RF, Fraga VG, Lopes CA, de Azevedo IC, Reis-Cunha JL, Pereira DB, Lobo FP, de Oliveira MM, Dos Santos AC, Bartholomeu DC, Fujiwara RT, Bueno LL. New highly antigenic linear B cell epitope peptides from PvAMA-1 as potential vaccine candidates. PloS one. 2021; 16(11); e0258637. [PubMed: 34727117].
  52. Flanagan et al., 2003: Flanagan KL, Mwangi T, Plebanski M, Odhiambo K, Ross A, Sheu E, Kortok M, Lowe B, Marsh K, Hill AV. Ex vivo interferon-gamma immune response to thrombospondin-related adhesive protein in coastal Kenyans: longevity and risk of Plasmodium falciparum infection. The American journal of tropical medicine and hygiene. 2003 Apr; 68(4); 421-30. [PubMed: 12875291].
  53. Flanagan et al., 2006: Flanagan KL, Plebanski M, Odhiambo K, Sheu E, Mwangi T, Gelder C, Hart K, Kortok M, Lowe B, Robson KJ, Marsh K, Hill AV. Cellular reactivity to the p. Falciparum protein trap in adult kenyans: novel epitopes, complex cytokine patterns, and the impact of natural antigenic variation. The American journal of tropical medicine and hygiene. 2006 Mar; 74(3); 367-75. [PubMed: 16525093].
  54. Gantt et al., 2000: Gantt S, Persson C, Rose K, Birkett AJ, Abagyan R, Nussenzweig V. Antibodies against thrombospondin-related anonymous protein do not inhibit Plasmodium sporozoite infectivity in vivo. Infection and immunity. 2000 Jun; 68(6); 3667-73. [PubMed: 10816526].
  55. Garcia et al., 2006: Garcia JE, Puentes A, Patarroyo ME. Developmental biology of sporozoite-host interactions in Plasmodium falciparum malaria: implications for vaccine design. Clinical microbiology reviews. 2006 Oct; 19(4); 686-707. [PubMed: 17041140].
  56. Genton et al., 2003: Genton B, Al-Yaman F, Betuela I, Anders RF, Saul A, Baea K, Mellombo M, Taraika J, Brown GV, Pye D, Irving DO, Felger I, Beck HP, Smith TA, Alpers MP. Safety and immunogenicity of a three-component blood-stage malaria vaccine (MSP1, MSP2, RESA) against Plasmodium falciparum in Papua New Guinean children. Vaccine. 2003 Dec 8; 22(1); 30-41. [PubMed: 14604568].
  57. Genton et al., 2003a: Genton B, Anders RF, Alpers MP, Reeder JC. The malaria vaccine development program in Papua New Guinea. Trends in parasitology. 2003 Jun; 19(6); 264-70. [PubMed: 12798084].
  58. Genton et al., 2007: Genton B, Pluschke G, Degen L, Kammer AR, Westerfeld N, Okitsu SL, Schroller S, Vounatsou P, Mueller MM, Tanner M, Zurbriggen R. A randomized placebo-controlled phase Ia malaria vaccine trial of two virosome-formulated synthetic peptides in healthy adult volunteers. PloS one. 2007; 2(10); e1018. [PubMed: 17925866].
  59. Gilbert et al., 2006: Gilbert SC, Moorthy VS, Andrews L, Pathan AA, McConkey SJ, Vuola JM, Keating SM, Berthoud T, Webster D, McShane H, Hill AV. Synergistic DNA-MVA prime-boost vaccination regimes for malaria and tuberculosis. Vaccine. 2006 May 22; 24(21); 4554-61. [PubMed: 16150517].
  60. Girard et al., 2007: Girard MP, Reed ZH, Friede M, Kieny MP. A review of human vaccine research and development: malaria. Vaccine. 2007 Feb 19; 25(9); 1567-80. [PubMed: 17045367].
  61. Grüner et al., 2007: Grüner AC, Mauduit M, Tewari R, Romero JF, Depinay N, Kayibanda M, Lallemand E, Chavatte JM, Crisanti A, Sinnis P, Mazier D, Corradin G, Snounou G, Rénia L. Sterile protection against malaria is independent of immune responses to the circumsporozoite protein. PloS one. 2007; 2(12); e1371. [PubMed: 18159254].
  62. Greenwood et al., 2005: Greenwood BM, Bojang K, Whitty CJ, Targett GA. Malaria. Lancet. 2005 Apr 23-29; 365(9469); 1487-98. [PubMed: 15850634].
  63. Hay et al., 2004: Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW. The global distribution and population at risk of malaria: past, present, and future. The Lancet infectious diseases. 2004 Jun; 4(6); 327-36. [PubMed: 15172341].
  64. He et al., 2015: He P, Zou Y, Hu Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Human vaccines & immunotherapeutics. 2015; 11(2); 477-488. [PubMed: 25692535].
  65. Heal et al., 1999: Heal KG, Hill HR, Stockley PG, Hollingdale MR, Taylor-Robinson AW. Expression and immunogenicity of a liver stage malaria epitope presented as a foreign peptide on the surface of RNA-free MS2 bacteriophage capsids. Vaccine. 1999 Sep; 18(3-4); 251-8. [PubMed: 10506649].
  66. Healer et al., 1997: Healer J, McGuinness D, Hopcroft P, Haley S, Carter R, Riley E. Complement-mediated lysis of Plasmodium falciparum gametes by malaria-immune human sera is associated with antibodies to the gamete surface antigen Pfs230. Infection and immunity. 1997 Aug; 65(8); 3017-23. [PubMed: 9234748].
  67. Heppner et al., 2005: Heppner DG Jr, Kester KE, Ockenhouse CF, Tornieporth N, Ofori O, Lyon JA, Stewart VA, Dubois P, Lanar DE, Krzych U, Moris P, Angov E, Cummings JF, Leach A, Hall BT, Dutta S, Schwenk R, Hillier C, Barbosa A, Ware LA, Nair L, Darko CA, Withers MR, Ogutu B, Polhemus ME, Fukuda M, Pichyangkul S, Gettyacamin M, Diggs C, Soisson L, Milman J, Dubois MC, Garcon N, Tucker K, Wittes J, Plowe CV, Thera MA, Duombo OK, Pau MG, Goudsmit J, Ballou WR, Cohen J. Towards an RTS,S-based, multi-stage, multi-antigen vaccine against falciparum malaria: progress at the Walter Reed Army Institute of Research. Vaccine. 2005 Mar 18; 23(17-18); 2243-50. [PubMed: 15755604].
  68. Hill et al., 2009: A Study of the Safety and Effectiveness of Two New Malaria Vaccines [https://clinicaltrials.gov/ct2/show/NCT01003314?term=NCT01003314&draw=2&rank=1]
  69. Hillier et al., 2005: Hillier CJ, Ware LA, Barbosa A, Angov E, Lyon JA, Heppner DG, Lanar DE. Process development and analysis of liver-stage antigen 1, a preerythrocyte-stage protein-based vaccine for Plasmodium falciparum. Infection and immunity. 2005 Apr; 73(4); 2109-15. [PubMed: 15784552].
  70. Hodder et al., 2001: Hodder AN, Crewther PE, Anders RF. Specificity of the protective antibody response to apical membrane antigen 1. Infection and immunity. 2001; 69(5); 3286-3294. [PubMed: 11292751].
  71. Hoffman et al., 1994: Hoffman SL, Sedegah M, Hedstrom RC. Protection against malaria by immunization with a Plasmodium yoelii circumsporozoite protein nucleic acid vaccine. Vaccine. 1994; 12(16); 1529-1533. [PubMed: 7879419].
  72. Hoffman et al., 1997: Hoffman SL, Doolan DL, Sedegah M, Aguiar JC, Wang R, Malik A, Gramzinski RA, Weiss WR, Hobart P, Norman JA, Margalith M, Hedstrom RC. Strategy for development of a pre-erythrocytic Plasmodium falciparum DNA vaccine for human use. Vaccine. 1997; 15(8); 842-845. [PubMed: 9234529].
  73. Horii et al., 2010: Horii T, Shirai H, Jie L, Ishii KJ, Palacpac NQ, Tougan T, Hato M, Ohta N, Bobogare A, Arakaki N, Matsumoto Y, Namazue J, Ishikawa T, Ueda S, Takahashi M. Evidences of Protection Against Blood-stage Infection of Plasmodium falciparum by the Novel Protein Vaccine SE36. Parasitology international. 2010; ; . [PubMed: 20493274].
  74. Hou et al., 2022: Hou MM, Barrett JR, Themistocleous Y, Rawlinson TA, Diouf A, Martinez FJ, Nielsen CM, Lias AM, King LDW, Edwards NJ, Greenwood NM, Kingham L, Poulton ID, Khozoee B, Goh C, Mac Lochlainn DJ, Salkeld J, Guilotte-Blisnick M, Huon C, Mohring F, Reimer JM, Chauhan VS, Mukherjee P, Biswas S, Taylor IJ, Lawrie AM, Cho JS, Nugent FL, Long CA, Moon RW, Miura K, Silk SE, Chitnis CE, Minassian AM, Draper SJ. Impact of a blood-stage vaccine on Plasmodium vivax malaria. medRxiv : the preprint server for health sciences. 2022; ; . [PubMed: 35664997].
  75. Howard et al., 2021: Howard GP, Bender NG, Khare P, López-Gutiérrez B, Nyasembe V, Weiss WJ, Simecka JW, Hamerly T, Mao HQ, Dinglasan RR. Immunopotentiation by Lymph-Node Targeting of a Malaria Transmission-Blocking Nanovaccine. Frontiers in immunology. 2021; 12; 729086. [PubMed: 34512663].
  76. Iyori et al., 2013: Iyori M, Nakaya H, Inagaki K, Pichyangkul S, Yamamoto DS, Kawasaki M, Kwak K, Mizukoshi M, Goto Y, Matsuoka H, Matsumoto M, Yoshida S. Protective efficacy of baculovirus dual expression system vaccine expressing Plasmodium falciparum circumsporozoite protein. PloS one. 2013; 8(8); e70819. [PubMed: 23951015].
  77. Joy et al., 2003: Joy DA, Feng X, Mu J, Furuya T, Chotivanich K, Krettli AU, Ho M, Wang A, White NJ, Suh E, Beerli P, Su XZ. Early origin and recent expansion of Plasmodium falciparum. Science (New York, N.Y.). 2003 Apr 11; 300(5617); 318-21. [PubMed: 12690197].
  78. Kaba et al., 2009: Kaba SA, Brando C, Guo Q, Mittelholzer C, Raman S, Tropel D, Aebi U, Burkhard P, Lanar DE. A nonadjuvanted polypeptide nanoparticle vaccine confers long-lasting protection against rodent malaria. Journal of immunology (Baltimore, Md. : 1950). 2009; 183(11); 7268-7277. [PubMed: 19915055].
  79. Kaufman et al., 2005: Kaufman TS, Ruveda EA. The quest for quinine: those who won the battles and those who won the war. Angewandte Chemie (International ed. in English). 2005 Jan 28; 44(6); 854-85. [PubMed: 15669029].
  80. Kester et al., 2007: Kester KE, McKinney DA, Tornieporth N, Ockenhouse CF, Heppner DG Jr, Hall T, Wellde BT, White K, Sun P, Schwenk R, Krzych U, Delchambre M, Voss G, Dubois MC, Gasser RA Jr, Dowler MG, O'Brien M, Wittes J, Wirtz R, Cohen J, Ballou WR. A phase I/IIa safety, immunogenicity, and efficacy bridging randomized study of a two-dose regimen of liquid and lyophilized formulations of the candidate malaria vaccine RTS,S/AS02A in malaria-naive adults. Vaccine. 2007 Jul 20; 25(29); 5359-66. [PubMed: 17574311].
  81. Kocken et al., 2002: Kocken CH, Withers-Martinez C, Dubbeld MA, van der Wel A, Hackett F, Valderrama A, Blackman MJ, Thomas AW. High-level expression of the malaria blood-stage vaccine candidate Plasmodium falciparum apical membrane antigen 1 and induction of antibodies that inhibit erythrocyte invasion. Infection and immunity. 2002 Aug; 70(8); 4471-6. [PubMed: 12117958].
  82. Komisar, 2007: Komisar JL. Malaria vaccines. Frontiers in bioscience : a journal and virtual library. 2007 May 1; 12; 3928-55. [PubMed: 17485348].
  83. Kristoff, 2007: Kristoff J. Malaria stage-specific vaccine candidates. Current pharmaceutical design. 2007; 13(19); 1989-99. [PubMed: 17627532].
  84. Kumar et al., 1995: Kumar S, Yadava A, Keister DB, Tian JH, Ohl M, Perdue-Greenfield KA, Miller LH, Kaslow DC. Immunogenicity and in vivo efficacy of recombinant Plasmodium falciparum merozoite surface protein-1 in Aotus monkeys. Molecular medicine (Cambridge, Mass.). 1995; 1(3); 325-332. [PubMed: 8529111].
  85. Kunkeaw et al., 2023: Kunkeaw N, Nguitragool W, Takashima E, Kangwanrangsan N, Muramatsu H, Tachibana M, Ishino T, Lin PJC, Tam YK, Pichyangkul S, Tsuboi T, Pardi N, Sattabongkot J. A Pvs25 mRNA vaccine induces complete and durable transmission-blocking immunity to Plasmodium vivax. NPJ vaccines. 2023; 8(1); 187. [PubMed: 38092803].
  86. Kushwaha et al., 2001: Kushwaha A, Rao PP, Suresh RP, Chauhan VS. Immunogenicity of recombinant fragments of Plasmodium falciparum acidic basic repeat antigen produced in Escherichia coli. Parasite immunology. 2001 Aug; 23(8); 435-44. [PubMed: 11489167].
  87. Kwiatkowski et al., 1997: Kwiatkowski D, Marsh K. Development of a malaria vaccine. Lancet. 1997 Dec 6; 350(9092); 1696-701. [PubMed: 9400530].
  88. Kwon et al., 2005: Kwon YU, Soucy RL, Snyder DA, Seeberger PH. Assembly of a series of malarial glycosylphosphatidylinositol anchor oligosaccharides. Chemistry (Weinheim an der Bergstrasse, Germany). 2005 Apr 8; 11(8); 2493-504. [PubMed: 15729674].
  89. Labaied et al., 2007: Labaied M, Harupa A, Dumpit RF, Coppens I, Mikolajczak SA, Kappe SH. Plasmodium yoelii sporozoites with simultaneous deletion of P52 and P36 are completely attenuated and confer sterile immunity against infection. Infection and immunity. 2007; 75(8); 3758-3768. [PubMed: 17517871].
  90. Lal et al., 1996: Lal AA, Hughes MA, Oliveira DA, Nelson C, Bloland PB, Oloo AJ, Hawley WE, Hightower AW, Nahlen BL, Udhayakumar V. Identification of T-cell determinants in natural immune responses to the Plasmodium falciparum apical membrane antigen (AMA-1) in an adult population exposed to malaria. Infection and immunity. 1996 Mar; 64(3); 1054-9. [PubMed: 8641760].
  91. Lanar et al., 1996: Lanar DE, Tine JA, de Taisne C, Seguin MC, Cox WI, Winslow JP, Ware LA, Kauffman EB, Gordon D, Ballou WR, Paoletti E, Sadoff JC. Attenuated vaccinia virus-circumsporozoite protein recombinants confer protection against rodent malaria. Infection and immunity. 1996; 64(5); 1666-1671. [PubMed: 8613376].
  92. Langermans et al., 2006: Langermans JA, Hensmann M, van Gijlswiik M, Zhang D, Pan W, Giersing BK, Locke E, Dubovsk F, Wittes J, Thomas AW. Preclinical evaluation of a chimeric malaria vaccine candidate in Montanide ISA 720: immunogenicity and safety in rhesus macaques. Human vaccines. 2006 Sep-Oct; 2(5); 222-6. [PubMed: 17035731].
  93. Laurens, 2020: Laurens MB. RTS,S/AS01 vaccine (Mosquirixâ„¢): an overview. Human vaccines & immunotherapeutics. 2020; 16(3); 480-489. [PubMed: 31545128].
  94. Le et al., 2000: Le TP, Coonan KM, Hedstrom RC, Charoenvit Y, Sedegah M, Epstein JE, Kumar S, Wang R, Doolan DL, Maguire JD, Parker SE, Hobart P, Norman J, Hoffman SL. Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine. 2000; 18(18); 1893-1901. [PubMed: 10699338].
  95. Lefebvre et al., 2021: Lefebvre MN, Drewry LL, Pewe LL, Hancox LS, Reyes-Sandoval A, Harty JT. Cutting Edge: Subunit Booster Vaccination Confers Sterilizing Immunity against Liver-Stage Malaria in Mice Initially Primed with a Weight-Normalized Dose of Radiation-Attenuated Sporozoites. Journal of immunology (Baltimore, Md. : 1950). 2021; 207(11); 2631-2635. [PubMed: 34716185].
  96. Li et al., 2007: Li SL, Zhang DM, Cao Y, Pan WQ. [Expression and immunogenicity evaluation of ectodomain and subdomains of Plasmodium berghei apical membrane antigen 1]. Zhongguo ji sheng chong xue yu ji sheng chong bing za zhi = Chinese journal of parasitology & parasitic diseases. 2007; 25(1); 1-5. [PubMed: 17639690].
  97. Loughney et al., 2014: Loughney JW, Lancaster C, Ha S, Rustandi RR. Residual bovine serum albumin (BSA) quantitation in vaccines using automated Capillary Western technology. Analytical biochemistry. 2014; 461; 49-56. [PubMed: 24841366].
  98. Malkin et al., 2005: Malkin EM, Diemert DJ, McArthur JH, Perreault JR, Miles AP, Giersing BK, Mullen GE, Orcutt A, Muratova O, Awkal M, Zhou H, Wang J, Stowers A, Long CA, Mahanty S, Miller LH, Saul A, Durbin AP. Phase 1 clinical trial of apical membrane antigen 1: an asexual blood-stage vaccine for Plasmodium falciparum malaria. Infection and immunity. 2005; 73(6); 3677-3685. [PubMed: 15908397].
  99. Matsumoto et al., 1998: Matsumoto S, Yukitake H, Kanbara H, Yamada T. Recombinant Mycobacterium bovis bacillus Calmette-Guérin secreting merozoite surface protein 1 (MSP1) induces protection against rodent malaria parasite infection depending on MSP1-stimulated interferon gamma and parasite-specific antibodies. The Journal of experimental medicine. 1998; 188(5); 845-854. [PubMed: 9730886].
  100. Mauduit et al., 2009: Mauduit M, Grüner AC, Tewari R, Depinay N, Kayibanda M, Chavatte JM, Franetich JF, Crisanti A, Mazier D, Snounou G, Rénia L. A role for immune responses against non-CS components in the cross-species protection induced by immunization with irradiated malaria sporozoites. PloS one. 2009; 4(11); e7717. [PubMed: 19890387].
  101. McConkey et al., 2003: McConkey SJ, Reece WH, Moorthy VS, Webster D, Dunachie S, Butcher G, Vuola JM, Blanchard TJ, Gothard P, Watkins K, Hannan CM, Everaere S, Brown K, Kester KE, Cummings J, Williams J, Heppner DG, Pathan A, Flanagan K, Arulanantham N, Roberts MT, Roy M, Smith GL, Schneider J, Peto T, Sinden RE, Gilbert SC, Hill AV. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nature medicine. 2003; 9(6); 729-735. [PubMed: 12766765].
  102. Meis et al., 1983: Meis JF, Verhave JP, Jap PH, Sinden RE, Meuwissen JH. Malaria parasites--discovery of the early liver form. Nature. 1983 Mar 31-Apr 6; 302(5907); 424-6. [PubMed: 6339945].
  103. Mendes et al., 2018: Mendes AM, Reuling IJ, Andrade CM, Otto TD, Machado M, Teixeira F, Pissarra J, Gonçalves-Rosa N, Bonaparte D, Sinfrónio J, Sanders M, Janse CJ, Khan SM, Newbold CI, Berriman M, Lee CK, Wu Y, Ockenhouse CF, Sauerwein RW, Prudêncio M. Pre-clinical evaluation of a P. berghei-based whole-sporozoite malaria vaccine candidate. NPJ vaccines. 2018; 3; 54. [PubMed: 30510775].
  104. Mensah et al., 2016: Mensah VA, Gueye A, Ndiaye M, Edwards NJ, Wright D, Anagnostou NA, Syll M, Ndaw A, Abiola A, Bliss C, Gomis JF, Petersen I, Ogwang C, Dieye T, Viebig NK, Lawrie AM, Roberts R, Nicosia A, Faye B, Gaye O, Leroy O, Imoukhuede EB, Ewer KJ, Bejon P, Hill AV, Cisse B. Safety, Immunogenicity and Efficacy of Prime-Boost Vaccination with ChAd63 and MVA Encoding ME-TRAP against Plasmodium falciparum Infection in Adults in Senegal. PloS one. 2016; 11(12); e0167951. [PubMed: 27978537].
  105. Mian et al., 2022: Mian SY, Somanathan A, Chaddha K, Pandey AK, Singh H, Krishna S, Chaturvedi N, Uchoi S, Shukla MM, Bharti PK, Singh N, Chauhan VS, Gaur D. Plasmodium falciparum Cysteine-Rich Protective Antigen (CyRPA) Elicits Detectable Levels of Invasion-Inhibitory Antibodies during Natural Infection in Humans. Infection and immunity. 2022; 90(1); e0037721. [PubMed: 34694918].
  106. Mikolajczak et al., 2014: Mikolajczak SA, Lakshmanan V, Fishbaugher M, Camargo N, Harupa A, Kaushansky A, Douglass AN, Baldwin M, Healer J, O'Neill M, Phuong T, Cowman A, Kappe SH. A next-generation genetically attenuated Plasmodium falciparum parasite created by triple gene deletion. Molecular therapy : the journal of the American Society of Gene Therapy. 2014; 22(9); 1707-1715. [PubMed: 24827907].
  107. Minassian et al., 2019: Safety, Immunogenicity and Efficacy of the Blood-stage Plasmodium Vivax Malaria Vaccine Candidate PvDBPII in Matrix M1 [https://clinicaltrials.gov/ct2/show/NCT04201431?term=vaccine&cond=Malaria%2C+Vivax&draw=2&rank=1]
  108. Minassian et al., 2022: A Study of the Plasmodium Falciparum Malaria Vaccine Candidate Pfs48/45 in Matrix-M Adjuvant in the UK [https://clinicaltrials.gov/ct2/show/NCT05400746?term=vaccine&cond=Plasmodium&draw=8&rank=70]
  109. Minassian et al., 2022: Safety and Immunogenicity of Pvs25-IMX313/Matrix-M1 Vaccine [https://clinicaltrials.gov/ct2/show/NCT05270265?term=vaccine&cond=Malaria%2C+Vivax&draw=2&rank=4]
  110. Mohmmed et al., 2005: Mohmmed A, Kishore S, Patra KP, Dasaradhi PV, Malhotra P, Chauhan VS. Identification of karyopherin beta as an immunogenic antigen of the malaria parasite using immune mice and human sera. Parasite immunology. 2005; 27(5); 197-203. [PubMed: 15987343].
  111. Moll et al., 2007: Moll K, Pettersson F, Vogt AM, Jonsson C, Rasti N, Ahuja S, Spångberg M, Mercereau-Puijalon O, Arnot DE, Wahlgren M, Chen Q. Generation of cross-protective antibodies against Plasmodium falciparum sequestration by immunization with an erythrocyte membrane protein 1-duffy binding-like 1 alpha domain. Infection and immunity. 2007; 75(1); 211-219. [PubMed: 17074852].
  112. Moore et al., 2004: Moore AC, Hill AV. Progress in DNA-based heterologous prime-boost immunization strategies for malaria. Immunological reviews. 2004 Jun; 199; 126-43. [PubMed: 15233731].
  113. Moore et al., 2005: Moore AC, Gallimore A, Draper SJ, Watkins KR, Gilbert SC, Hill AV. Anti-CD25 antibody enhancement of vaccine-induced immunogenicity: increased durable cellular immunity with reduced immunodominance. Journal of immunology (Baltimore, Md. : 1950). 2005 Dec 1; 175(11); 7264-73. [PubMed: 16301631].
  114. Moormann et al., 2006: Moormann AM, John CC, Sumba PO, Tisch D, Embury P, Kazura JW. Stability of interferon-gamma and interleukin-10 responses to Plasmodium falciparum liver stage antigen-1 and thrombospondin-related adhesive protein in residents of a malaria holoendemic area. The American journal of tropical medicine and hygiene. 2006 Apr; 74(4); 585-90. [PubMed: 16606988].
  115. Morais et al., 2006: Morais CG, Soares IS, Carvalho LH, Fontes CJ, Krettli AU, Braga EM. Antibodies to Plasmodium vivax apical membrane antigen 1: persistence and correlation with malaria transmission intensity. The American journal of tropical medicine and hygiene. 2006 Oct; 75(4); 582-7. [PubMed: 17038677].
  116. Moreno et al., 2008: Moreno A, Caro-Aguilar I, Yazdani SS, Shakri AR, Lapp S, Strobert E, McClure H, Chitnis CE, Galinski MR. Preclinical assessment of the receptor-binding domain of Plasmodium vivax Duffy-binding protein as a vaccine candidate in rhesus macaques. Vaccine. 2008; 26(34); 4338-4344. [PubMed: 18573299].
  117. Mueller et al., 2005: Mueller AK, Labaied M, Kappe SH, Matuschewski K. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature. 2005; 433(7022); 164-167. [PubMed: 15580261].
  118. Mulamba et al., 2022: Mulamba C, Williams C, Kreppel K, Ouedraogo JB, Olotu AI. Evaluation of the Pfs25-IMX313/Matrix-M malaria transmission-blocking candidate vaccine in endemic settings. Malaria journal. 2022; 21(1); 159. [PubMed: 35655174].
  119. NIAID, 2006: Phase I Study of Safety and Immunogenicity of AMA1-C1Alhydrogel + CPG 7909 Vaccine for Malaria [https://clinicaltrials.gov/ct2/show/NCT00414336?term=vaccine&cond=malaria&draw=6]
  120. Ockenhouse et al., 1998: Ockenhouse CF, Sun PF, Lanar DE, Wellde BT, Hall BT, Kester K, Stoute JA, Magill A, Krzych U, Farley L, Wirtz RA, Sadoff JC, Kaslow DC, Kumar S, Church LW, Crutcher JM, Wizel B, Hoffman S, Lalvani A, Hill AV, Tine JA, Guito KP, de Taisne C, Anders R, Ballou WR. Phase I/IIa safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. The Journal of infectious diseases. 1998; 177(6); 1664-1673. [PubMed: 9607847].
  121. Oliveira-Ferreira et al., 2000: Oliveira-Ferreira J, Miyahira Y, Layton GT, Savage N, Esteban M, Rodriguez D, Rodriguez JR, Nussenzweig RS, Zavala F. Immunogenicity of Ty-VLP bearing a CD8(+) T cell epitope of the CS protein of P. yoelii: enhanced memory response by boosting with recombinant vaccinia virus. Vaccine. 2000; 18(17); 1863-1869. [PubMed: 10699335].
  122. Oneko et al., 2021: Oneko M, Steinhardt LC, Yego R, Wiegand RE, Swanson PA, Kc N, Akach D, Sang T, Gutman JR, Nzuu EL, Dungani A, Kim Lee Sim B, Oloo PN, Otieno K, Bii DK, Billingsley PF, James ER, Kariuki S, Samuels AM, Jongo S, Chebore W, Abdulla S, Daubenberger C, Mpina M, Styers D, Potter GE, Abarbanell G, Richie TL, Hoffman SL, Seder RA. Safety, immunogenicity and efficacy of PfSPZ Vaccine against malaria in infants in western Kenya: a double-blind, randomized, placebo-controlled phase 2 trial. Nature medicine. 2021; 27(9); 1636-1645. [PubMed: 34518679].
  123. Ong'echa et al., 2003: Ong'echa JM, Lal AA, Terlouw DJ, Ter Kuile FO, Kariuki SK, Udhayakumar V, Orago AS, Hightower AW, Nahlen BL, Shi YP. Association of interferon-gamma responses to pre-erythrocytic stage vaccine candidate antigens of Plasmodium falciparum in young Kenyan children with improved hemoglobin levels: XV. Asembo Bay Cohort Project. The American journal of tropical medicine and hygiene. 2003 May; 68(5); 590-7. [PubMed: 12812352].
  124. Pal-Bhowmick et al., 2007: Pal-Bhowmick I, Mehta M, Coppens I, Sharma S, Jarori GK. Protective properties and surface localization of Plasmodium falciparum enolase. Infection and immunity. 2007; 75(11); 5500-5508. [PubMed: 17785475].
  125. Parker et al., 2001: Parker SE, Monteith D, Horton H, Hof R, Hernandez P, Vilalta A, Hartikka J, Hobart P, Bentley CE, Chang A, Hedstrom R, Rogers WO, Kumar S, Hoffman SL, Norman JA. Safety of a GM-CSF adjuvant-plasmid DNA malaria vaccine. Gene therapy. 2001; 8(13); 1011-1023. [PubMed: 11438836].
  126. Pasquetto et al., 1997: Pasquetto V, Fidock DA, Gras H, Badell E, Eling W, Ballou WR, Belghiti J, Tartar A, Druilhe P. Plasmodium falciparum sporozoite invasion is inhibited by naturally acquired or experimentally induced polyclonal antibodies to the STARP antigen. European journal of immunology. 1997; 27(10); 2502-2513. [PubMed: 9368603].
  127. Payne et al., 2017: Payne RO, Silk SE, Elias SC, Miura K, Diouf A, Galaway F, de Graaf H, Brendish NJ, Poulton ID, Griffiths OJ, Edwards NJ, Jin J, Labbé GM, Alanine DG, Siani L, Di Marco S, Roberts R, Green N, Berrie E, Ishizuka AS, Nielsen CM, Bardelli M, Partey FD, Ofori MF, Barfod L, Wambua J, Murungi LM, Osier FH, Biswas S, McCarthy JS, Minassian AM, Ashfield R, Viebig NK, Nugent FL, Douglas AD, Vekemans J, Wright GJ, Faust SN, Hill AV, Long CA, Lawrie AM, Draper SJ. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions. JCI insight. 2017; 2(21); . [PubMed: 29093263].
  128. Pearce et al., 2004: Pearce JA, Hodder AN, Anders RF. The alanine-rich heptad repeats are intact in the processed form of Plasmodium falciparum MSP3. Experimental parasitology. 2004 Nov-Dec; 108(3-4); 186-9. [PubMed: 15582517].
  129. Petritus and Burns, 2008: Petritus PM, Burns JM Jr. Suppression of lethal Plasmodium yoelii malaria following protective immunization requires antibody-, IL-4-, and IFN-gamma-dependent responses induced by vaccination and/or challenge infection. Journal of immunology (Baltimore, Md. : 1950). 2008; 180(1); 444-453. [PubMed: 18097046].
  130. PF11_0344 in GeneDB: PF11_0344 in GeneDB [http://www.genedb.org/genedb/Dispatcher?formType=navBar&organism=malaria&desc=yes&wildcard=yes&name=PF11_0344&ohmr=.&ohmr2=.]
  131. PF13_0201 in GeneDB: PF13_0201 in GeneDB [http://www.genedb.org/genedb/Search?organism=malaria&name=PF13_0201&isid=true]
  132. PFL1385c in GeneDB: PFL1385c in GeneDB [http://www.genedb.org/genedb/Search?organism=malaria&name=PFL1385c&isid=true]
  133. Pichyangkul et al., 2004: Pichyangkul S, Gettayacamin M, Miller RS, Lyon JA, Angov E, Tongtawe P, Ruble DL, Heppner DG Jr, Kester KE, Ballou WR, Diggs CL, Voss G, Cohen JD, Walsh DS. Pre-clinical evaluation of the malaria vaccine candidate P. falciparum MSP1(42) formulated with novel adjuvants or with alum. Vaccine. 2004 Sep 28; 22(29-30); 3831-40. [PubMed: 15364429].
  134. Polhemus et al., 2007: Polhemus ME, Magill AJ, Cummings JF, Kester KE, Ockenhouse CF, Lanar DE, Dutta S, Barbosa A, Soisson L, Diggs CL, Robinson SA, Haynes JD, Stewart VA, Ware LA, Brando C, Krzych U, Bowden RA, Cohen JD, Dubois MC, Ofori-Anyinam O, De-Kock E, Ballou WR, Heppner DG Jr. Phase I dose escalation safety and immunogenicity trial of Plasmodium falciparum apical membrane protein (AMA-1) FMP2.1, adjuvanted with AS02A, in malaria-naive adults at the Walter Reed Army Institute of Research. Vaccine. 2007 May 22; 25(21); 4203-12. [PubMed: 17442466].
  135. Pye et al., 1997: Pye D, Vandenberg KL, Dyer SL, Irving DO, Goss NH, Woodrow GC, Saul A, Alving CR, Richards RL, Ballou WR, Wu MJ, Skoff K, Anders RF. Selection of an adjuvant for vaccination with the malaria antigen, MSA-2. Vaccine. 1997; 15(9); 1017-1023. [PubMed: 9261951].
  136. Rajeshwari et al., 2004: Rajeshwari K, Patel K, Nambeesan S, Mehta M, Sehgal A, Chakraborty T, Sharma S. The P domain of the P0 protein of Plasmodium falciparum protects against challenge with malaria parasites. Infection and immunity. 2004; 72(9); 5515-5521. [PubMed: 15322057].
  137. Rausch et al., 2023: Rausch KM, Barnafo EK, Lambert LE, Muratova O, Gorres JP, Anderson C, Narum DL, Wu Y, Morrison RD, Zaidi I, Duffy PE. Preclinical evaluations of Pfs25-EPA and Pfs230D1-EPA in AS01 for a vaccine to reduce malaria transmission. iScience. 2023; 26(7); 107192. [PubMed: 37485364].
  138. Renn et al., 2021: Renn JP, Doritchamou JYA, Tentokam BCN, Morrison RD, Cowles MV, Burkhardt M, Ma R, Mahamar A, Attaher O, Diarra BS, Traore M, Dicko A, Tolia NH, Fried M, Duffy PE. Allelic variants of full-length VAR2CSA, the placental malaria vaccine candidate, differ in antigenicity and receptor binding affinity. Communications biology. 2021; 4(1); 1309. [PubMed: 34799664].
  139. Reuling et al., 2020: Reuling IJ, Mendes AM, de Jong GM, Fabra-García A, Nunes-Cabaço H, van Gemert GJ, Graumans W, Coffeng LE, de Vlas SJ, Yang ASP, Lee C, Wu Y, Birkett AJ, Ockenhouse CF, Koelewijn R, van Hellemond JJ, van Genderen PJJ, Sauerwein RW, Prudêncio M. An open-label phase 1/2a trial of a genetically modified rodent malaria parasite for immunization against Plasmodium falciparum malaria. Science translational medicine. 2020; 12(544); . [PubMed: 32434846].
  140. Reyes-Sandoval et al., 2008: Reyes-Sandoval A, Sridhar S, Berthoud T, Moore AC, Harty JT, Gilbert SC, Gao G, Ertl HC, Wilson JC, Hill AV. Single-dose immunogenicity and protective efficacy of simian adenoviral vectors against Plasmodium berghei. European journal of immunology. 2008; 38(3); 732-741. [PubMed: 18266272].
  141. Robson et al., 1998: Robson KJ, Dolo A, Hackford IR, Doumbo O, Richards MB, Keita MM, Sidibe T, Bosman A, Modiano D, Crisanti A. Natural polymorphism in the thrombospondin-related adhesive protein of Plasmodium falciparum. The American journal of tropical medicine and hygiene. 1998 Jan; 58(1); 81-9. [PubMed: 9452297].
  142. Rogers et al., 2001: Rogers WO, Baird JK, Kumar A, Tine JA, Weiss W, Aguiar JC, Gowda K, Gwadz R, Kumar S, Gold M, Hoffman SL. Multistage multiantigen heterologous prime boost vaccine for Plasmodium knowlesi malaria provides partial protection in rhesus macaques. Infection and immunity. 2001; 69(9); 5565-5572. [PubMed: 11500430].
  143. Rosa et al., 2004: Rosa DS, Tzelepis F, Cunha MG, Soares IS, Rodrigues MM. The pan HLA DR-binding epitope improves adjuvant-assisted immunization with a recombinant protein containing a malaria vaccine candidate. Immunology letters. 2004 Apr 15; 92(3); 259-68. [PubMed: 15081621].
  144. Sakai et al., 2003: Sakai T, Hisaeda H, Nakano Y, Zhang M, Takashima M, Ishii K, Maekawa Y, Matsumoto S, Nitta Y, Miyazaki Ji, Yamamoto S, Himeno K. Gene gun-based co-immunization of merozoite surface protein-1 cDNA with IL-12 expression plasmid confers protection against lethal Plasmodium yoelii in A/J mice. Vaccine. 2003; 21(13-14); 1432-1444. [PubMed: 12615440].
  145. Sanchez et al., 2001: Sanchez GI, Sedegah M, Rogers WO, Jones TR, Sacci J, Witney A, Carucci DJ, Kumar N, Hoffman SL. Immunogenicity and protective efficacy of a Plasmodium yoelii Hsp60 DNA vaccine in BALB/c mice. Infection and immunity. 2001; 69(6); 3897-3905. [PubMed: 11349057].
  146. Sauerwein et al., 2017: Safety and Protective Efficacy of Pb(PfCS@UIS4) (PbVac) [https://clinicaltrials.gov/ct2/show/study/NCT03138096?cond=Pb%28PfCS%40UIS4%29&draw=2&rank=1]
  147. Saul et al., 1992: Saul A, Lord R, Jones GL, Spencer L. Protective immunization with invariant peptides of the Plasmodium falciparum antigen MSA2. Journal of immunology (Baltimore, Md. : 1950). 1992; 148(1); 208-211. [PubMed: 1727867].
  148. Schneider et al., 1998: Schneider J, Gilbert SC, Blanchard TJ, Hanke T, Robson KJ, Hannan CM, Becker M, Sinden R, Smith GL, Hill AV. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nature medicine. 1998; 4(4); 397-402. [PubMed: 9546783].
  149. Seder et al., 2013: Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN, Gordon IJ, Holman LA, James ER, Billingsley PF, Gunasekera A, Richman A, Chakravarty S, Manoj A, Velmurugan S, Li M, Ruben AJ, Li T, Eappen AG, Stafford RE, Plummer SH, Hendel CS, Novik L, Costner PJ, Mendoza FH, Saunders JG, Nason MC, Richardson JH, Murphy J, Davidson SA, Richie TL, Sedegah M, Sutamihardja A, Fahle GA, Lyke KE, Laurens MB, Roederer M, Tewari K, Epstein JE, Sim BK, Ledgerwood JE, Graham BS, Hoffman SL. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science (New York, N.Y.). 2013; 341(6152); 1359-1365. [PubMed: 23929949].
  150. Seeberger et al., 2004: Seeberger PH, Soucy RL, Kwon YU, Snyder DA, Kanemitsu T. A convergent, versatile route to two synthetic conjugate anti-toxin malaria vaccines. Chemical communications (Cambridge, England). 2004 Aug 7; (15); 1706-7. [PubMed: 15278147].
  151. Sheehy et al., 2011: Sheehy SH, Duncan CJ, Elias SC, Collins KA, Ewer KJ, Spencer AJ, Williams AR, Halstead FD, Moretz SE, Miura K, Epp C, Dicks MD, Poulton ID, Lawrie AM, Berrie E, Moyle S, Long CA, Colloca S, Cortese R, Gilbert SC, Nicosia A, Hill AV, Draper SJ. Phase Ia clinical evaluation of the Plasmodium falciparum blood-stage antigen MSP1 in ChAd63 and MVA vaccine vectors. Molecular therapy : the journal of the American Society of Gene Therapy. 2011; 19(12); 2269-2276. [PubMed: 21862998].
  152. Sheehy et al., 2012: Sheehy SH, Duncan CJ, Elias SC, Biswas S, Collins KA, O'Hara GA, Halstead FD, Ewer KJ, Mahungu T, Spencer AJ, Miura K, Poulton ID, Dicks MD, Edwards NJ, Berrie E, Moyle S, Colloca S, Cortese R, Gantlett K, Long CA, Lawrie AM, Gilbert SC, Doherty T, Nicosia A, Hill AV, Draper SJ. Phase Ia clinical evaluation of the safety and immunogenicity of the Plasmodium falciparum blood-stage antigen AMA1 in ChAd63 and MVA vaccine vectors. PloS one. 2012; 7(2); e31208. [PubMed: 22363582].
  153. Sim et al., 2001: Sim BK, Narum DL, Liang H, Fuhrmann SR, Obaldia N 3rd, Gramzinski R, Aguiar J, Haynes JD, Moch JK, Hoffman SL. Induction of biologically active antibodies in mice, rabbits, and monkeys by Plasmodium falciparum EBA-175 region II DNA vaccine. Molecular medicine (Cambridge, Mass.). 2001; 7(4); 247-254. [PubMed: 11471569].
  154. Singh et al., 2003: Singh S, Kennedy MC, Long CA, Saul AJ, Miller LH, Stowers AW. Biochemical and immunological characterization of bacterially expressed and refolded Plasmodium falciparum 42-kilodalton C-terminal merozoite surface protein 1. Infection and immunity. 2003 Dec; 71(12); 6766-74. [PubMed: 14638762].
  155. Sirima et al., 2007: Sirima SB, Nebie I, Ouedraogo A, Tiono AB, Konate AT, Gansane A, Derme AI, Diarra A, Ouedraogo A, Soulama I, Cuzzin-Ouattara N, Cousens S, Leroy O. Safety and immunogenicity of the Plasmodium falciparum merozoite surface protein-3 long synthetic peptide (MSP3-LSP) malaria vaccine in healthy, semi-immune adult males in Burkina Faso, West Africa. Vaccine. 2007 Mar 30; 25(14); 2723-32. [PubMed: 17280744].
  156. Spring et al., 2009: Phase 1/2a Trial of Pf GAP p52-/p36- Sporozoite Malaria Vaccine [https://clinicaltrials.gov/ct2/show/NCT01024686?term=vaccine&cond=malaria&draw=9&rank=31]
  157. Spring et al., 2013: Spring M, Murphy J, Nielsen R, Dowler M, Bennett JW, Zarling S, Williams J, de la Vega P, Ware L, Komisar J, Polhemus M, Richie TL, Epstein J, Tamminga C, Chuang I, Richie N, O'Neil M, Heppner DG, Healer J, O'Neill M, Smithers H, Finney OC, Mikolajczak SA, Wang R, Cowman A, Ockenhouse C, Krzych U, Kappe SH. First-in-human evaluation of genetically attenuated Plasmodium falciparum sporozoites administered by bite of Anopheles mosquitoes to adult volunteers. Vaccine. 2013; 31(43); 4975-4983. [PubMed: 24029408].
  158. Stanisic et al., 2021: Stanisic DI, Ho MF, Nevagi R, Cooper E, Walton M, Islam MT, Hussein WM, Skwarczynski M, Toth I, Good MF. Development and Evaluation of a Cryopreserved Whole-Parasite Vaccine in a Rodent Model of Blood-Stage Malaria. mBio. 2021; 12(5); e0265721. [PubMed: 34663097].
  159. Stertman et al., 2023: Stertman L, Palm AE, Zarnegar B, Carow B, Lunderius Andersson C, Magnusson SE, Carnrot C, Shinde V, Smith G, Glenn G, Fries L, Lövgren Bengtsson K. The Matrix-M™ adjuvant: A critical component of vaccines for the 21(st) century. Human vaccines & immunotherapeutics. 2023; 19(1); 2189885. [PubMed: 37113023].
  160. Stewart et al., 2007: Stewart VA, McGrath SM, Dubois PM, Pau MG, Mettens P, Shott J, Cobb M, Burge JR, Larson D, Ware LA, Demoitie MA, Weverling GJ, Bayat B, Custers JH, Dubois MC, Cohen J, Goudsmit J, Heppner DG Jr. Priming with an adenovirus 35-circumsporozoite protein (CS) vaccine followed by RTS,S/AS01B boosting significantly improves immunogenicity to Plasmodium falciparum CS compared to that with either malaria vaccine alone. Infection and immunity. 2007 May; 75(5); 2283-90. [PubMed: 17307942].
  161. Stoute et al., 2006: Stoute JA, Heppner DG Jr, Mason CJ, Siangla J, Opollo MO, Kester KE, Vigneron L, Voss G, Walter MJ, Tornieporth N, Cohen JD, Ballou WR. Phase 1 safety and immunogenicity trial of malaria vaccine RTS,S/AS02A in adults in a hyperendemic region of western Kenya. The American journal of tropical medicine and hygiene. 2006 Jul; 75(1); 166-70. [PubMed: 16837726].
  162. Stowers et al., 2002: Stowers AW, Chen Lh LH, Zhang Y, Kennedy MC, Zou L, Lambert L, Rice TJ, Kaslow DC, Saul A, Long CA, Meade H, Miller LH. A recombinant vaccine expressed in the milk of transgenic mice protects Aotus monkeys from a lethal challenge with Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America. 2002 Jan 8; 99(1); 339-44. [PubMed: 11752405].
  163. Sturm et al., 2006: Sturm A, Amino R, van de Sand C, Regen T, Retzlaff S, Rennenberg A, Krueger A, Pollok JM, Menard R, Heussler VT. Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science (New York, N.Y.). 2006 Sep 1; 313(5791); 1287-90. [PubMed: 16888102].
  164. Takashima et al., 2022: Takashima E, Nagaoka H, Correia R, Alves PM, Roldão A, Christensen D, Guderian JA, Fukushima A, Viebig NK, Depraetere H, Tsuboi T. A novel asexual blood-stage malaria vaccine candidate: PfRipr5 formulated with human-use adjuvants induces potent growth inhibitory antibodies. Frontiers in immunology. 2022; 13; 1002430. [PubMed: 36389677].
  165. Talaat et al., 2016: Talaat KR, Ellis RD, Hurd J, Hentrich A, Gabriel E, Hynes NA, Rausch KM, Zhu D, Muratova O, Herrera R, Anderson C, Jones D, Aebig J, Brockley S, MacDonald NJ, Wang X, Fay MP, Healy SA, Durbin AP, Narum DL, Wu Y, Duffy PE. Safety and Immunogenicity of Pfs25-EPA/Alhydrogel®, a Transmission Blocking Vaccine against Plasmodium falciparum: An Open Label Study in Malaria Naïve Adults. PloS one. 2016; 11(10); e0163144. [PubMed: 27749907].
  166. Talman et al., 2004: Talman AM, Domarle O, McKenzie FE, Ariey F, Robert V. Gametocytogenesis: the puberty of Plasmodium falciparum. Malaria journal. 2004 Jul 14; 3; 24. [PubMed: 15253774].
  167. Tarun et al., 2007: Tarun AS, Dumpit RF, Camargo N, Labaied M, Liu P, Takagi A, Wang R, Kappe SH. Protracted sterile protection with Plasmodium yoelii pre-erythrocytic genetically attenuated parasite malaria vaccines is independent of significant liver-stage persistence and is mediated by CD8+ T cells. The Journal of infectious diseases. 2007; 196(4); 608-616. [PubMed: 17624848].
  168. Theisen et al., 2017: Theisen M, Jore MM, Sauerwein R. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine. Expert review of vaccines. 2017; 16(4); 329-336. [PubMed: 28043178].
  169. Thera et al., 2006: Thera MA, Doumbo OK, Coulibaly D, Diallo DA, Sagara I, Dicko A, Diemert DJ, Heppner DG, Stewart VA, Angov E, Soisson L, Leach A, Tucker K, Lyke KE, Plowe CV. Safety and allele-specific immunogenicity of a malaria vaccine in malian adults: results of a phase I randomized trial. PLoS clinical trials. 2006 Nov 24; 1(7); e34. [PubMed: 17124530].
  170. Thera et al., 2016: Thera MA, Coulibaly D, Kone AK, Guindo AB, Traore K, Sall AH, Diarra I, Daou M, Traore IM, Tolo Y, Sissoko M, Niangaly A, Arama C, Baby M, Kouriba B, Sissoko MS, Sagara I, Toure OB, Dolo A, Diallo DA, Remarque E, Chilengi R, Noor R, Sesay S, Thomas A, Kocken CH, Faber BW, Imoukhuede EB, Leroy O, Doumbo OK. Phase 1 randomized controlled trial to evaluate the safety and immunogenicity of recombinant Pichia pastoris-expressed Plasmodium falciparum apical membrane antigen 1 (PfAMA1-FVO [25-545]) in healthy Malian adults in Bandiagara. Malaria journal. 2016; 15(1); 442. [PubMed: 27577237].
  171. Thera et al., 2022: MSP3-CRM-Vac4All/ Alhydrogel® Malaria Vaccine (MSP3CRMV4All) [https://clinicaltrials.gov/ct2/show/NCT05197751?term=vaccine&cond=Malaria%2CFalciparum&draw=1&rank=10]
  172. Tsai et al., 2009: Tsai CW, Duggan PF, Jin AJ, Macdonald NJ, Kotova S, Lebowitz J, Hurt DE, Shimp RL Jr, Lambert L, Miller LH, Long CA, Saul A, Narum DL. Characterization of a protective Escherichia coli-expressed Plasmodium falciparum merozoite surface protein 3 indicates a non-linear, multi-domain structure. Molecular and biochemical parasitology. 2009; 164(1); 45-56. [PubMed: 19073223].
  173. University of Oxford, 2014: A Phase Ia Clinical Trial to Assess the Safety and Immunogenicity of New Plasmodium Falciparum Malaria Vaccine Candidates ChAd63 RH5 Alone and With MVA RH5 [https://clinicaltrials.gov/ct2/show/NCT02181088?term=vaccine&cond=Malaria%2CFalciparum&draw=6]
  174. Valderrama-Aguirre et al., 2005: Valderrama-Aguirre A, Quintero G, Gómez A, Castellanos A, Pérez Y, Méndez F, Arévalo-Herrera M, Herrera S. Antigenicity, immunogenicity, and protective efficacy of Plasmodium vivax MSP1 PV200l: a potential malaria vaccine subunit. The American journal of tropical medicine and hygiene. 2005; 73(5 Suppl); 16-24. [PubMed: 16291762].
  175. VanBuskirk et al., 2009: VanBuskirk KM, O'Neill MT, De La Vega P, Maier AG, Krzych U, Williams J, Dowler MG, Sacci JB Jr, Kangwanrangsan N, Tsuboi T, Kneteman NM, Heppner DG Jr, Murdock BA, Mikolajczak SA, Aly AS, Cowman AF, Kappe SH. Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106(31); 13004-13009. [PubMed: 19625622].
  176. Vandepapelière et al., 2005: Vandepapelière P, Rehermann B, Koutsoukos M, Moris P, Garçon N, Wettendorff M, Leroux-Roels G. Potent enhancement of cellular and humoral immune responses against recombinant hepatitis B antigens using AS02A adjuvant in healthy adults. Vaccine. 2005; 23(20); 2591-2601. [PubMed: 15780441].
  177. Vincent et al., 1999: Vincent AA, Fanning S, Caira FC, Williamson KC. Immunogenicity of malaria transmission-blocking vaccine candidate, y230.CA14 following crosslinking in the presence of tetanus toxoid. Parasite immunology. 1999 Nov; 21(11); 573-81. [PubMed: 10583858].
  178. Virnik et al., 2021: Virnik K, Zhou W, Medvedev A, Walsh G, Perry-Anderson J, Majam V, Felber BK, Kumar S, Berkower I. Live attenuated rubella vectors expressing Plasmodium falciparum circumsporozoite protein (Pf-CSP) provide a novel malaria vaccine platform in the rhesus macaque. Biochemical and biophysical research communications. 2021; 577; 58-63. [PubMed: 34507066].
  179. Wan et al., 2007: Wan Omar A, Roslaini AM, Ngah ZU, Azahari AA, Zahedi M, Baharudin O. A recombinant 19 kDa Plasmodium berghei merozoite surface protein 1 formulated with alum induces protective immune response in mice. Tropical biomedicine. 2007; 24(1); 119-126. [PubMed: 17568385].
  180. Wang et al., 2004: Wang L, Goschnick MW, Coppel RL. Oral immunization with a combination of Plasmodium yoelii merozoite surface proteins 1 and 4/5 enhances protection against lethal malaria challenge. Infection and immunity. 2004; 72(10); 6172-6175. [PubMed: 15385527].
  181. Wang et al., 2005: Wang R, Richie TL, Baraceros MF, Rahardjo N, Gay T, Banania JG, Charoenvit Y, Epstein JE, Luke T, Freilich DA, Norman J, Hoffman SL. Boosting of DNA vaccine-elicited gamma interferon responses in humans by exposure to malaria parasites. Infection and immunity. 2005; 73(5); 2863-2872. [PubMed: 15845492].
  182. Webster et al., 2005: Webster DP, Dunachie S, Vuola JM, Berthoud T, Keating S, Laidlaw SM, McConkey SJ, Poulton I, Andrews L, Andersen RF, Bejon P, Butcher G, Sinden R, Skinner MA, Gilbert SC, Hill AV. Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(13); 4836-4841. [PubMed: 15781866].
  183. Wu et al., 2008: Wu Y, Ellis RD, Shaffer D, Fontes E, Malkin EM, Mahanty S, Fay MP, Narum D, Rausch K, Miles AP, Aebig J, Orcutt A, Muratova O, Song G, Lambert L, Zhu D, Miura K, Long C, Saul A, Miller LH, Durbin AP. Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51. PloS one. 2008; 3(7); e2636. [PubMed: 18612426].
  184. Xu et al., 2000: Xu H, Hodder AN, Yan H, Crewther PE, Anders RF, Good MF. CD4+ T cells acting independently of antibody contribute to protective immunity to Plasmodium chabaudi infection after apical membrane antigen 1 immunization. Journal of immunology (Baltimore, Md. : 1950). 2000; 165(1); 389-396. [PubMed: 10861076].
  185. Yazdani et al., 2006: Yazdani SS, Shakri AR, Pattnaik P, Rizvi MM, Chitnis CE. Improvement in yield and purity of a recombinant malaria vaccine candidate based on the receptor-binding domain of Plasmodium vivax Duffy binding protein by codon optimization. Biotechnology letters. 2006; 28(14); 1109-1114. [PubMed: 16794771].
  186. Yoshida et al., 2000: Yoshida S, Kashiwamura SI, Hosoya Y, Luo E, Matsuoka H, Ishii A, Fujimura A, Kobayashi E. Direct immunization of malaria DNA vaccine into the liver by gene gun protects against lethal challenge of Plasmodium berghei sporozoite. Biochemical and biophysical research communications. 2000; 271(1); 107-115. [PubMed: 10777689].
  187. Yuen et al., 2007: Yuen D, Leung WH, Cheung R, Hashimoto C, Ng SF, Ho W, Hui G. Antigenicity and immunogenicity of the N-terminal 33-kDa processing fragment of the Plasmodium falciparum merozoite surface protein 1, MSP1: implications for vaccine development. Vaccine. 2007 Jan 5; 25(3); 490-9. [PubMed: 16949181].
  188. Zavala et al., 1985: Zavala F, Tam JP, Hollingdale MR, Cochrane AH, Quakyi I, Nussenzweig RS, Nussenzweig V. Rationale for development of a synthetic vaccine against Plasmodium falciparum malaria. Science (New York, N.Y.). 1985; 228(4706); 1436-1440. [PubMed: 2409595].
  189. Zhang et al., 2021: Zhang Y, Liu F, Zhao Y, Yang F, Bai J, Jia X, Roobsoong W, Sattabongkot J, Cui L, Cao Y, Luo E, Wang M. Evaluation of two Plasmodium vivax sexual stage antigens as transmission-blocking vaccine candidates. Parasites & vectors. 2021; 14(1); 407. [PubMed: 34399829].
  190. Zhou et al., 2006: Zhou Z, Todd CW, Wohlhueter RM, Price A, Xiao L, Schnake P, Bonner PC, Martin AM, Goldman IF, De La Vega P, Udhayakumar V, Lal AA. Development, characterization and immunogenicity of a multi-stage, multi-valent Plasmodium falciparum vaccine antigen (FALVAC-1A) expressed in Escherichia coli. Human vaccines. 2006 Jan-Feb; 2(1); 14-23. [PubMed: 17012909].

Poliovirus

  1. Capeding et al., 2022: Capeding MR, Gomez-Go GD, Oberdorfer P, Borja-Tabora C, Bravo L, Carlos J, Tangsathapornpong A, Uppala R, Laoprasopwattana K, Yang Y, Han S, Wittawatmongkol O. Safety and Immunogenicity of a New Inactivated Polio Vaccine Made From Sabin Strains: A Randomized, Double-Blind, Active-Controlled, Phase 2/3 Seamless Study. The Journal of infectious diseases. 2022; 226(2); 308-318. [PubMed: 33351072].
  2. FDA: IPOL: FDA: IPOL vaccine information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm180053.htm]
  3. FDA: KINRIX: FDA: KINRIX vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM241453.pdf]
  4. FDA: licensed vaccines: FDA: licensed vaccines [http://www.fda.gov/Cber/vaccine/licvacc.htm]
  5. FDA: Pediarix: FDA: Pediarix [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm146759.htm]
  6. FDA: Pentacel: FDA: Pentacel [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm172502.htm]
  7. FDA: Quadracel: FDA: Quadracel vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM439903.pdf]
  8. GSK: Boostrix-Polio: GSK: Boostrix-Polio vaccine information [https://ca.gsk.com/media/589683/boostrix-polio.pdf]
  9. GSK: Infanrix-hexa: GSK: Infanrix-hexa vaccine information [http://ca.gsk.com/media/537989/infanrix-hexa.pdf]
  10. GSK: Infanrix-IPV: GSK: Infanrix-IPV vaccine information [http://ca.gsk.com/media/590851/infanrix-ipv.pdf]
  11. GSK: Infanrix-IPV/Hib: GSK: Infanrix-IPV/Hib vaccine information [http://ca.gsk.com/media/590970/infanrix-ipv-hib.pdf]
  12. Health Canada DPD: Health Canada Drug Product Database [www.hc-sc.gc.ca]
  13. Mahon et al., 1995: Mahon BP, Katrak K, Nomoto A, Macadam AJ, Minor PD, Mills KH. Poliovirus-specific CD4+ Th1 clones with both cytotoxic and helper activity mediate protective humoral immunity against a lethal poliovirus infection in transgenic mice expressing the human poliovirus receptor. The Journal of experimental medicine. 1995; 181(4); 1285-1292. [PubMed: 7699320].
  14. Poliovax: Medicinenet.com: Poliovax [http://www.medicinenet.com/poliovirus_vaccine-injection/article.htm]
  15. Product Monograph: Adacel-Polio: Product Monograph: Adacel-Polio vaccine information [https://www.vaccineshoppecanada.com/document.cfm?file=adacel-polio_e.pdf]
  16. Product Monograph: Pediacel: Product Monograph: Pediacel vaccine information [https://www.vaccineshoppecanada.com/document.cfm?file=Pediacel_E.pdf]
  17. SP: IPV: SP: Inactived Poliomyelitis Vaccine – IPV [https://www.vaccineshoppecanada.com/secure/pdfs/ca/ipv_E.pdf]
  18. Wiki: Poliovirus: Wiki: Poliovirus [http://en.wikipedia.org/wiki/Poliovirus]

Porcine circovirus 2

  1. Chao et al., 2014: Chao A, Fu P, Guo X, Gao X, Cui B, Chen H. [Immune efficacy in mice by recombinant pseudorabies virus PGO expressing ORF2 gene of porcine circovirus type 2]. Wei sheng wu xue bao = Acta microbiologica Sinica. 2014; 54(2); 211-217. [PubMed: 24818470].
  2. Ding et al., 2017: Ding P, Zhang T, Li Y, Teng M, Sun Y, Liu X, Chai S, Zhou E, Jin Q, Zhang G. Nanoparticle orientationally displayed antigen epitopes improve neutralizing antibody level in a model of porcine circovirus type 2. International journal of nanomedicine. 2017; 12; 5239-5254. [PubMed: 28769561].
  3. Ferrari et al., 2000: Ferrari M, Brack A, Romanelli MG, Mettenleiter TC, Corradi A, Dal Mas N, Losio MN, Silini R, Pinoni C, Pratelli A. A study of the ability of a TK-negative and gI/gE-negative pseudorabies virus (PRV) mutant inoculated by different routes to protect pigs against PRV infection. Journal of veterinary medicine. B, Infectious diseases and veterinary public health. 2000; 47(10); 753-762. [PubMed: 11204130].
  4. Gillespie et al., 2009: Gillespie J, Opriessnig T, Meng XJ, Pelzer K, Buechner-Maxwell V. Porcine circovirus type 2 and porcine circovirus-associated disease. Journal of veterinary internal medicine / American College of Veterinary Internal Medicine. 2009; 23(6); 1151-1163. [PubMed: 19780932].
  5. Lin et al., 2012: Lin HX, Ma Z, Fan HJ, Lu CP. Construction and immunogenicity of recombinant swinepox virus expressing capsid protein of PCV2. Vaccine. 2012; 30(44); 6307-6313. [PubMed: 22884664].
  6. Shen et al., 2008: Shen HG, Zhou JY, Huang ZY, Guo JQ, Xing G, He JL, Yan Y, Gong LY. Protective immunity against porcine circovirus 2 by vaccination with ORF2-based DNA and subunit vaccines in mice. The Journal of general virology. 2008; 89(Pt 8); 1857-1865. [PubMed: 18632956].
  7. Wang et al., 2007: Wang X, Jiang P, Li Y, Jiang W, Dong X. Protection of pigs against post-weaning multisystemic wasting syndrome by a recombinant adenovirus expressing the capsid protein of porcine circovirus type 2. Veterinary microbiology. 2007; 121(3-4); 215-224. [PubMed: 17215092].
  8. Wiki: Porcine circovirus: Porcine circovirus [http://en.wikipedia.org/wiki/Porcine_circovirus]
  9. Xu et al., 2013: Xu J, Yang D, Huang D, Xu J, Liu S, Lin H, Zhu H, Liu B, Lu C. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses. Archives of virology. 2013; 158(3); 629-637. [PubMed: 23135159].
  10. Xu et al., 2013: Xu J, Huang D, Xu J, Liu S, Lin H, Zhu H, Liu B, Chen W, Lu C. Immune responses and protective efficacy of a recombinant swinepox virus co-expressing HA1 genes of H3N2 and H1N1 swine influenza virus in mice and pigs. Veterinary microbiology. 2013; 162(1); 259-264. [PubMed: 23265244].
  11. Ye et al., 2013: Ye Y, Cheng X, Zhang J, Tong T, Lin W, Liao M, Fan H. Induction of robust immunity response in mice by dual-expression-system-based recombinant baculovirus expressing the capsid protein of porcine circovirus type 2. Virology journal. 2013; 10; 316. [PubMed: 24161107].

Porcine parvovirus

  1. Garcia-Morante et al., 2019: Garcia-Morante B, Noguera M, Kraft C, Bridger P. Field evaluation of the safety and compatibility of a combined vaccine against porcine parvovirus 1 and porcine reproductive and respiratory syndrome virus in breeding animals. Porcine health management. 2019; 5; 28. [PubMed: 31890252].
  2. Ji et al., 2017: Ji P, Liu Y, Chen Y, Wang A, Jiang D, Zhao B, Wang J, Chai S, Zhou E, Zhang G. Porcine parvovirus capsid protein expressed in Escherichia coli self-assembles into virus-like particles with high immunogenicity in mice and guinea pigs. Antiviral research. 2017; 139; 146-152. [PubMed: 28063996].
  3. Mengeling, 2006: Barbara E. Straw, Jeffery J. Zimmerman, Sylvie D'Allaire, and David J. Taylor. Porcine Parvovirus. 373-382. Diseases of Swine, Ninth Edition. 2006. Wiley-Blackwell, Oxford.
  4. Qi and Cui, 2009: Qi T, Cui SJ. Expression, purification, and characterization of recombinant NS-1, the porcine parvovirus non-structural protein. Journal of virological methods. 2009; 157(1); 93-97. [PubMed: 19101593].
  5. Sánchez-Matamoros et al., 2019: Sánchez-Matamoros A, Camprodon A, Maldonado J, Pedrazuela R, Miranda J. Safety and long-lasting immunity of the combined administration of a modified-live virus vaccine against porcine reproductive and respiratory syndrome virus 1 and an inactivated vaccine against porcine parvovirus and Erysipelothrix rhusiopathiae in breeding pigs. Porcine health management. 2019; 5; 11. [PubMed: 31057805].
  6. van et al., 2020: van den Born E, van den Elzen PPM, van Kilsdonk E, Hoeijmakers MJH, Segers RPAM. An octavalent vaccine provides pregnant gilts protection against a highly virulent porcine parvovirus strain. BMC veterinary research. 2020; 16(1); 55. [PubMed: 32050969].
  7. Xie et al., 2010: Xie HL, Wang Z, Cui SJ, Zhang CF, Cui YD. The epitope of the VP1 protein of porcine parvovirus. Virology journal. 2010; 7; 161. [PubMed: 20637107].

Porcine respiratory and reproductive syndrome virus

  1. An et al., 2018: An CH, Nazki S, Park SC, Jeong YJ, Lee JH, Park SJ, Khatun A, Kim WI, Park YI, Jeong JC, Kim CY. Plant synthetic GP4 and GP5 proteins from porcine reproductive and respiratory syndrome virus elicit immune responses in pigs. Planta. 2018; 247(4); 973-985. [PubMed: 29313103].
  2. Cho and Dee, 2006: Cho JG, Dee SA. Porcine reproductive and respiratory syndrome virus. Theriogenology. 2006; 66(3); 655-662. [PubMed: 16730057].
  3. Hou et al., 2008: Hou YH, Chen J, Tong GZ, Tian ZJ, Zhou YJ, Li GX, Li X, Peng JM, An TQ, Yang HC. A recombinant plasmid co-expressing swine ubiquitin and the GP5 encoding-gene of porcine reproductive and respiratory syndrome virus induces protective immunity in piglets. Vaccine. 2008; 26(11); 1438-1449. [PubMed: 18262692].
  4. Jiang et al., 2006: Jiang Y, Xiao S, Fang L, Yu X, Song Y, Niu C, Chen H. DNA vaccines co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV) display enhanced immunogenicity. Vaccine. 2006; 24(15); 2869-2879. [PubMed: 16446016].
  5. Mateu and Diaz, 2008: Mateu E, Diaz I. The challenge of PRRS immunology. Veterinary journal (London, England : 1997). 2008; 177(3); 345-351. [PubMed: 17644436].
  6. Mokhtar et al., 2017: Mokhtar H, Biffar L, Somavarapu S, Frossard JP, McGowan S, Pedrera M, Strong R, Edwards JC, Garcia-Durán M, Rodriguez MJ, Stewart GR, Steinbach F, Graham SP. Evaluation of hydrophobic chitosan-based particulate formulations of porcine reproductive and respiratory syndrome virus vaccine candidate T cell antigens. Veterinary microbiology. 2017; 209; 66-74. [PubMed: 28228336].
  7. Pirzadeh and Dea, 1998: Pirzadeh B, Dea S. Immune response in pigs vaccinated with plasmid DNA encoding ORF5 of porcine reproductive and respiratory syndrome virus. The Journal of general virology. 1998; 79 ( Pt 5); 989-999. [PubMed: 9603313].
  8. Subramaniam et al., 2017: Subramaniam S, Piñeyro P, Derscheid RJ, Madson DM, Magstadt DR, Meng XJ. Dendritic cell-targeted porcine reproductive and respiratory syndrome virus (PRRSV) antigens adjuvanted with polyinosinic-polycytidylic acid (poly (I:C)) induced non-protective immune responses against heterologous type 2 PRRSV challenge in pigs. Veterinary immunology and immunopathology. 2017; 190; 18-25. [PubMed: 28778318].
  9. Tian et al., 2009: Tian ZJ, An TQ, Zhou YJ, Peng JM, Hu SP, Wei TC, Jiang YF, Xiao Y, Tong GZ. An attenuated live vaccine based on highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) protects piglets against HP-PRRS. Veterinary microbiology. 2009; 138(1-2); 34-40. [PubMed: 19339125].
  10. Xue et al., 2004: Xue Q, Zhao YG, Zhou YJ, Qiu HJ, Wang YF, Wu DL, Tian ZJ, Tong GZ. Immune responses of swine following DNA immunization with plasmids encoding porcine reproductive and respiratory syndrome virus ORFs 5 and 7, and porcine IL-2 and IFNgamma. Veterinary immunology and immunopathology. 2004; 102(3); 291-298. [PubMed: 15507312].

Porcine rotavirus

  1. Hu and Wang, 2008: Hu J, Wang C. [Expression and immunogenicity analysis of recombinant plasmid pW425et-Vp7 of porcine rotavirus A in Lactobacillus]. Wei sheng wu xue bao = Acta microbiologica Sinica. 2008; 48(11); 1514-1519. [PubMed: 19149168].
  2. Li et al., 2010: Li YJ, Ma GP, Li GW, Qiao XY, Ge JW, Tang LJ, Liu M, Liu LW. Oral vaccination with the porcine rotavirus VP4 outer capsid protein expressed by Lactococcus lactis induces specific antibody production. Journal of biomedicine & biotechnology. 2010; 2010; 708460. [PubMed: 20625406].
  3. Li et al., 2022: Li W, Lei M, Li Z, Li H, Liu Z, He Q, Luo R. Development of a Genetically Engineered Bivalent Vaccine against Porcine Epidemic Diarrhea Virus and Porcine Rotavirus. Viruses. 2022; 14(8); . [PubMed: 36016368].
  4. Wen et al., 2015: Wen X, Wei X, Ran X, Ni H, Cao S, Zhang Y. Immunogenicity of porcine P[6], P[7]-specific ?VP8* rotavirus subunit vaccines with a tetanus toxoid universal T cell epitope. Vaccine. 2015; 33(36); 4533-4539. [PubMed: 26192360].

Porphyromonas gulae

  1. Fournier et al., 2001: Fournier D, Mouton C, Lapierre P, Kato T, Okuda K, Ménard C. Porphyromonas gulae sp. nov., an anaerobic, gram-negative coccobacillus from the gingival sulcus of various animal hosts. International journal of systematic and evolutionary microbiology. 2001; 51(Pt 3); 1179-1189. [PubMed: 11411686].
  2. Hamada et al., 2008: Hamada N, Takahashi Y, Watanabe K, Kumada H, Oishi Y, Umemoto T. Molecular and antigenic similarities of the fimbrial major components between Porphyromonas gulae and P. gingivalis. Veterinary microbiology. 2008; 128(1-2); 108-117. [PubMed: 17977673].

Pseudomonas aeruginosa

  1. Ahmadi et al., 2012: Ahmadi H, Tabaraie B, Maleknia S, Pormirzagholi F, Nejati M, Hedayati MH. Immunological evaluation of OMP-F of native Iranian Pseudomonas aeruginosa as a protective vaccine. Journal of infection in developing countries. 2012; 6(10); 721-726. [PubMed: 23103894].
  2. Banadkoki et al., 2016: Banadkoki AZ, Keshavarzmehr M, Afshar Z, Aleyasin N, Fatemi MJ, Behrouz B, Hashemi FB. Protective effect of pilin protein with alum+naloxone adjuvant against acute pulmonary Pseudomonas aeruginosa infection. Biologicals : journal of the International Association of Biological Standardization. 2016; 44(5); 367-373. [PubMed: 27427517].
  3. Behrouz et al., 2016: Behrouz B, Mahdavi M, Amirmozafari N, Fatemi MJ, Irajian G, Bahroudi M, Hashemi FB. Immunogenicity of Pseudomonas aeruginosa recombinant b-type fagellin as a vaccine candidate: Protective efficacy in a murine burn wound sepsis model. Burns : journal of the International Society for Burn Injuries. 2016; ; . [PubMed: 27156804].
  4. Campodónico et al., 2010: Campodónico VL, Llosa NJ, Grout M, Döring G, Maira-Litrán T, Pier GB. Evaluation of flagella and flagellin of Pseudomonas aeruginosa as vaccines. Infection and immunity. 2010; 78(2); 746-755. [PubMed: 19995892].
  5. DiGiandomenico et al., 2004: DiGiandomenico A, Rao J, Goldberg JB. Oral vaccination of BALB/c mice with Salmonella enterica serovar Typhimurium expressing Pseudomonas aeruginosa O antigen promotes increased survival in an acute fatal pneumonia model. Infection and immunity. 2004; 72(12); 7012-7021. [PubMed: 15557624].
  6. Finke et al., 1990: Finke M, Duchêne M, Eckhardt A, Domdey H, von Specht BU. Protection against experimental Pseudomonas aeruginosa infection by recombinant P. aeruginosa lipoprotein I expressed in Escherichia coli. Infection and immunity. 1990; 58(7); 2241-2244. [PubMed: 2114360].
  7. Hamaoka et al., 2017: Hamaoka S, Naito Y, Katoh H, Shimizu M, Kinoshita M, Akiyama K, Kainuma A, Moriyama K, Ishii KJ, Sawa T. Efficacy comparison of adjuvants in PcrV vaccine against Pseudomonas aeruginosa pneumonia. Microbiology and immunology. 2017; 61(2); 64-74. [PubMed: 28370521].
  8. Hassan et al., 2018: Hassan R, El-Naggar W, Abd El-Aziz AM, Shaaban M, Kenawy HI, Ali YM. Immunization with outer membrane proteins (OprF and OprI) and flagellin B protects mice from pulmonary infection with mucoid and nonmucoid Pseudomonas aeruginosa. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi. 2018; 51(3); 312-320. [PubMed: 28291719].
  9. Holder et al., 2001: Holder IA, Neely AN, Frank DW. PcrV immunization enhances survival of burned Pseudomonas aeruginosa-infected mice. Infection and immunity. 2001; 69(9); 5908-5910. [PubMed: 11500471].
  10. Korpi et al., 2015: Korpi F, Irajian G, Mahadavi M, Motamedifar M, Mousavi M, Laghaei P, Raei N, Behrouz B. Active Immunization with Recombinant PilA protein Protects Against Pseudomonas aeruginosa Infection in a Mouse Burn Wound Model. Journal of microbiology and biotechnology. 2015; ; . [PubMed: 26387817].
  11. Laghaei et al., 2016: Laghaei P, Hashemi FB, Irajian G, Korpi F, Amirmozafari N, Behrouz B. Immunogenicity and protective efficacy of Pseudomonas aeruginosa type a and b flagellin vaccines in a burned mouse model. Molecular immunology. 2016; 74; 71-81. [PubMed: 27152476].
  12. Price et al., 2001: Price BM, Galloway DR, Baker NR, Gilleland LB, Staczek J, Gilleland HE Jr. Protection against Pseudomonas aeruginosa chronic lung infection in mice by genetic immunization against outer membrane protein F (OprF) of P. aeruginosa. Infection and immunity. 2001; 69(5); 3510-3515. [PubMed: 11292786].
  13. Rehm et al., 1994: Rehm BH, Grabert E, Hein J, Winkler UK. Antibody response of rabbits and cystic fibrosis patients to an alginate-specific outer membrane protein of a mucoid strain of Pseudomonas aeruginosa. Microbial pathogenesis. 1994; 16(1); 43-51. [PubMed: 8057826].
  14. Saha et al., 2006: Saha S, Takeshita F, Sasaki S, Matsuda T, Tanaka T, Tozuka M, Takase K, Matsumoto T, Okuda K, Ishii N, Yamaguchi K, Klinman DM, Xin KQ, Okuda K. Multivalent DNA vaccine protects mice against pulmonary infection caused by Pseudomonas aeruginosa. Vaccine. 2006; 24(37-39); 6240-6249. [PubMed: 16806598].
  15. Salyers and Whitt., 2002: Abigail A. Salyers, Dixie D. Whitt. Pseudomonas aeruginosa and Related Species, a Lesson in Versatility. 247-62. Bacterial Pathogenesis: A Molecular Approach. 2002. ASM Press, Washington D.C. USA.
  16. Soldatenkova et al., 2013: Soldatenkova AV, Ge?derova LA, Akhmatova NK, Mikha?lova NA. [Pseudomonas aeruginosa recombinant proteins: effect on mice cytokine profile]. Zhurnal mikrobiologii, epidemiologii, i immunobiologii. 2013; (6); 80-87. [PubMed: 24605680].
  17. Textbook of Bacteriology: Pseudomonas [http://www.textbookofbacteriology.net/pseudomonas.html]
  18. Thomas et al., 2009: Thomas LD, Cripps AW, Kyd JM. Immune response mechanisms against Pseudomonas aeruginosa associated with mucosal immunization with protein antigens in a rat model of acute lung infection. Vaccine. 2009; 27(25-26); 3324-3330. [PubMed: 19200832].
  19. Wu et al., 2012: Wu W, Huang J, Duan B, Traficante DC, Hong H, Risech M, Lory S, Priebe GP. Th17-stimulating protein vaccines confer protection against Pseudomonas aeruginosa pneumonia. American journal of respiratory and critical care medicine. 2012; 186(5); 420-427. [PubMed: 22723292].
  20. Yang et al., 2017: Yang F, Gu J, Yang L, Gao C, Jing H, Wang Y, Zeng H, Zou Q, Lv F, Zhang J. Protective Efficacy of the Trivalent Pseudomonas aeruginosa Vaccine Candidate PcrV-OprI-Hcp1 in Murine Pneumonia and Burn Models. Scientific reports. 2017; 7(1); 3957. [PubMed: 28638106].
  21. Zaidi et al., 2006: Zaidi TS, Priebe GP, Pier GB. A live-attenuated Pseudomonas aeruginosa vaccine elicits outer membrane protein-specific active and passive protection against corneal infection. Infection and immunity. 2006; 74(2); 975-983. [PubMed: 16428743].

Pseudorabies virus

  1. Brockmeier and Mengeling, 1996: Brockmeier SL, Mengeling WL. Comparison of the protective response induced by NYVAC vaccinia recombinants expressing either gp50 or gII and gp50 of pseudorabies virus. Canadian journal of veterinary research = Revue canadienne de recherche veterinaire. 1996; 60(4); 315-317. [PubMed: 8904669].
  2. Chang et al., 1998: Chang SW, Bu J, Rompato G, Garmendia AE. A vector DNA vaccine encoding pseudorabies virus immediate early protein demonstrates partial protection in mice against lethal virus challenge. Viral immunology. 1998; 11(1); 27-36. [PubMed: 9586695].
  3. Dijkstra et al., 1997: Dijkstra JM, Gerdts V, Klupp BG, Mettenleiter TC. Deletion of glycoprotein gM of pseudorabies virus results in attenuation for the natural host. The Journal of general virology. 1997; 78 ( Pt 9); 2147-2151. [PubMed: 9292000].
  4. Eo et al., 2006: Eo SK, Yoon HA, Aleyas AG, Park SO, Han YW, Chae JS, Lee JH, Song HJ, Cho JG. Systemic and mucosal immunity induced by oral somatic transgene vaccination against glycoprotein B of pseudorabies virus using live attenuated Salmonella typhimurium. FEMS immunology and medical microbiology. 2006; 47(3); 451-461. [PubMed: 16872383].
  5. Ferrari et al., 2000: Ferrari M, Brack A, Romanelli MG, Mettenleiter TC, Corradi A, Dal Mas N, Losio MN, Silini R, Pinoni C, Pratelli A. A study of the ability of a TK-negative and gI/gE-negative pseudorabies virus (PRV) mutant inoculated by different routes to protect pigs against PRV infection. Journal of veterinary medicine. B, Infectious diseases and veterinary public health. 2000; 47(10); 753-762. [PubMed: 11204130].
  6. Fischer et al., 2003: Fischer T, Planz O, Stitz L, Rziha HJ. Novel recombinant parapoxvirus vectors induce protective humoral and cellular immunity against lethal herpesvirus challenge infection in mice. Journal of virology. 2003; 77(17); 9312-9323. [PubMed: 12915547].
  7. Fuchs et al., 1990: Fuchs W, Rziha HJ, Lukàcs N, Braunschweiger I, Visser N, Lütticken D, Schreurs CS, Thiel HJ, Mettenleiter TC. Pseudorabies virus glycoprotein gI: in vitro and in vivo analysis of immunorelevant epitopes. The Journal of general virology. 1990; 71 ( Pt 5); 1141-1151. [PubMed: 1693164].
  8. Grabowska et al., 2009: Grabowska AK, Lipińska AD, Rohde J, Szewczyk B, Bienkowska-Szewczyk K, Rziha HJ. New baculovirus recombinants expressing Pseudorabies virus (PRV) glycoproteins protect mice against lethal challenge infection. Vaccine. 2009; 27(27); 3584-3591. [PubMed: 19464538].
  9. Han et al., 2008: Han YW, Aleyas AG, George JA, Kim SJ, Kim HK, Yoon HA, Yoo DJ, Kang SH, Kim K, Eo SK. Polarization of protective immunity induced by replication-incompetent adenovirus expressing glycoproteins of pseudorabies virus. Experimental & molecular medicine. 2008; 40(6); 583-595. [PubMed: 19116444].
  10. Jöns et al., 1997: Jöns A, Gerdts V, Lange E, Kaden V, Mettenleiter TC. Attenuation of dUTPase-deficient pseudorabies virus for the natural host. Veterinary microbiology. 1997; 56(1-2); 47-54. [PubMed: 9228681].
  11. Katayama et al., 1997: Katayama S, Okada N, Yoshiki K, Okabe T, Shimizu Y. Protective effect of glycoprotein gC-rich antigen against pseudorabies virus. The Journal of veterinary medical science / the Japanese Society of Veterinary Science. 1997; 59(8); 657-663. [PubMed: 9300361].
  12. Kimman et al., 1994: Kimman TG, De Wind N, De Bruin T, de Visser Y, Voermans J. Inactivation of glycoprotein gE and thymidine kinase or the US3-encoded protein kinase synergistically decreases in vivo replication of pseudorabies virus and the induction of protective immunity. Virology. 1994; 205(2); 511-518. [PubMed: 7975253].
  13. Matsuda et al., 1992: Matsuda Tsuchida A, Katayama S, Okada N, Okabe T, Sasaki N. Protection from pseudorabies virus challenge in mice by a combination of purified gII, gIII and gVI antigens. The Journal of veterinary medical science / the Japanese Society of Veterinary Science. 1992; 54(3); 447-452. [PubMed: 1322712].
  14. Merck Vet Manual: Pseudorabies: Merck Veterinary Manual- Pseudorabies [http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/102200.htm]
  15. Peeters et al., 1994: Peeters B, Bouma A, de Bruin T, Moormann R, Gielkens A, Kimman T. Non-transmissible pseudorabies virus gp50 mutants: a new generation of safe live vaccines. Vaccine. 1994; 12(4); 375-380. [PubMed: 8178562].
  16. Shiau et al., 2001: Shiau AL, Chu CY, Su WC, Wu CL. Vaccination with the glycoprotein D gene of pseudorabies virus delivered by nonpathogenic Escherichia coli elicits protective immune responses. Vaccine. 2001; 19(23-24); 3277-3284. [PubMed: 11312026].
  17. Vrublevskaia et al., 2007: Vrublevskaia VV, Musienko VS, Skarga IuIu, Morenkov OS. [Immunological characteristics of Aujeszky's disease virus glycoprotein]. Voprosy virusologii. 2007; 52(3); 33-37. [PubMed: 17601050].
  18. Weigel et al., 2003: Weigel RM, Hahn EC, Scherba G. Survival and immunization of raccoons after exposure to pseudorabies (Aujeszky's disease) virus gene-deleted vaccines. Veterinary microbiology. 2003; 92(1-2); 19-24. [PubMed: 12488067].
  19. Wiki: Pseudorabies: Pseudorabies [http://en.wikipedia.org/wiki/Pseudorabies]

Psittacid herpesvirus 1

  1. Katoh et al., 2010: Katoh H, Ogawa H, Ohya K, Fukushi H. A review of DNA viral infections in psittacine birds. The Journal of veterinary medical science / the Japanese Society of Veterinary Science. 2010; 72(9); 1099-1106. [PubMed: 20424393].
  2. Merck Vet Manual: Pacheco's Disease: Merck Veterinary Manual: Pacheco's Disease [http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/170223.htm]

Rabbit hemorrhagic disease virus

  1. Fischer et al., 1997: Fischer L, Le Gros FX, Mason PW, Paoletti E. A recombinant canarypox virus protects rabbits against a lethal rabbit hemorrhagic disease virus (RHDV) challenge. Vaccine. 1997; 15(1); 90-96. [PubMed: 9041672].
  2. Rohde et al., 2011: Rohde J, Schirrmeier H, Granzow H, Rziha HJ. A new recombinant Orf virus (ORFV, Parapoxvirus) protects rabbits against lethal infection with rabbit hemorrhagic disease virus (RHDV). Vaccine. 2011; 29(49); 9256-9264. [PubMed: 22001119].
  3. Wiki: Rabbit haemorrhagic disease: Rabbit haemorrhagic disease [https://en.wikipedia.org/wiki/Rabbit_haemorrhagic_disease]
  4. Yuan et al., 2013: Yuan D, Qu L, Liu J, Guo D, Jiang Q, Lin H, Si C. DNA vaccination with a gene encoding VP60 elicited protective immunity against rabbit hemorrhagic disease virus. Veterinary microbiology. 2013; 164(1-2); 1-8. [PubMed: 23419819].
  5. Zheng et al., 2016: Zheng X, Wang S, Zhang W, Liu X, Yi Y, Yang S, Xia X, Li Y, Zhang Z. Development of a VLP-based vaccine in silkworm pupae against rabbit hemorrhagic disease virus. International immunopharmacology. 2016; 40; 164-169. [PubMed: 27598862].

Rabies virus

  1. Aldrich et al., 2021: Aldrich C, Leroux-Roels I, Huang KB, Bica MA, Loeliger E, Schoenborn-Kellenberger O, Walz L, Leroux-Roels G, von Sonnenburg F, Oostvogels L. Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: A phase 1 trial. Vaccine. 2021; 39(8); 1310-1318. [PubMed: 33487468].
  2. Amann et al., 2013: Amann R, Rohde J, Wulle U, Conlee D, Raue R, Martinon O, Rziha HJ. A new rabies vaccine based on a recombinant ORF virus (parapoxvirus) expressing the rabies virus glycoprotein. Journal of virology. 2013; 87(3); 1618-1630. [PubMed: 23175365].
  3. Aspden et al., 2003: Aspden K, Passmore JA, Tiedt F, Williamson AL. Evaluation of lumpy skin disease virus, a capripoxvirus, as a replication-deficient vaccine vector. The Journal of general virology. 2003; 84(Pt 8); 1985-1996. [PubMed: 12867628].
  4. Brochier et al., 1991: Brochier B, Kieny MP, Costy F, Coppens P, Bauduin B, Lecocq JP, Languet B, Chappuis G, Desmettre P, Afiademanyo K. Large-scale eradication of rabies using recombinant vaccinia-rabies vaccine. Nature. 1991; 354(6354); 520-522. [PubMed: 1758494].
  5. FDA: Imovax: FDA: Imovax vaccine information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm180097.htm]
  6. FDA: Rabavert: FDA: Rabavert vaccine information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm133517.htm]
  7. Fujii et al., 1994: Fujii H, Takita-Sonoda Y, Mifune K, Hirai K, Nishizono A, Mannen K. Protective efficacy in mice of post-exposure vaccination with vaccinia virus recombinant expressing either rabies virus glycoprotein or nucleoprotein. The Journal of general virology. 1994; 75 ( Pt 6); 1339-1344. [PubMed: 8207400].
  8. Giesen et al., 2015: Giesen A, Gniel D, Malerczyk C. 30 Years of rabies vaccination with Rabipur: a summary of clinical data and global experience. Expert review of vaccines. 2015; 14(3); 351-367. [PubMed: 25683583].
  9. Jas et al., 2012: Jas D, Coupier C, Toulemonde CE, Guigal PM, Poulet H. Three-year duration of immunity in cats vaccinated with a canarypox-vectored recombinant rabies virus vaccine. Vaccine. 2012; 30(49); 6991-6996. [PubMed: 23059358].
  10. Kang et al., 2015: Kang H, Qi Y, Wang H, Zheng X, Gao Y, Li N, Yang S, Xia X. Chimeric rabies virus-like particles containing membrane-anchored GM-CSF enhances the immune response against rabies virus. Viruses. 2015; 7(3); 1134-1152. [PubMed: 25768031].
  11. Kaur et al., 2010: Kaur M, Saxena A, Rai A, Bhatnagar R. Rabies DNA vaccine encoding lysosome-targeted glycoprotein supplemented with Emulsigen-D confers complete protection in preexposure and postexposure studies in BALB/c mice. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2010; 24(1); 173-183. [PubMed: 19741168].
  12. Lodmell et al., 2000: Lodmell DL, Ray NB, Ulrich JT, Ewalt LC. DNA vaccination of mice against rabies virus: effects of the route of vaccination and the adjuvant monophosphoryl lipid A (MPL). Vaccine. 2000; 18(11-12); 1059-1066. [PubMed: 10590326].
  13. Mackowiak et al., 1999: Mackowiak M, Maki J, Motes-Kreimeyer L, Harbin T, Van Kampen K. Vaccination of wildlife against rabies: successful use of a vectored vaccine obtained by recombinant technology. Advances in veterinary medicine. 1999; 41; 571-583. [PubMed: 9890044].
  14. Manning et al., 2008: Manning SE, Rupprecht CE, Fishbein D, Hanlon CA, Lumlertdacha B, Guerra M, Meltzer MI, Dhankhar P, Vaidya SA, Jenkins SR, Sun B, Hull HF. Human rabies prevention--United States, 2008: recommendations of the Advisory Committee on Immunization Practices. MMWR. Recommendations and reports : Morbidity and mortality weekly report. Recommendations and reports / Centers for Disease Control. 2008; 57(RR-3); 1-28. [PubMed: 18496505].
  15. Morimoto et al., 2005: Morimoto K, Shoji Y, Inoue S. Characterization of P gene-deficient rabies virus: propagation, pathogenicity and antigenicity. Virus research. 2005; 111(1); 61-67. [PubMed: 15896403].
  16. Napolitano et al., 2020: Napolitano F, Merone R, Abbate A, Ammendola V, Horncastle E, Lanzaro F, Esposito M, Contino AM, Sbrocchi R, Sommella A, Duncan JD, Hinds J, Urbanowicz RA, Lahm A, Colloca S, Folgori A, Ball JK, Nicosia A, Wizel B, Capone S, Vitelli A. A next generation vaccine against human rabies based on a single dose of a chimpanzee adenovirus vector serotype C. PLoS neglected tropical diseases. 2020; 14(7); e0008459. [PubMed: 32667913].
  17. NCT03741270: Safety of Rabivax-S for Pre-exposure Prophylaxis [https://clinicaltrials.gov/study/NCT03741270?tab=results]
  18. Osorio et al., 1999: Osorio JE, Tomlinson CC, Frank RS, Haanes EJ, Rushlow K, Haynes JR, Stinchcomb DT. Immunization of dogs and cats with a DNA vaccine against rabies virus. Vaccine. 1999; 17(9-10); 1109-1116. [PubMed: 10195621].
  19. Osorio et al., 2003: Osorio JE, Frank RS, Moss K, Taraska T, Powell T, Stinchcomb DT. Raccoon poxvirus as a mucosal vaccine vector for domestic cats. Journal of drug targeting. 2003; 11(8-10); 463-470. [PubMed: 15203914].
  20. Rabavert: Rabavert Package Insert [http://www.novartisvaccines.com/downloads/diseases-products/us-pl-rabavert.pdf]
  21. Rupprecht et al., 2004: Rupprecht CE, Hanlon CA, Slate D. Oral vaccination of wildlife against rabies: opportunities and challenges in prevention and control. Developments in biologicals. 2004; 119; 173-184. [PubMed: 15742629].
  22. Saxena et al., 2008: Saxena S, Dahiya SS, Sonwane AA, Patel CL, Saini M, Rai A, Gupta PK. A sindbis virus replicon-based DNA vaccine encoding the rabies virus glycoprotein elicits immune responses and complete protection in mice from lethal challenge. Vaccine. 2008; 26(51); 6592-6601. [PubMed: 18848857].
  23. Stoffregen et al., 2006: Stoffregen WC, Olsen SC, Bricker BJ. Parenteral vaccination of domestic pigs with Brucella abortus strain RB51. American journal of veterinary research. 2006; 67(10); 1802-1808. [PubMed: 17014337].
  24. Takita-Sonoda et al., 1993: Takita-Sonoda Y, Fujii H, Mifune K, Ito Y, Hiraga M, Nishizono A, Mannen K, Minamoto N. Resistance of mice vaccinated with rabies virus internal structural proteins to lethal infection. Archives of virology. 1993; 132(1-2); 51-65. [PubMed: 8352659].
  25. Wang et al., 2018: Wang C, Dulal P, Zhou X, Xiang Z, Goharriz H, Banyard A, Green N, Brunner L, Ventura R, Collin N, Draper SJ, Hill AVS, Ashfield R, Fooks AR, Ertl HC, Douglas AD. A simian-adenovirus-vectored rabies vaccine suitable for thermostabilisation and clinical development for low-cost single-dose pre-exposure prophylaxis. PLoS neglected tropical diseases. 2018; 12(10); e0006870. [PubMed: 30372438].
  26. Wiki: Rabies: Wiki: Rabies [http://en.wikipedia.org/wiki/Rabies]
  27. Wu et al., 2011: Wu X, Franka R, Henderson H, Rupprecht CE. Live attenuated rabies virus co-infected with street rabies virus protects animals against rabies. Vaccine. 2011; ; . [PubMed: 21514343].
  28. Wu et al., 2014: Wu Q, Yu F, Xu J, Li Y, Chen H, Xiao S, Fu ZF, Fang L. Rabies-virus-glycoprotein-pseudotyped recombinant baculovirus vaccine confers complete protection against lethal rabies virus challenge in a mouse model. Veterinary microbiology. 2014; 171(1-2); 93-9101. [PubMed: 24793501].
  29. Xiang et al., 1994: Xiang ZQ, Spitalnik S, Tran M, Wunner WH, Cheng J, Ertl HC. Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus. Virology. 1994; 199(1); 132-140. [PubMed: 8116236].
  30. Xiang et al., 2014: Xiang ZQ, Greenberg L, Ertl HC, Rupprecht CE. Protection of non-human primates against rabies with an adenovirus recombinant vaccine. Virology. 2014; 450-451; 243-249. [PubMed: 24503087].
  31. Yu et al., 2012: Yu P, Huang Y, Zhang Y, Tang Q, Liang G. Production and evaluation of a chromatographically purified Vero cell rabies vaccine (PVRV) in China using microcarrier technology. Human vaccines & immunotherapeutics. 2012; 8(9); 1230-1235. [PubMed: 22894963].
  32. Zhang et al., 2016: Zhang Y, Zhang S, Li W, Hu Y, Zhao J, Liu F, Lin H, Liu Y, Wang L, Xu S, Hu R, Shao H, Li L. A novel rabies vaccine based-on toll-like receptor 3 (TLR3) agonist PIKA adjuvant exhibiting excellent safety and efficacy in animal studies. Virology. 2016; 489; 165-172. [PubMed: 26765968].

Reticuloendotheliosis Virus

  1. Drechsler et al., 2013: Drechsler Y, Tkalcic S, Saggese MD, Shivaprasad HL, Ajithdoss DK, Collisson EW. A DNA vaccine expressing ENV and GAG offers partial protection against reticuloendotheliosis virus in the prairie chicken (Tympanicus cupido). Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians. 2013; 44(2); 251-261. [PubMed: 23805542].
  2. Ren et al., 2018: Ren Z, Meng F, Li Q, Wang Y, Liu X, Cui Z, Chang S, Zhao P. Protection induced by a gp90 protein-based vaccine derived from a Reticuloendotheliosis virus strain isolated from a contaminated IBD vaccine. Virology journal. 2018; 15(1); 42. [PubMed: 29530099].

Ricin toxin of Ricinus communis

  1. Mayo Clinic - Ricin poisoning: Ricin poisoning [http://www.mayoclinic.com/health/ricin/AN02211]
  2. Smallshaw et al., 2002: Smallshaw JE, Firan A, Fulmer JR, Ruback SL, Ghetie V, Vitetta ES. A novel recombinant vaccine which protects mice against ricin intoxication. Vaccine. 2002; 20(27-28); 3422-3427. [PubMed: 12213413].

Rickettsia rickettsii

  1. Gong et al., 2015: Gong W, Wang P, Xiong X, Jiao J, Yang X, Wen B. Chloroform-Methanol Residue of Coxiella burnetii Markedly Potentiated the Specific Immunoprotection Elicited by a Recombinant Protein Fragment rOmpB-4 Derived from Outer Membrane Protein B of Rickettsia rickettsii in C3H/HeN Mice. PloS one. 2015; 10(4); e0124664. [PubMed: 25909586].

Rickettsia spp

  1. Carl et al., 1990: Carl M, Dobson ME, Ching WM, Dasch GA. Characterization of the gene encoding the protective paracrystalline-surface-layer protein of Rickettsia prowazekii: presence of a truncated identical homolog in Rickettsia typhi. Proceedings of the National Academy of Sciences of the United States of America. 1990; 87(21); 8237-8241. [PubMed: 2122457].
  2. Caro-Gomez et al., 2014: Caro-Gomez E, Gazi M, Goez Y, Valbuena G. Discovery of novel cross-protective Rickettsia prowazekii T-cell antigens using a combined reverse vaccinology and in vivo screening approach. Vaccine. 2014; 32(39); 4968-4976. [PubMed: 25010827].
  3. Crocquet-Valdes et al., 2001: Crocquet-Valdes PA, Díaz-Montero CM, Feng HM, Li H, Barrett AD, Walker DH. Immunization with a portion of rickettsial outer membrane protein A stimulates protective immunity against spotted fever rickettsiosis. Vaccine. 2001; 20(5-6); 979-988. [PubMed: 11738766].
  4. Díaz-Montero et al., 2001: Díaz-Montero CM, Feng HM, Crocquet-Valdes PA, Walker DH. Identification of protective components of two major outer membrane proteins of spotted fever group Rickettsiae. The American journal of tropical medicine and hygiene. 2001; 65(4); 371-378. [PubMed: 11693887].
  5. Gazi et al., 2013: Gazi M, Caro-Gomez E, Goez Y, Cespedes MA, Hidalgo M, Correa P, Valbuena G. Discovery of a protective Rickettsia prowazekii antigen recognized by CD8+ T cells, RP884, using an in vivo screening platform. PloS one. 2013; 8(10); e76253. [PubMed: 24146844].
  6. Gong et al., 2014: Gong W, Xiong X, Qi Y, Jiao J, Duan C, Wen B. Identification of novel surface-exposed proteins of Rickettsia rickettsii by affinity purification and proteomics. PloS one. 2014; 9(6); e100253. [PubMed: 24950252].
  7. Gong et al., 2014: Gong W, Xiong X, Qi Y, Jiao J, Duan C, Wen B. Surface protein Adr2 of Rickettsia rickettsii induced protective immunity against Rocky Mountain spotted fever in C3H/HeN mice. Vaccine. 2014; 32(18); 2027-2033. [PubMed: 24582636].
  8. Gong et al., 2015: Gong W, Qi Y, Xiong X, Jiao J, Duan C, Wen B. Rickettsia rickettsii outer membrane protein YbgF induces protective immunity in C3H/HeN mice. Human vaccines & immunotherapeutics. 2015; 11(3); 642-649. [PubMed: 25714655].
  9. Jiao et al., 2005: Jiao Y, Wen B, Chen M, Niu D, Zhang J, Qiu L. Analysis of immunoprotectivity of the recombinant OmpA of Rickettsia heilongjiangensis. Annals of the New York Academy of Sciences. 2005; 1063; 261-265. [PubMed: 16481525].
  10. Sears et al., 2012: Sears KT, Ceraul SM, Gillespie JJ, Allen ED Jr, Popov VL, Ammerman NC, Rahman MS, Azad AF. Surface proteome analysis and characterization of surface cell antigen (Sca) or autotransporter family of Rickettsia typhi. PLoS pathogens. 2012; 8(8); e1002856. [PubMed: 22912578].
  11. Seong et al., 1997: Seong SY, Huh MS, Jang WJ, Park SG, Kim JG, Woo SG, Choi MS, Kim IS, Chang WH. Induction of homologous immune response to Rickettsia tsutsugamushi Boryong with a partial 56-kilodalton recombinant antigen fused with the maltose-binding protein MBP-Bor56. Infection and immunity. 1997; 65(4); 1541-1545. [PubMed: 9119501].
  12. Textbook of Bacteriology: Online Textbook of Bacteriology: Rickettsial Diseases [http://www.textbookofbacteriology.net/Rickettsia_2.html]
  13. Wang et al., 2017: Wang P, Xiong X, Jiao J, Yang X, Jiang Y, Wen B, Gong W. Th1 epitope peptides induce protective immunity against Rickettsia rickettsii infection in C3H/HeN mice. Vaccine. 2017; 35(51); 7204-7212. [PubMed: 29032899].
  14. Wiki: Rickettsia: Rickettsia [http://en.wikipedia.org/wiki/Rickettsia]

Riemerella anatipestifer

  1. Merck Vet Manual: Riemerella anatipestifer: Merck Veterinary Manual- Riemerella anatipestifer Infection: Introduction [http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/204000.htm]

Rift Valley Fever virus

  1. Busquets et al., 2014: Busquets N, Lorenzo G, López-Gil E, Rivas R, Solanes D, Galindo-Cardiel I, Xavier Abad F, Rodríguez F, Bensaid A, Warimwe G, Gilbert SC, Domingo M, Brun A. Efficacy assessment of an MVA vectored Rift Valley Fever vaccine in lambs. Antiviral research. 2014; ; . [PubMed: 24933081].
  2. Faburay et al., 2014: Faburay B, Lebedev M, McVey DS, Wilson W, Morozov I, Young A, Richt JA. A glycoprotein subunit vaccine elicits a strong Rift Valley fever virus neutralizing antibody response in sheep. Vector borne and zoonotic diseases (Larchmont, N.Y.). 2014; 14(10); 746-756. [PubMed: 25325319].
  3. Holman et al., 2009: Holman DH, Penn-Nicholson A, Wang D, Woraratanadharm J, Harr MK, Luo M, Maher EM, Holbrook MR, Dong JY. A complex adenovirus-vectored vaccine against Rift Valley fever virus protects mice against lethal infection in the presence of preexisting vector immunity. Clinical and vaccine immunology : CVI. 2009; 16(11); 1624-1632. [PubMed: 19776190].
  4. Ikegami et al., 2015: Ikegami T, Hill TE, Smith JK, Zhang L, Juelich TL, Gong B, Slack OA, Ly HJ, Lokugamage N, Freiberg AN. Rift Valley Fever Virus MP-12 Vaccine Is Fully Attenuated by a Combination of Partial Attenuations in the S, M, and L Segments. Journal of virology. 2015; 89(14); 7262-7276. [PubMed: 25948740].
  5. Jenkin et al., 2023: Jenkin D, Wright D, Folegatti PM, Platt A, Poulton I, Lawrie A, Tran N, Boyd A, Turner C, Gitonga JN, Karanja HK, Mugo D, Ewer KJ, Bowden TA, Gilbert SC, Charleston B, Kaleebu P, Hill AVS, Warimwe GM. Safety and immunogenicity of a ChAdOx1 vaccine against Rift Valley fever in UK adults: an open-label, non-randomised, first-in-human phase 1 clinical trial. The Lancet. Infectious diseases. 2023; ; . [PubMed: 37060917].
  6. Kalbina et al., 2016: Kalbina I, Lagerqvist N, Moiane B, Ahlm C, Andersson S, Strid Å, Falk KI. Arabidopsis thaliana plants expressing Rift Valley fever virus antigens: Mice exhibit systemic immune responses as the result of oral administration of the transgenic plants. Protein expression and purification. 2016; 127; 61-67. [PubMed: 27402440].
  7. Lagerqvist et al., 2009: Lagerqvist N, Näslund J, Lundkvist A, Bouloy M, Ahlm C, Bucht G. Characterisation of immune responses and protective efficacy in mice after immunisation with Rift Valley Fever virus cDNA constructs. Virology journal. 2009; 6; 6. [PubMed: 19149901].
  8. Pittman et al., 1999: Pittman PR, Liu CT, Cannon TL, Makuch RS, Mangiafico JA, Gibbs PH, Peters CJ. Immunogenicity of an inactivated Rift Valley fever vaccine in humans: a 12-year experience. Vaccine. 1999; 18(1-2); 181-189. [PubMed: 10501248].
  9. Wallace et al., 2006: Wallace DB, Ellis CE, Espach A, Smith SJ, Greyling RR, Viljoen GJ. Protective immune responses induced by different recombinant vaccine regimes to Rift Valley fever. Vaccine. 2006; 24(49-50); 7181-7189. [PubMed: 16870311].
  10. Wiki: Rift Valley Fever virus: Rift Valley Fever [http://en.wikipedia.org/wiki/Rift_valley_fever_virus]

rinderpest virus

  1. Jones et al., 1997: Jones L, Tenorio E, Gorham J, Yilma T. Protective vaccination of ferrets against canine distemper with recombinant pox virus vaccines expressing the H or F genes of rinderpest virus. American journal of veterinary research. 1997; 58(6); 590-593. [PubMed: 9185963].
  2. Kamata et al., 2001: Kamata H, Ohishi K, Hulskotte E, Osterhaus AD, Inui K, Shaila MS, Yamanouchi K, Barrett T. Rinderpest virus (RPV) ISCOM vaccine induces protection in cattle against virulent RPV challenge. Vaccine. 2001; 19(25-26); 3355-3359. [PubMed: 11348698].
  3. Khandelwal et al., 2004: Khandelwal A, Renukaradhya GJ, Rajasekhar M, Sita GL, Shaila MS. Systemic and oral immunogenicity of hemagglutinin protein of rinderpest virus expressed by transgenic peanut plants in a mouse model. Virology. 2004; 323(2); 284-291. [PubMed: 15193924].
  4. Ngichabe et al., 2002: Ngichabe CK, Wamwayi HM, Ndungu EK, Mirangi PK, Bostock CJ, Black DN, Barrett T. Long term immunity in African cattle vaccinated with a recombinant capripox-rinderpest virus vaccine. Epidemiology and infection. 2002; 128(2); 343-349. [PubMed: 12002554].
  5. Verardi et al., 2002: Verardi PH, Aziz FH, Ahmad S, Jones LA, Beyene B, Ngotho RN, Wamwayi HM, Yesus MG, Egziabher BG, Yilma TD. Long-term sterilizing immunity to rinderpest in cattle vaccinated with a recombinant vaccinia virus expressing high levels of the fusion and hemagglutinin glycoproteins. Journal of virology. 2002; 76(2); 484-491. [PubMed: 11752138].

Rotavirus

  1. Afchangi et al., 2018: Afchangi A, Arashkia A, Shahosseini Z, Jalilvand S, Marashi SM, Roohvand F, Mohajel N, Shoja Z. Immunization of Mice by Rotavirus NSP4-VP6 Fusion Protein Elicited Stronger Responses Compared to VP6 Alone. Viral immunology. 2018; 31(3); 233-241. [PubMed: 29185875].
  2. Choi et al., 2002: Choi AH, McNeal MM, Flint JA, Basu M, Lycke NY, Clements JD, Bean JA, Davis HL, McCluskie MJ, VanCott JL, Ward RL. The level of protection against rotavirus shedding in mice following immunization with a chimeric VP6 protein is dependent on the route and the coadministered adjuvant. Vaccine. 2002; 20(13-14); 1733-1740. [PubMed: 11906760].
  3. FDA: ROTARIX: FDA: ROTARIX vaccine information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm133920.htm]
  4. FDA: RotaTeq: FDA: RotaTeq vaccine information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094063.htm]
  5. Garaicoechea et al., 2008: Garaicoechea L, Olichon A, Marcoppido G, Wigdorovitz A, Mozgovoj M, Saif L, Surrey T, Parreño V. Llama-derived single-chain antibody fragments directed to rotavirus VP6 protein possess broad neutralizing activity in vitro and confer protection against diarrhea in mice. Journal of virology. 2008; 82(19); 9753-9764. [PubMed: 18632867].
  6. Herrmann et al., 1996: Herrmann JE, Chen SC, Fynan EF, Santoro JC, Greenberg HB, Robinson HL. DNA vaccines against rotavirus infections. Archives of virology. Supplementum. 1996; 12; 207-215. [PubMed: 9015117].
  7. Herrmann et al., 1999: Herrmann JE, Chen SC, Jones DH, Tinsley-Bown A, Fynan EF, Greenberg HB, Farrar GH. Immune responses and protection obtained by oral immunization with rotavirus VP4 and VP7 DNA vaccines encapsulated in microparticles. Virology. 1999; 259(1); 148-153. [PubMed: 10364499].
  8. Laimbacher et al., 2012: Laimbacher AS, Esteban LE, Castello AA, Abdusetir Cerfoglio JC, Argüelles MH, Glikmann G, D'Antuono A, Mattion N, Berois M, Arbiza J, Hilbe M, Schraner EM, Seyffert M, Dresch C, Epstein AL, Ackermann M, Fraefel C. HSV-1 amplicon vectors launch the production of heterologous rotavirus-like particles and induce rotavirus-specific immune responses in mice. Molecular therapy : the journal of the American Society of Gene Therapy. 2012; 20(9); 1810-1820. [PubMed: 22713696].
  9. McClenahan et al., 2011: McClenahan SD, Krause PR, Uhlenhaut C. Molecular and infectivity studies of porcine circovirus in vaccines. Vaccine. 2011; 29(29-30); 4745-4753. [PubMed: 21569811].
  10. McNeal et al., 2007: McNeal MM, Basu M, Bean JA, Clements JD, Lycke NY, Ramne A, Löwenadler B, Choi AH, Ward RL. Intrarectal immunization of mice with VP6 and either LT(R192G) or CTA1-DD as adjuvant protects against fecal rotavirus shedding after EDIM challenge. Vaccine. 2007; 25(33); 6224-6231. [PubMed: 17629371].
  11. Offit et al., 1986: Offit PA, Clark HF, Blavat G, Greenberg HB. Reassortant rotaviruses containing structural proteins vp3 and vp7 from different parents induce antibodies protective against each parental serotype. Journal of virology. 1986; 60(2); 491-496. [PubMed: 3021983].
  12. Redmond et al., 1993: Redmond MJ, Ijaz MK, Parker MD, Sabara MI, Dent D, Gibbons E, Babiuk LA. Assembly of recombinant rotavirus proteins into virus-like particles and assessment of vaccine potential. Vaccine. 1993; 11(2); 273-281. [PubMed: 8382422].
  13. Ribes et al., 2011: Ribes JM, Ortego J, Ceriani J, Montava R, Enjuanes L, Buesa J. Transmissible gastroenteritis virus (TGEV)-based vectors with engineered murine tropism express the rotavirus VP7 protein and immunize mice against rotavirus. Virology. 2011; 410(1); 107-118. [PubMed: 21094967].
  14. Siadat-Pajouh and Cai, 2001: Siadat-Pajouh M, Cai L. Protective efficacy of rotavirus 2/6-virus-like particles combined with CT-E29H, a detoxified cholera toxin adjuvant. Viral immunology. 2001; 14(1); 31-47. [PubMed: 11270595].
  15. Wiki: Rotavirus: Wiki: Rotavirus [http://en.wikipedia.org/wiki/Rotavirus]

Rubella virus

  1. FDA: Meruvax II: FDA: Meruvax II vaccine information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094064.htm]
  2. FDA: MMR-II: FDA: MMR-II Vaccine [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094050.htm]
  3. FDA: Proquad: FDA: Proquad Vaccine [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm188806.htm]
  4. Nagieva et al., 2011: Nagieva FG, Nikulina VG, Barkova EP, Zubkov AV, Kuz'mina NS, Desiatskova RG, Tkachnko AV, Iunasova TN. [Monoclonal antibodies to rubella virus glycoprotein E1]. Zhurnal mikrobiologii, epidemiologii, i immunobiologii. 2011; (1); 61-67. [PubMed: 21446169].
  5. Rampa et al., 2020: Rampa JE, Askling HH, Lang P, Zens KD, Gültekin N, Stanga Z, Schlagenhauf P. Immunogenicity and safety of the tick-borne encephalitis vaccination (2009-2019): A systematic review. Travel medicine and infectious disease. 2020; 37; 101876. [PubMed: 32931931].
  6. Wiki: Rebella: Wiki: Rebella [http://en.wikipedia.org/wiki/Rubella]

Salmonella spp.

  1. Adriaensen et al., 2007: Adriaensen C, De Greve H, Tian JQ, De Craeye S, Gubbels E, Eeckhaut V, Van Immerseel F, Ducatelle R, Kumar M, Hernalsteens JP. A live Salmonella enterica serovar Enteritidis vaccine allows serological differentiation between vaccinated and infected animals. Infection and immunity. 2007; 75(5); 2461-2468. [PubMed: 17261603].
  2. Allam et al., 2011: Allam US, Krishna MG, Lahiri A, Joy O, Chakravortty D. Salmonella enterica Serovar Typhimurium Lacking hfq Gene Confers Protective Immunity against Murine Typhoid. PloS one. 2011; 6(2); e16667. [PubMed: 21347426].
  3. Babu et al., 2004: Babu U, Dalloul RA, Okamura M, Lillehoj HS, Xie H, Raybourne RB, Gaines D, Heckert RA. Salmonella enteritidis clearance and immune responses in chickens following Salmonella vaccination and challenge. Veterinary immunology and immunopathology. 2004; 101(3-4); 251-257. [PubMed: 15350755].
  4. Bansal et al., 2010: Bansal A, Paliwal PK, Sagi SS, Sairam M. Effect of adjuvants on immune response and protective immunity elicited by recombinant Hsp60 (GroEL) of Salmonella typhi against S. typhi infection. Molecular and cellular biochemistry. 2010; 337(1-2); 213-221. [PubMed: 19851830].
  5. Boyle et al., 2007: Boyle EC, Bishop JL, Grassl GA, Finlay BB. Salmonella: from pathogenesis to therapeutics. Journal of bacteriology. 2007; 189(5); 1489-1495. [PubMed: 17189373].
  6. Burns et al: Megan Egg – protection for commercial layers against Salmonella enteritidis infection for consumer protection [http://www.fda.gov/ohrms/dockets/dockets/00n0504/00N-0504_emc-001650-02.pdf]
  7. Cao et al., 1992: Cao Y, Wen Z, Lu D. Construction of a recombinant oral vaccine against Salmonella typhi and Salmonella typhimurium. Infection and immunity. 1992; 60(7); 2823-2827. [PubMed: 1612747].
  8. Cárdenas and Clements, 1992: Cárdenas L, Clements JD. Oral immunization using live attenuated Salmonella spp. as carriers of foreign antigens. Clinical microbiology reviews. 1992; 5(3); 328-342. [PubMed: 1498769].
  9. Chatfield et al., 1992: Chatfield SN, Strahan K, Pickard D, Charles IG, Hormaeche CE, Dougan G. Evaluation of Salmonella typhimurium strains harbouring defined mutations in htrA and aroA in the murine salmonellosis model. Microbial pathogenesis. 1992; 12(2); 145-151. [PubMed: 1584006].
  10. Chaudhuri et al., 2009: Chaudhuri RR, Peters SE, Pleasance SJ, Northen H, Willers C, Paterson GK, Cone DB, Allen AG, Owen PJ, Shalom G, Stekel DJ, Charles IG, Maskell DJ. Comprehensive identification of Salmonella enterica serovar typhimurium genes required for infection of BALB/c mice. PLoS pathogens. 2009; 5(7); e1000529. [PubMed: 19649318].
  11. Cheminay and Hensel, 2007: Cheminay C, Hensel M. Rational design of Salmonella recombinant vaccines. International journal of medical microbiology : IJMM. 2007; ; . [PubMed: 17888730 ].
  12. Choi et al., 2010: Choi J, Shin D, Ryu S. Salmonella enterica serovar Typhimurium ruvB mutant can confer protection against salmonellosis in mice. Vaccine. 2010; 28(39); 6436-6444. [PubMed: 20670908].
  13. Coynault et al., 1996: Coynault C, Robbe-Saule V, Norel F. Virulence and vaccine potential of Salmonella typhimurium mutants deficient in the expression of the RpoS (sigma S) regulon. Molecular microbiology. 1996; 22(1); 149-160. [PubMed: 8899717].
  14. Curtiss and Kelly, 1987: Curtiss R 3rd, Kelly SM. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infection and immunity. 1987; 55(12); 3035-3043. [PubMed: 3316029].
  15. Curtiss et al., 1988: Curtiss R 3rd, Goldschmidt RM, Fletchall NB, Kelly SM. Avirulent Salmonella typhimurium delta cya delta crp oral vaccine strains expressing a streptococcal colonization and virulence antigen. Vaccine. 1988; 6(2); 155-160. [PubMed: 3291452].
  16. Dorman et al., 1989: Dorman CJ, Chatfield S, Higgins CF, Hayward C, Dougan G. Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infection and immunity. 1989; 57(7); 2136-2140. [PubMed: 2543631].
  17. Dougan et al., 1987: Dougan G, Maskell D, Pickard D, Hormaeche C. Isolation of stable aroA mutants of Salmonella typhi Ty2: properties and preliminary characterisation in mice. Molecular & general genetics : MGG. 1987; 207(2-3); 402-405. [PubMed: 3039297].
  18. FDA: Vivotif: FDA: Vivotif Vaccine for Salmonella [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094070.htm]
  19. Frech et al., 1998: Frech G, Weide-Botjes M, Nussbeck E, Rabsch W, Schwarz S. Molecular characterization of Salmonella enterica subsp. enterica serovar Typhimurium DT009 isolates: differentiation of the live vaccine strain Zoosaloral from field isolates. FEMS microbiology letters. 1998; 167(2); 263-269. [PubMed: 9809427].
  20. Galdiero et al., 1999: Galdiero M, Marcatili A, Cipollaro de l'Ero G, Nuzzo I, Bentivoglio C, Galdiero M, Romano Carratelli C. Effect of transforming growth factor beta on experimental Salmonella typhimurium infection in mice. Infection and immunity. 1999; 67(3); 1432-1438. [PubMed: 10024591].
  21. Game Bird Health - Broilact: Game Bird Health - Broilact [http://www.gamebirdhealth.co.uk/broilact.htm]
  22. Germanier and Füer, 1975: Germanier R, Füer E. Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. The Journal of infectious diseases. 1975; 131(5); 553-558. [PubMed: 1092768].
  23. Gilbreath et al., 2011: Gilbreath JJ, Colvocoresses Dodds J, Rick PD, Soloski MJ, Merrell DS, Metcalf ES. Enterobacterial Common Antigen Mutants of Salmonella enterica serovar Typhimurium Establish a Persistent Infection and Provide Protection Against Subsequent Lethal Challenge. Infection and immunity. 2011; ; . [PubMed: 22025511].
  24. GSK: Typherix: GSK: Typherix vaccine information [https://ca.gsk.com/media/592159/typherix.pdf]
  25. Hormaeche et al., 1991: Hormaeche CE, Joysey HS, Desilva L, Izhar M, Stocker BA. Immunity conferred by Aro- Salmonella live vaccines. Microbial pathogenesis. 1991; 10(2); 149-158. [PubMed: 1890952].
  26. Humphreys et al., 1999: Humphreys S, Stevenson A, Bacon A, Weinhardt AB, Roberts M. The alternative sigma factor, sigmaE, is critically important for the virulence of Salmonella typhimurium. Infection and immunity. 1999; 67(4); 1560-1568. [PubMed: 10084987].
  27. Kaneshige et al., 2009: Kaneshige T, Yaguchi K, Ohgitani T. Siderophore receptor IroN is an important protective antigen against Salmonella infection in chickens. Avian diseases. 2009; 53(4); 563-567. [PubMed: 20095157].
  28. Kaniga et al., 1998: Kaniga K, Compton MS, Curtiss R 3rd, Sundaram P. Molecular and functional characterization of Salmonella enterica serovar typhimurium poxA gene: effect on attenuation of virulence and protection. Infection and immunity. 1998; 66(12); 5599-5606. [PubMed: 9826331].
  29. Kincy-Cain et al., 1996: Kincy-Cain T, Clements JD, Bost KL. Endogenous and exogenous interleukin-12 augment the protective immune response in mice orally challenged with Salmonella dublin. Infection and immunity. 1996; 64(4); 1437-1440. [PubMed: 8606114].
  30. Kustanova et al., 2006: Kustanova GA, Murashev AN, Karpov VL, Margulis BA, Guzhova IV, Prokhorenko IR, Grachev SV, Evgen'ev MB. Exogenous heat shock protein 70 mediates sepsis manifestations and decreases the mortality rate in rats. Cell stress & chaperones. 2006; 11(3); 276-286. [PubMed: 17009601].
  31. Lee et al., 2007: Lee HY, Cho SA, Lee IS, Park JH, Seok SH, Baek MW, Kim DJ, Lee SH, Hur SJ, Ban SJ, Lee YK, Han YK, Cho YK, Park JH. Evaluation of phoP and rpoS mutants of Salmonella enterica serovar Typhi as attenuated typhoid vaccine candidates: virulence and protective immune responses in intranasally immunized mice. FEMS immunology and medical microbiology. 2007; 51(2); 310-318. [PubMed: 17725620].
  32. Levine et al., 2007: Levine MM, Ferreccio C, Black RE, Lagos R, San Martin O, Blackwelder WC. Ty21a live oral typhoid vaccine and prevention of paratyphoid fever caused by Salmonella enterica Serovar Paratyphi B. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2007; 45 Suppl 1; S24-28. [PubMed: 17582564].
  33. Liu et al., 2008: Liu T, König R, Sha J, Agar SL, Tseng CT, Klimpel GR, Chopra AK. Immunological responses against Salmonella enterica serovar Typhimurium Braun lipoprotein and lipid A mutant strains in Swiss-Webster mice: potential use as live-attenuated vaccines. Microbial pathogenesis. 2008; 44(3); 224-237. [PubMed: 17997275].
  34. Matsuda et al., 2010: Matsuda K, Chaudhari AA, Kim SW, Lee KM, Lee JH. Physiology, pathogenicity and immunogenicity of lon and/or cpxR deleted mutants of Salmonella Gallinarum as vaccine candidates for fowl typhoid. Veterinary research. 2010; 41(5); 59. [PubMed: 20487719].
  35. Matsui et al., 2003: Matsui H, Suzuki M, Isshiki Y, Kodama C, Eguchi M, Kikuchi Y, Motokawa K, Takaya A, Tomoyasu T, Yamamoto T. Oral immunization with ATP-dependent protease-deficient mutants protects mice against subsequent oral challenge with virulent Salmonella enterica serovar typhimurium. Infection and immunity. 2003; 71(1); 30-39. [PubMed: 12496146].
  36. Methner et al., 1997: Methner U, Barrow PA, Martin G, Meyer H. Comparative study of the protective effect against Salmonella colonisation in newly hatched SPF chickens using live, attenuated Salmonella vaccine strains, wild-type Salmonella strains or a competitive exclusion product. International journal of food microbiology. 1997; 35(3); 223-230. [PubMed: 9105931].
  37. Nagarajan et al., 2009: Nagarajan AG, Balasundaram SV, Janice J, Karnam G, Eswarappa SM, Chakravortty D. SopB of Salmonella enterica serovar Typhimurium is a potential DNA vaccine candidate in conjugation with live attenuated bacteria. Vaccine. 2009; 27(21); 2804-2811. [PubMed: 19428891].
  38. Park et al., 2010: Park SI, Jeong JH, Choy HE, Rhee JH, Na HS, Lee TH, Her M, Cho KO, Hong Y. Immune response induced by ppGpp-defective Salmonella enterica serovar Gallinarum in chickens. Journal of microbiology (Seoul, Korea). 2010; 48(5); 674-681. [PubMed: 21046347].
  39. Pasetti et al., 1999: Pasetti MF, Anderson RJ, Noriega FR, Levine MM, Sztein MB. Attenuated deltaguaBA Salmonella typhi vaccine strain CVD 915 as a live vector utilizing prokaryotic or eukaryotic expression systems to deliver foreign antigens and elicit immune responses. Clinical immunology (Orlando, Fla.). 1999; 92(1); 76-89. [PubMed: 10413655].
  40. Paterson et al., 2009: Paterson GK, Northen H, Cone DB, Willers C, Peters SE, Maskell DJ. Deletion of tolA in Salmonella Typhimurium generates an attenuated strain with vaccine potential. Microbiology (Reading, England). 2009; 155(Pt 1); 220-228. [PubMed: 19118362].
  41. Penha et al., 2010: Penha Filho RA, de Paiva JB, da Silva MD, de Almeida AM, Berchieri A Jr. Control of Salmonella Enteritidis and Salmonella Gallinarum in birds by using live vaccine candidate containing attenuated Salmonella Gallinarum mutant strain. Vaccine. 2010; 28(16); 2853-2859. [PubMed: 20153354].
  42. Pesciaroli et al., 2011: Pesciaroli M, Aloisio F, Ammendola S, Pistoia C, Petrucci P, Tarantino M, Francia M, Battistoni A, Pasquali P. An attenuated Salmonella enterica serovar Typhimurium strain lacking the ZnuABC transporter induces protection in a mouse intestinal model of Salmonella infection. Vaccine. 2011; ; . [PubMed: 21219981].
  43. Peters et al., 2010: Peters SE, Paterson GK, Bandularatne ES, Northen HC, Pleasance S, Willers C, Wang J, Foote AK, Constantino-Casas F, Scase TJ, Blacklaws BA, Bryant CE, Mastroeni P, Charles IG, Maskell DJ. Salmonella enterica serovar typhimurium trxA mutants are protective against virulent challenge and induce less inflammation than the live-attenuated vaccine strain SL3261. Infection and immunity. 2010; 78(1); 326-336. [PubMed: 19884329].
  44. Piao et al., 2010: Piao HH, Tam VT, Na HS, Kim HJ, Ryu PY, Kim SY, Rhee JH, Choy HE, Kim SW, Hong Y. Immunological responses induced by asd and wzy/asd mutant strains of Salmonella enterica serovar Typhimurium in BALB/c mice. Journal of microbiology (Seoul, Korea). 2010; 48(4); 486-495. [PubMed: 20799091].
  45. Product Monograph: ViVaxim: Product Monograph: ViVaxim vaccine information [https://www.vaccineshoppecanada.com/document.cfm?file=vivaxim_e.pdf]
  46. Roesler et al., 2004: Roesler U, Marg H, Schröder I, Mauer S, Arnold T, Lehmann J, Truyen U, Hensel A. Oral vaccination of pigs with an invasive gyrA-cpxA-rpoB Salmonella Typhimurium mutant. Vaccine. 2004; 23(5); 595-603. [PubMed: 15542179].
  47. Rosu et al., 2007: Rosu V, Chadfield MS, Santona A, Christensen JP, Thomsen LE, Rubino S, Olsen JE. Effects of crp deletion in Salmonella enterica serotype Gallinarum. Acta veterinaria Scandinavica. 2007; 49; 14. [PubMed: 17488512].
  48. Sagi et al., 2006: Sagi SS, Paliwal P, Bansal A, Mishra C, Khan N, Mustoori SR, Ilavazhagan G, Sawhney RC, Banerjee PK. Studies on immunogenicity and protective efficacy of DnaJ of Salmonella Typhi against lethal infection by Salmonella Typhimurium in mice. Vaccine. 2006; 24(49-50); 7135-7141. [PubMed: 16887241].
  49. Salvat et al., 1992: Salvat G, Lalande F, Humbert F, Lahellec C. Use of a competitive exclusion product (Broilact) to prevent Salmonella colonization of newly hatched chicks. International journal of food microbiology. 1992; 15(3-4); 307-311. [PubMed: 1419536 ].
  50. Schneitz and Renney, 2003: Schneitz C, Renney DJ. Effect of a commerical competitive exclusion product on the colonization of Salmonella infantis in day-old pheasant chicks. Avian diseases. 2003; 47(4); 1448-1451. [PubMed: 14708995 ].
  51. Selke et al., 2007: Selke M, Meens J, Springer S, Frank R, Gerlach GF. Immunization of pigs to prevent disease in humans: construction and protective efficacy of a Salmonella enterica serovar Typhimurium live negative-marker vaccine. Infection and immunity. 2007; 75(5); 2476-2483. [PubMed: 17296750].
  52. Sydenham et al., 2000: Sydenham M, Douce G, Bowe F, Ahmed S, Chatfield S, Dougan G. Salmonella enterica serovar typhimurium surA mutants are attenuated and effective live oral vaccines. Infection and immunity. 2000; 68(3); 1109-1115. [PubMed: 10678914].
  53. Tacket and Levine, 2007: Tacket CO, Levine MM. CVD 908, CVD 908-htrA, and CVD 909 live oral typhoid vaccines: a logical progression. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2007; 45 Suppl 1; S20-23. [PubMed: 17582563].
  54. Tacket et al., 2000: Tacket CO, Sztein MB, Wasserman SS, Losonsky G, Kotloff KL, Wyant TL, Nataro JP, Edelman R, Perry J, Bedford P, Brown D, Chatfield S, Dougan G, Levine MM. Phase 2 clinical trial of attenuated Salmonella enterica serovar typhi oral live vector vaccine CVD 908-htrA in U.S. volunteers. Infection and immunity. 2000; 68(3); 1196-1201. [PubMed: 10678926].
  55. Tennant et al., 2011: Tennant SM, Wang JY, Galen JE, Simon R, Pasetti MF, Gat O, Levine MM. Engineering and pre-clinical evaluation of attenuated non-typhoidal Salmonella strains serving as live oral vaccines and as reagent strains. Infection and immunity. 2011; ; . [PubMed: 21807911].
  56. Typhim Vi: FDA: Typhim Vi Vaccine for Salmonella [http://www.fda.gov/cber/label/typhimviLB.pdf]
  57. Vorob'ev et al., 2009: Vorob'ev DS, Semenova IB, Kurbatova EA, Sveshnikov PG, NaroditskiÄ­ BS, Logunov DIu, Vaneeva NP. [Assessment of protective effect of heat shock protein-lypopolysaccharide of Salmonella typhimurium recombinant construction in mice]. Zhurnal mikrobiologii, epidemiologii, i immunobiologii. 2009; (3); 38-41. [PubMed: 19621817].
  58. Wang et al., 2000: Wang JY, Noriega FR, Galen JE, Barry E, Levine MM. Constitutive expression of the Vi polysaccharide capsular antigen in attenuated Salmonella enterica serovar typhi oral vaccine strain CVD 909. Infection and immunity. 2000; 68(8); 4647-4652. [PubMed: 10899868].
  59. Zhang-Barber et al., 1998: Zhang-Barber L, Turner AK, Dougan G, Barrow PA. Protection of chickens against experimental fowl typhoid using a nuoG mutant of Salmonella serotype Gallinarum. Vaccine. 1998; 16(9-10); 899-903. [PubMed: 9682335].

Sarcocystis neurona

  1. Crowdus et al., 2008: Crowdus CA, Marsh AE, Saville WJ, Lindsay DS, Dubey JP, Granstrom DE, Howe DK. SnSAG5 is an alternative surface antigen of Sarcocystis neurona strains that is mutually exclusive to SnSAG1. Veterinary parasitology. 2008; 158(1-2); 36-43. [PubMed: 18829171].
  2. Ellison and Witonsky, 2009: Ellison S, Witonsky S. Evidence that antibodies against recombinant SnSAG1 of Sarcocystis neurona merozoites are involved in infection and immunity in equine protozoal myeloencephalitis. Canadian journal of veterinary research = Revue canadienne de recherche veterinaire. 2009; 73(3); 176-183. [PubMed: 19794889].
  3. Elsheikha and Mansfield, 2004: Elsheikha HM, Mansfield LS. Sarcocystis neurona major surface antigen gene 1 (SAG1) shows evidence of having evolved under positive selection pressure. Parasitology research. 2004; 94(6); 452-459. [PubMed: 15517384].
  4. Marsh et al., 2004: Marsh AE, Lakritz J, Johnson PJ, Miller MA, Chiang YW, Chu HJ. Evaluation of immune responses in horses immunized using a killed Sarcocystis neurona vaccine. Veterinary therapeutics : research in applied veterinary medicine. 2004; 5(1); 34-42. [PubMed: 15150728].
  5. USDA Agricultural Research Service: Sarcocystis neurona: EPM/Sarcocystis neuorna [http://www.ars.usda.gov/Main/docs.htm?docid=11028]

SARS-CoV

  1. Bisht et al., 2004: Bisht H, Roberts A, Vogel L, Bukreyev A, Collins PL, Murphy BR, Subbarao K, Moss B. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(17); 6641-6646. [PubMed: 15096611].
  2. Chen et al., 2005: Chen Z, Zhang L, Qin C, Ba L, Yi CE, Zhang F, Wei Q, He T, Yu W, Yu J, Gao H, Tu X, Gettie A, Farzan M, Yuen KY, Ho DD. Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. Journal of virology. 2005; 79(5); 2678-2688. [PubMed: 15708987].
  3. Demurtas et al., 2016: Demurtas OC, Massa S, Illiano E, De Martinis D, Chan PK, Di Bonito P, Franconi R. Antigen Production in Plant to Tackle Infectious Diseases Flare Up: The Case of SARS. Frontiers in plant science. 2016; 7; 54. [PubMed: 26904039].
  4. DiNapoli et al., 2007: DiNapoli JM, Kotelkin A, Yang L, Elankumaran S, Murphy BR, Samal SK, Collins PL, Bukreyev A. Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens. Proceedings of the National Academy of Sciences of the United States of America. 2007; 104(23); 9788-9793. [PubMed: 17535926].
  5. Du et al., 2008: Du L, Zhao G, Lin Y, Chan C, He Y, Jiang S, Wu C, Jin DY, Yuen KY, Zhou Y, Zheng BJ. Priming with rAAV encoding RBD of SARS-CoV S protein and boosting with RBD-specific peptides for T cell epitopes elevated humoral and cellular immune responses against SARS-CoV infection. Vaccine. 2008; 26(13); 1644-1651. [PubMed: 18289745].
  6. Du et al., 2008: Du L, Zhao G, Lin Y, Sui H, Chan C, Ma S, He Y, Jiang S, Wu C, Yuen KY, Jin DY, Zhou Y, Zheng BJ. Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection. Journal of immunology (Baltimore, Md. : 1950). 2008; 180(2); 948-956. [PubMed: 18178835].
  7. Escriou et al., 2014: Escriou N, Callendret B, Lorin V, Combredet C, Marianneau P, Février M, Tangy F. Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein. Virology. 2014; 452-453; 32-41. [PubMed: 24606680].
  8. Fett et al., 2013: Fett C, DeDiego ML, Regla-Nava JA, Enjuanes L, Perlman S. Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein. Journal of virology. 2013; 87(12); 6551-6559. [PubMed: 23576515].
  9. Graham et al., 2012: Graham RL, Becker MM, Eckerle LD, Bolles M, Denison MR, Baric RS. A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nature medicine. 2012; 18(12); 1820-1826. [PubMed: 23142821].
  10. Hu et al., 2007: Hu H, Lu X, Tao L, Bai B, Zhang Z, Chen Y, Zheng F, Chen J, Chen Z, Wang H. Induction of specific immune responses by severe acute respiratory syndrome coronavirus spike DNA vaccine with or without interleukin-2 immunization using different vaccination routes in mice. Clinical and vaccine immunology : CVI. 2007; 14(7); 894-901. [PubMed: 17494640].
  11. Iwata-Yoshikawa et al., 2014: Iwata-Yoshikawa N, Uda A, Suzuki T, Tsunetsugu-Yokota Y, Sato Y, Morikawa S, Tashiro M, Sata T, Hasegawa H, Nagata N. Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine. Journal of virology. 2014; 88(15); 8597-8614. [PubMed: 24850731].
  12. Kim et al., 2004: Kim TW, Lee JH, Hung CF, Peng S, Roden R, Wang MC, Viscidi R, Tsai YC, He L, Chen PJ, Boyd DA, Wu TC. Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. Journal of virology. 2004; 78(9); 4638-4645. [PubMed: 15078946].
  13. Lamirande et al., 2008: Lamirande EW, DeDiego ML, Roberts A, Jackson JP, Alvarez E, Sheahan T, Shieh WJ, Zaki SR, Baric R, Enjuanes L, Subbarao K. A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in golden Syrian hamsters. Journal of virology. 2008; 82(15); 7721-7724. [PubMed: 18463152].
  14. Liniger et al., 2008: Liniger M, Zuniga A, Tamin A, Azzouz-Morin TN, Knuchel M, Marty RR, Wiegand M, Weibel S, Kelvin D, Rota PA, Naim HY. Induction of neutralising antibodies and cellular immune responses against SARS coronavirus by recombinant measles viruses. Vaccine. 2008; 26(17); 2164-2174. [PubMed: 18346823].
  15. Liu et al., 2018: Liu R, Wang J, Shao Y, Wang X, Zhang H, Shuai L, Ge J, Wen Z, Bu Z. A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization. Antiviral research. 2018; 150; 30-38. [PubMed: 29246504].
  16. Martin et al., 2008: Martin JE, Louder MK, Holman LA, Gordon IJ, Enama ME, Larkin BD, Andrews CA, Vogel L, Koup RA, Roederer M, Bailer RT, Gomez PL, Nason M, Mascola JR, Nabel GJ, Graham BS. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine. 2008; 26(50); 6338-6343. [PubMed: 18824060].
  17. See et al., 2006: See RH, Zakhartchouk AN, Petric M, Lawrence DJ, Mok CP, Hogan RJ, Rowe T, Zitzow LA, Karunakaran KP, Hitt MM, Graham FL, Prevec L, Mahony JB, Sharon C, Auperin TC, Rini JM, Tingle AJ, Scheifele DW, Skowronski DM, Patrick DM, Voss TG, Babiuk LA, Gauldie J, Roper RL, Brunham RC, Finlay BB. Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. The Journal of general virology. 2006; 87(Pt 3); 641-650. [PubMed: 16476986].
  18. Sheets et al., 2006: Sheets RL, Stein J, Manetz TS, Duffy C, Nason M, Andrews C, Kong WP, Nabel GJ, Gomez PL. Biodistribution of DNA plasmid vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile virus is similar, without integration, despite differing plasmid backbones or gene inserts. Toxicological sciences : an official journal of the Society of Toxicology. 2006; 91(2); 610-619. [PubMed: 16569729].
  19. Shi et al., 2006: Shi SQ, Peng JP, Li YC, Qin C, Liang GD, Xu L, Yang Y, Wang JL, Sun QH. The expression of membrane protein augments the specific responses induced by SARS-CoV nucleocapsid DNA immunization. Molecular immunology. 2006; 43(11); 1791-1798. [PubMed: 16423399].
  20. Sims et al., 2008: Sims AC, Burkett SE, Yount B, Pickles RJ. SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium. Virus research. 2008; 133(1); 33-44. [PubMed: 17451829].
  21. Tseng et al., 2012: Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, Peters CJ, Couch RB. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PloS one. 2012; 7(4); e35421. [PubMed: 22536382].
  22. Wang et al., 2014: Wang SF, Tseng SP, Yen CH, Yang JY, Tsao CH, Shen CW, Chen KH, Liu FT, Liu WT, Chen YM, Huang JC. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochemical and biophysical research communications. 2014; 451(2); 208-214. [PubMed: 25073113].
  23. Weingartl et al., 2004: Weingartl H, Czub M, Czub S, Neufeld J, Marszal P, Gren J, Smith G, Jones S, Proulx R, Deschambault Y, Grudeski E, Andonov A, He R, Li Y, Copps J, Grolla A, Dick D, Berry J, Ganske S, Manning L, Cao J. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. Journal of virology. 2004; 78(22); 12672-12676. [PubMed: 15507655].
  24. Wiki: SARS: Wiki: Sever Acute Respiratory Syndrome [http://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome]
  25. Woo et al., 2005: Woo PC, Lau SK, Tsoi HW, Chen ZW, Wong BH, Zhang L, Chan JK, Wong LP, He W, Ma C, Chan KH, Ho DD, Yuen KY. SARS coronavirus spike polypeptide DNA vaccine priming with recombinant spike polypeptide from Escherichia coli as booster induces high titer of neutralizing antibody against SARS coronavirus. Vaccine. 2005; 23(42); 4959-4968. [PubMed: 15993989].
  26. Zhao et al., 2005: Zhao P, Cao J, Zhao LJ, Qin ZL, Ke JS, Pan W, Ren H, Yu JG, Qi ZT. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine. Virology. 2005; 331(1); 128-135. [PubMed: 15582659].
  27. Zhao et al., 2016: Zhao J, Zhao J, Mangalam AK, Channappanavar R, Fett C, Meyerholz DK, Agnihothram S, Baric RS, David CS, Perlman S. Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses. Immunity. 2016; 44(6); 1379-1391. [PubMed: 27287409].
  28. Zheng et al., 2008: Zheng BJ, Du LY, Zhao GY, Lin YP, Sui HY, Chan C, Ma S, Guan Y, Yuen KY. Studies of SARS virus vaccines. Hong Kong medical journal = Xianggang yi xue za zhi / Hong Kong Academy of Medicine. 2008; 14 Suppl 4; 39-43. [PubMed: 18708674].
  29. Zhou et al., 2006: Zhou Z, Post P, Chubet R, Holtz K, McPherson C, Petric M, Cox M. A recombinant baculovirus-expressed S glycoprotein vaccine elicits high titers of SARS-associated coronavirus (SARS-CoV) neutralizing antibodies in mice. Vaccine. 2006; 24(17); 3624-3631. [PubMed: 16497416].

SARS-CoV-2

  1. ACTRN12620000674932: A Phase 1 Randomised, Double-Blind, Placebo-Controlled, Dosage-Escalation, Single Centre Study To Evaluate The Safety And Immunogenicity Of An Adjuvanted SARS-CoV-2 Sclamp Protein Subunit Vaccine (COVID-19 vaccine) In Healthy Adults Aged 18 To 55 Years Old [https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=379861&isReview=true]
  2. Agrati et. al 2021: Chiara Agrati , Stefania Capone , Concetta Castilletti, Eleonora Cimini, Giulia Matusali, Silvia Meschi, Eleonora Tartaglia, Roberto Camerini, Simone Lanini, Stefano Milleri, Stefano Colloca, Alessandra Vitelli, Antonella Folgori. Strong immunogenicity of heterologous prime-boost immunizations with the experimental vaccine GRAd-COV2 and BNT162b2 or ChAdOx1-nCOV19. . ; ; . [PubMed: 34737309].
  3. Ahn et. al 2022: Jin Young Ahn, Jeongsoo Lee, You Suk Suh, Young Goo Song, Yoon-Jeong Choi, Kyoung Hwa Lee, Sang Hwan Seo, Manki Song, Jong-Won Oh, Minwoo Kim, Han Yeong Seo, Jeong-Eun Kwak, Jin Won Youn, Jung Won Woo, Eui-Cheol Shin, Young Chul Sung, Su-Hyung Park, Jun Yong Choi. afety and immunogenicity of two recombinant DNA COVID-19 vaccines containing the coding regions of the spike or spike and nucleocapsid proteins: an interim analysis of two open-label, non-randomised, phase 1 trials in healthy adults. . 2022; ; . [PubMed: 35156068/].
  4. Ali et al., 2021: Kashif Ali 1, Gary Berman 1, Honghong Zhou 1, Weiping Deng 1, Veronica Faughnan 1, Maria Coronado-Voges 1, Baoyu Ding 1, Jacqueline Dooley 1, Bethany Girard 1, William Hillebrand 1, Rolando Pajon 1, Jacqueline M Miller 1, Brett Leav 1, Roderick McPhee 1. Evaluation of mRNA-1273 SARS-CoV-2 Vaccine in Adolescents. . 2021; ; . [PubMed: 34379915].
  5. Anderson et al., 2020: Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, McDermott AB, Flach B, Lin BC, Doria-Rose NA, O'Dell S, Schmidt SD, Corbett KS, Swanson PA 2nd, Padilla M, Neuzil KM, Bennett H, Leav B, Makowski M, Albert J, Cross K, Edara VV, Floyd K, Suthar MS, Martinez DR, Baric R, Buchanan W, Luke CJ, Phadke VK, Rostad CA, Ledgerwood JE, Graham BS, Beigel JH. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. The New England journal of medicine. 2020; 383(25); 2427-2438. [PubMed: 32991794].
  6. Bourinbayar, 2020: Tableted COVID-19 Therapeutic Vaccine (COVID-19) [https://clinicaltrials.gov/ct2/show/NCT04380532]
  7. Chalkias et al., 2022: Spyros Chalkias 1, Charles Harper 1, Keith Vrbicky 1, Stephen R Walsh 1, Brandon Essink 1, Adam Brosz 1, Nichole McGhee 1, Joanne E Tomassini 1, Xing Chen 1, Ying Chang 1, Andrea Sutherland 1, David C Montefiori 1, Bethany Girard 1, Darin K Edwards 1, Jing Feng 1, Honghong Zhou 1, Lindsey R Baden 1, Jacqueline M Miller 1, Rituparna Das 1. A Bivalent Omicron-Containing Booster Vaccine against Covid-19. . 2022; ; . [PubMed: 36112399].
  8. Chappell et al., 2021: Chappell KJ, Mordant FL, Li Z, Wijesundara DK, Ellenberg P, Lackenby JA, Cheung STM, Modhiran N, Avumegah MS, Henderson CL, Hoger K, Griffin P, Bennet J, Hensen L, Zhang W, Nguyen THO, Marrero-Hernandez S, Selva KJ, Chung AW, Tran MH, Tapley P, Barnes J, Reading PC, Nicholson S, Corby S, Holgate T, Wines BD, Hogarth PM, Kedzierska K, Purcell DFJ, Ranasinghe C, Subbarao K, Watterson D, Young PR, Munro TP. Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial. The Lancet. Infectious diseases. 2021; ; . [PubMed: 33887208].
  9. ChiCTR2000032459: Evaluation of the safety and immunogenicity of inactivated novel coronavirus (2019-CoV) vaccine (Vero cells) in healthy population aged 3 years and above: a randomized, double-blind, placebo parallel-controlled phase I/II clinical trial [www.chictr.org.cn/hvshowproject.aspx?id=48144]
  10. ChiCTR2000034112: A Phase I clinical trial to evaluate the safety, tolerance and preliminary immunogenicity of different doses of a SARS-CoV-2 mRNA vaccine in population aged 18-59 years and 60 years and above [http://www.chictr.org.cn/historyversionpuben.aspx?regno=ChiCTR2000034112]
  11. Corbett et al., 2020: Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, Flach B, O'Connell S, Bock KW, Minai M, Nagata BM, Andersen H, Martinez DR, Noe AT, Douek N, Donaldson MM, Nji NN, Alvarado GS, Edwards DK, Flebbe DR, Lamb E, Doria-Rose NA, Lin BC, Louder MK, O'Dell S, Schmidt SD, Phung E, Chang LA, Yap C, Todd JM, Pessaint L, Van Ry A, Browne S, Greenhouse J, Putman-Taylor T, Strasbaugh A, Campbell TA, Cook A, Dodson A, Steingrebe K, Shi W, Zhang Y, Abiona OM, Wang L, Pegu A, Yang ES, Leung K, Zhou T, Teng IT, Widge A, Gordon I, Novik L, Gillespie RA, Loomis RJ, Moliva JI, Stewart-Jones G, Himansu S, Kong WP, Nason MC, Morabito KM, Ruckwardt TJ, Ledgerwood JE, Gaudinski MR, Kwong PD, Mascola JR, Carfi A, Lewis MG, Baric RS, McDermott A, Moore IN, Sullivan NJ, Roederer M, Seder RA, Graham BS. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. The New England journal of medicine. 2020; 383(16); 1544-1555. [PubMed: 32722908].
  12. CTRI/2020/07/026352: A prospective, randomized, adaptive, phase I/II clinical study to evaluate the safety andimmunogenicity of Novel Corona Virus -2019-nCov vaccine candidate of M/s Cadila HealthcareLimited by intradermal route in healthy subject [http://ctri.nic.in/Clinicaltrials/pdf_generate.php?trialid=45306&EncHid=&modid=&compid=%27,%2745306det%27]
  13. Dai et al., 2020: Dai L, Zheng T, Xu K, Han Y, Xu L, Huang E, An Y, Cheng Y, Li S, Liu M, Yang M, Li Y, Cheng H, Yuan Y, Zhang W, Ke C, Wong G, Qi J, Qin C, Yan J, Gao GF. A Universal Design of Betacoronavirus Vaccines against COVID-19, MERS, and SARS. Cell. 2020; 182(3); 722-733.e11. [PubMed: 32645327].
  14. Ella et al., 2021: Ella R, Vadrevu KM, Jogdand H, Prasad S, Reddy S, Sarangi V, Ganneru B, Sapkal G, Yadav P, Abraham P, Panda S, Gupta N, Reddy P, Verma S, Kumar Rai S, Singh C, Redkar SV, Gillurkar CS, Kushwaha JS, Mohapatra S, Rao V, Guleria R, Ella K, Bhargava B. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial. The Lancet. Infectious diseases. 2021; 21(5); 637-646. [PubMed: 33485468].
  15. Erasmus et al., 2020: Erasmus JH, Khandhar AP, O'Connor MA, Walls AC, Hemann EA, Murapa P, Archer J, Leventhal S, Fuller JT, Lewis TB, Draves KE, Randall S, Guerriero KA, Duthie MS, Carter D, Reed SG, Hawman DW, Feldmann H, Gale M Jr, Veesler D, Berglund P, Fuller DH. An Alphavirus-derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Science translational medicine. 2020; 12(555); . [PubMed: 32690628].
  16. Fluckiger et al., 2021: Anne-Catherine Fluckiger 1, Barthelemy Ontsouka 2, Jasminka Bozic 2, Abebaw Diress 2, Tanvir Ahmed 2, Tamara Berthoud 2, Anh Tran 3, Diane Duque 3, Mingmin Liao 4, Michael McCluskie 3, Francisco Diaz-Mitoma 5, David E Anderson 5, Catalina Soare 2. An enveloped virus-like particle vaccine expressing a stabilized prefusion form of the SARS-CoV-2 spike protein elicits highly potent immunity. . 2021; ; . [PubMed: 34304928].
  17. Folegatti et al., 2020: Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, Bellamy D, Bibi S, Bittaye M, Clutterbuck EA, Dold C, Faust SN, Finn A, Flaxman AL, Hallis B, Heath P, Jenkin D, Lazarus R, Makinson R, Minassian AM, Pollock KM, Ramasamy M, Robinson H, Snape M, Tarrant R, Voysey M, Green C, Douglas AD, Hill AVS, Lambe T, Gilbert SC, Pollard AJ. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet (London, England). 2020; ; . [PubMed: 32702298].
  18. Gao et al., 2020: Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z, Gao H, Ge X, Kan B, Hu Y, Liu J, Cai F, Jiang D, Yin Y, Qin C, Li J, Gong X, Lou X, Shi W, Wu D, Zhang H, Zhu L, Deng W, Li Y, Lu J, Li C, Wang X, Yin W, Zhang Y, Qin C. Rapid development of an inactivated vaccine candidate for SARS-CoV-2. Science (New York, N.Y.). 2020; ; . [PubMed: 32376603].
  19. González-Domínguez et al., 2022: Irene González-Domínguez 1, Jose Luis Martínez 1, Stefan Slamanig 1, Nicholas Lemus 1, Yonghong Liu 1, Tsoi Ying Lai 1, Juan Manuel Carreño 1, Gagandeep Singh A 1, Gagandeep Singh B 1 2, Michael Schotsaert 1 2, Ignacio Mena 1 2, Stephen McCroskery 1, Lynda Coughlan 3 4, Florian Krammer 1 5, Adolfo García-Sastre 1 2 5 6 7, Peter Palese 1 6, Weina Sun 1. Trivalent NDV-HXP-S vaccine protects against phylogenetically distant SARS-CoV-2 variants of concern in mice. . ; ; . [PubMed: 35350201].
  20. GRAd-COV2: GRAd-COV2 [https://www.covidx.eu/grad-cov2]
  21. Guirakhoo et. al 2022: Farshad Guirakhoo 1, Shixia Wang 1, Chang Yi Wang 2, Hui Kai Kuo 2, Wen Jiun Peng 2, Hope Liu 2, Lixia Wang 1, Marina Johnson 3, Adam Hunt 3, Mei Mei Hu 1, Thomas P Monath 1, Alexander Rumyantsev 1, David Goldblatt 3. High Neutralizing Antibody Levels Against Severe Acute Respiratory Syndrome Coronavirus 2 Omicron BA.1 and BA.2 After UB-612 Vaccine Booster. . 2022; ; . [PubMed: 35723969].
  22. Hashimoto et al., 2022: Masayuki Hashimoto 1, Noriyo Nagata 2, Tomoyuki Homma 3, Hiroki Maeda 4, Keiji Dohi 5, Naomi M Seki 6, Ken Yoshihara 7, Naoko Iwata-Yoshikawa 8, Nozomi Shiwa-Sudo 9, Yusuke Sakai 10, Masayuki Shirakura 11, Noriko Kishida 12, Tomoko Arita 13, Yasushi Suzuki 14, Shinji Watanabe 15, Hideki Asanuma 16, Takuhiro Sonoyama 17, Tadaki Suzuki 18, Shinya Omoto 19, Hideki Hasegawa 20. Immunogenicity and protective efficacy of SARS-CoV-2 recombinant S-protein vaccine S-268019-b in cynomolgus monkeys. . 2022; ; . [PubMed: 35691872].
  23. Hassan et. al 2020: Hassan AO, Kafai NM, Dmitriev IP, Fox JM, Smith BK, Harvey IB, Chen RE, Winkler ES, Wessel AW, Case JB, Kashentseva E, McCune BT, Bailey AL, Zhao H, VanBlargan LA, Dai YN, Ma M, Adams LJ, Shrihari S, Danis JE, Gralinski LE, Hou YJ, Schafer A, Kim AS, Keeler SP, Weiskopf D, Baric RS, Holtzman MJ, Fremont DH, Curiel DT, Diamond MS. A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower Respiratory Tracts against SARS-CoV-2. . 2020; ; . [PubMed: 32931734].
  24. ISRCTN17072692: Clinical trial to assess the safety of a coronavirus vaccine in healthy men and women [http://www.isrctn.com/ISRCTN17072692]
  25. Jackson et al., 2020: Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, McCullough MP, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, McDermott A, Flach B, Doria-Rose NA, Corbett KS, Morabito KM, O'Dell S, Schmidt SD, Swanson PA 2nd, Padilla M, Mascola JR, Neuzil KM, Bennett H, Sun W, Peters E, Makowski M, Albert J, Cross K, Buchanan W, Pikaart-Tautges R, Ledgerwood JE, Graham BS, Beigel JH. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. The New England journal of medicine. 2020; ; . [PubMed: 32663912].
  26. Johnson et al., 2022: Susan Johnson 1, Clarissa I Martinez 1, Sarah N Tedjakusuma 1, Nadine Peinovich 1, Emery G Dora 1, Sharla M Birch 2, Adriana E Kajon 2, Adam D Werts 2, Sean N Tucker 1. Oral Vaccination Protects Against Severe Acute Respiratory Syndrome Coronavirus 2 in a Syrian Hamster Challenge Model. . 2022; ; . [PubMed: 34758086].
  27. Kaur and Gupta, 2020: Kaur SP, Gupta V. COVID-19 Vaccine: A comprehensive status report. Virus research. 2020; 288; 198114. [PubMed: 32800805].
  28. Keech et al., 2020: Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, Plested JS, Zhu M, Cloney-Clark S, Zhou H, Smith G, Patel N, Frieman MB, Haupt RE, Logue J, McGrath M, Weston S, Piedra PA, Desai C, Callahan K, Lewis M, Price-Abbott P, Formica N, Shinde V, Fries L, Lickliter JD, Griffin P, Wilkinson B, Glenn GM. Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. The New England journal of medicine. 2020; ; . [PubMed: 32877576].
  29. Khorattanakulchai et al., 2022: Narach Khorattanakulchai 1 2, Kanjana Srisutthisamphan 3, Balamurugan Shanmugaraj 4, Suwimon Manopwisedjaroen 5, Kaewta Rattanapisit 4, Chalisa Panapitakkul 1 2, Taratorn Kemthong 6, Nutchanat Suttisan 6, Suchinda Malaivijitnond 6, Arunee Thitithanyanont 5, Anan Jongkaewwattana 3, Waranyoo Phoolcharoen 1 2. A recombinant subunit vaccine candidate produced in plants elicits neutralizing antibodies against SARS-CoV-2 variants in macaques. . 2022; ; . [PubMed: 36247553].
  30. Kim et al., 2023: Woo Joo Kim 1, Christine C Roberts 2, Joon Young Song 1, Jin Gu Yoon 1, Hye Seong 1, Hak-Jun Hyun 1, Hyojin Lee 2, Areum Gil 2, Yeeun Oh 2, Ji-Eun Park 2, Bohyun Jeon 2, Ji-Eun Lee 2, Sang Kyu Choi 3, Sun Kyung Yoon 3, Sunhee Lee 3, Byoungguk Kim 3, Deborah Kane 2, Susan Spruill 4, Sagar B Kudchodkar 2, Kar Muthumani 2, Young K Park 2, Ijoo Kwon 2, Moonsup Jeong 2, Joel N Maslow 5. Safety and immunogenicity of the bi-cistronic GLS-5310 COVID-19 DNA vaccine delivered with the GeneDerm suction device. . 2023; ; . [PubMed: 36592685].
  31. King et al., 2020: King RG, Silva-Sanchez A, Peel JN, Botta D, Meza-Perez S, Allie R, Schultz MD, Liu M, Bradley JE, Qiu S, Yang G, Zhou F, Zumaquero E, Simpler TS, Mousseau B, Killian JT, Dean B, Shang Q, Tipper JL, Risley C, Harrod KS, Feng R, Lee Y, Shiberu B, Krishnan V, Peguillet I, Zhang J, Green T, Randall TD, Georges B, Lund FE, Roberts S. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 in mice. bioRxiv : the preprint server for biology. 2020; ; . [PubMed: 33052351].
  32. LABline, 2021: Adjuvant enhances efficacy of India’s COVID-19 vaccine [https://www.mlo-online.com/disease/infectious-disease/article/21228745/adjuvant-enhances-efficacy-of-indias-covid19-vaccine]
  33. Li et al.,: Jianglong Li, Qi Liu, Jun Liu, Zihui Fang, Liping Luo,, Shuang Li, Yixin Lei, Zhi Li, Jing Jin, Ronglin Xie, Yucai Peng. Development of Bivalent mRNA Vaccines against SARS-CoV-2 Variants. . 2022; ; . [PubMed: 36366316].
  34. Liu et al., 2022: Jun Liu 1, Patrick Budylowski 1 2, Reuben Samson 3 4, Bryan D Griffin 5, Giorgi Babuadze 5, Bhavisha Rathod 4, Karen Colwill 4, Jumai A Abioye 6, Jordan A Schwartz 6, Ryan Law 7, Lily Yip 5, Sang Kyun Ahn 3, Serena Chau 7, Maedeh Naghibosadat 5, Yuko Arita 6, Queenie Hu 4, Feng Yun Yue 1, Arinjay Banerjee 8 9 10, W Rod Hardy 4, Karen Mossman 11, Samira Mubareka 5 12, Robert A Kozak 5, Michael S Pollanen 12, Natalia Martin Orozco 6, Anne-Claude Gingras 3 4, Eric G Marcusson 6 13, Mario A Ostrowski 1 7 14. Preclinical evaluation of a SARS-CoV-2 mRNA vaccine PTX-COVID19-B. . 2022; ; . [PubMed: 35044832].
  35. Logunov et al., 2020: Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatullin AI, Shcheblyakov DV, Dzharullaeva AS, Grousova DM, Erokhova AS, Kovyrshina AV, Botikov AG, Izhaeva FM, Popova O, Ozharovskaya TA, Esmagambetov IB, Favorskaya IA, Zrelkin DI, Voronina DV, Shcherbinin DN, Semikhin AS, Simakova YV, Tokarskaya EA, Lubenets NL, Egorova DA, Shmarov MM, Nikitenko NA, Morozova LF, Smolyarchuk EA, Kryukov EV, Babira VF, Borisevich SV, Naroditsky BS, Gintsburg AL. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet (London, England). 2020; 396(10255); 887-897. [PubMed: 32896291].
  36. Lovell et al., 2022: Jonathan F Lovell 1, Yeong Ok Baik 2, Seuk Keun Choi 2, Chankyu Lee 2, Jeong-Yoon Lee 2, Kazutoyo Miura 3, Wei-Chiao Huang 4 5, Young-Shin Park 6, Sun-Je Woo 6, Sang Hwan Seo 6, Jae-Ouk Kim 6, Manki Song 6, Chung-Jong Kim 7, Jae-Ki Choi 8, Jieun Kim 9, Eun Ju Choo 10, Jung-Hyun Choi 11. Interim analysis from a phase 2 randomized trial of EuCorVac-19: a recombinant protein SARS-CoV-2 RBD nanoliposome vaccine. . 2022; ; . [PubMed: 36447243].
  37. Makar et al., 1975: Makar AB, McMartin KE, Palese M, Tephly TR. Formate assay in body fluids: application in methanol poisoning. Biochemical medicine. 1975; 13(2); 117-126. [PubMed: 1].
  38. McKay et al., 2020: McKay PF, Hu K, Blakney AK, Samnuan K, Brown JC, Penn R, Zhou J, Bouton CR, Rogers P, Polra K, Lin PJC, Barbosa C, Tam YK, Barclay WS, Shattock RJ. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nature communications. 2020; 11(1); 3523. [PubMed: 32647131].
  39. Mercado et al., 2020: Mercado NB, Zahn R, Wegmann F, Loos C, Chandrashekar A, Yu J, Liu J, Peter L, McMahan K, Tostanoski LH, He X, Martinez DR, Rutten L, Bos R, van Manen D, Vellinga J, Custers J, Langedijk JP, Kwaks T, Bakkers MJG, Zuijdgeest D, Rosendahl Huber SK, Atyeo C, Fischinger S, Burke JS, Feldman J, Hauser BM, Caradonna TM, Bondzie EA, Dagotto G, Gebre MS, Hoffman E, Jacob-Dolan C, Kirilova M, Li Z, Lin Z, Mahrokhian SH, Maxfield LF, Nampanya F, Nityanandam R, Nkolola JP, Patel S, Ventura JD, Verrington K, Wan H, Pessaint L, Van Ry A, Blade K, Strasbaugh A, Cabus M, Brown R, Cook A, Zouantchangadou S, Teow E, Andersen H, Lewis MG, Cai Y, Chen B, Schmidt AG, Reeves RK, Baric RS, Lauffenburger DA, Alter G, Stoffels P, Mammen M, Van Hoof J, Schuitemaker H, Barouch DH. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature. 2020; ; . [PubMed: 32731257].
  40. Mulligan et al., 2020: Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Raabe V, Bailey R, Swanson KA, Li P, Koury K, Kalina W, Cooper D, Fontes-Garfias C, Shi PY, Türeci Ö, Tompkins KR, Walsh EE, Frenck R, Falsey AR, Dormitzer PR, Gruber WC, Şahin U, Jansen KU. Phase 1/2 study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020; ; . [PubMed: 32785213].
  41. Nakagami et al,, 2022: Hironori Nakagami, Hiroki Hayashi , Jiao Sun , Yuka Yanagida , Takako Otera , Futoshi Nakagami , Shigeto Hamaguchi , Hisao Yoshida , Hideo Okuno , Shota Yoshida , Ryo Nakamaru , Serina Yokoyama , Taku Fujimoto , Kazuhiro Hongyo , Yukihiro Akeda , Ryuichi Morishita , Kazunori Tomono , Hiromi Rakugi. Study to Assess the Safety and Immunogenicity of an Intradermal COVID-19 DNA Vaccine Administered Using a Pyro-Drive Jet Injector in Healthy Adults. . 2022; ; . [PubMed: 36146505].
  42. NCT04313127: Phase I Clinical Trial of a COVID-19 Vaccine in 18-60 Healthy Adults (CTCOVID-19) [https://clinicaltrials.gov/ct2/show/NCT04313127]
  43. NCT04334980: Evaluating the Safety, Tolerability and Immunogenicity of bacTRL-Spike Vaccine for Prevention of COVID-19 [https://clinicaltrials.gov/ct2/show/NCT04334980]
  44. NCT04336410: Safety, Tolerability and Immunogenicity of INO-4800 for COVID-19 in Healthy Volunteers [https://clinicaltrials.gov/ct2/show/NCT04336410]
  45. NCT04368988: Evaluation of the Safety and Immunogenicity of a SARS-CoV-2 rS (COVID-19) Nanoparticle Vaccine With/Without Matrix-M Adjuvant [https://clinicaltrials.gov/ct2/show/NCT04368988]
  46. NCT04405908: SCB-2019 as COVID-19 Vaccine [https://clinicaltrials.gov/ct2/show/NCT04405908]
  47. NCT04412538: Safety and Immunogenicity Study of an Inactivated SARS-CoV-2 Vaccine for Preventing Against COVID-19 [https://clinicaltrials.gov/ct2/show/NCT04412538]
  48. NCT04436276: A Study of Ad26.COV2.S in Adults (COVID-19) [https://clinicaltrials.gov/ct2/show/NCT04436276]
  49. NCT04436471: An Open Study of the Safety, Tolerability and Immunogenicity of the Drug "Gam-COVID-Vac" Vaccine Against COVID-19 [https://clinicaltrials.gov/ct2/show/NCT04436471?term=NCT04436471&draw=2&rank=1]
  50. NCT04437875: An Open Study of the Safety, Tolerability and Immunogenicity of "Gam-COVID-Vac Lyo" Vaccine Against COVID-19 [https://clinicaltrials.gov/ct2/show/NCT04437875]
  51. NCT04445389: Safety and Immunogenicity Study of GX-19, a COVID-19 Preventive DNA Vaccine in Healthy Adults [https://clinicaltrials.gov/ct2/show/NCT04445389]
  52. NCT04449276: A Study to Evaluate the Safety, Reactogenicity and Immunogenicity of Vaccine CVnCoV in Healthy Adults [https://clinicaltrials.gov/ct2/show/NCT04449276]
  53. NCT04450004: Safety, Tolerability and Immunogenicinity of a Coronavirus-Like Particle COVID-19 Vaccine in Adults Aged 18-55 Years [https://clinicaltrials.gov/ct2/show/NCT04450004]
  54. NCT04453852: Monovalent Recombinant COVID19 Vaccine (COVAX19) [https://clinicaltrials.gov/ct2/show/NCT04453852]
  55. NCT04463472: Study of COVID-19 DNA Vaccine (AG0301-COVID19) [https://clinicaltrials.gov/ct2/show/NCT04463472]
  56. NCT04471519: Whole-Virion Inactivated SARS-CoV-2 Vaccine (BBV152) for COVID-19 in Healthy Volunteers (BBV152) [https://clinicaltrials.gov/ct2/show/NCT04471519]
  57. NCT04473690: KBP-201 COVID-19 Vaccine Trial in Healthy Volunteers [https://clinicaltrials.gov/ct2/show/NCT04473690]
  58. NCT04480957: Ascending Dose Study of Investigational SARS-CoV-2 Vaccine ARCT-021 in Healthy Adult Subjects [https://clinicaltrials.gov/ct2/show/NCT04480957]
  59. NCT04487210: A Phase I, Prospective, Open-Labeled Study to Evaluate the Safety and Immunogenicity of MVC-COV1901 [https://clinicaltrials.gov/ct2/show/NCT04487210]
  60. NCT04497298: Clinical Trial to Evaluate the Safety and Immunogenicitiy of the COVID-19 Vaccine (COVID-19-101) [https://clinicaltrials.gov/ct2/show/NCT04497298]
  61. NCT04505722: Ad26COVS1 clinical trial [https://clinicaltrials.gov/ct2/show/NCT04505722]
  62. NCT04528641: GRAd-COV2 Vaccine Against COVID-19 [https://www.clinicaltrials.gov/ct2/show/NCT04528641?term=GRAd-COV2&draw=2&rank=1]
  63. NCT04591184: A Clinical Trial of a Plasmid DNA Vaccine for COVID-19 [Covigenix VAX-001] in Adults [https://clinicaltrials.gov/ct2/show/NCT04591184]
  64. NCT04627675: CORVax12: SARS-CoV-2 Spike (S) Protein Plasmid DNA Vaccine Trial for COVID-19 (SARS-CoV-2) (CORVax12) [https://clinicaltrials.gov/ct2/show/NCT04627675]
  65. NCT04655625: Clinical trial for vaccine AG0302-COVID19 [https://clinicaltrials.gov/ct2/show/NCT04655625]
  66. NCT04751682: Safety and Immunogenicity of an Intranasal SARS-CoV-2 Vaccine (BBV154) for COVID-19 [https://clinicaltrials.gov/ct2/show/NCT04751682]
  67. NCT04758962: A Study of the Safety of and Immune Response to Varying Doses of a Vaccine Against COVID-19 in Healthy Adults [https://clinicaltrials.gov/ct2/show/study/NCT04758962]
  68. NCT04773665: Safety, Tolerability, and Immunogenicity of the COVID-19 Vaccine Candidate (VBI-2902a) [https://clinicaltrials.gov/ct2/show/NCT04773665]
  69. NCT04776317: Chimpanzee Adenovirus and Self-Amplifying mRNA Prime-Boost Prophylactic Vaccines Against SARS-CoV-2 in Healthy Adults [https://clinicaltrials.gov/ct2/show/NCT04776317]
  70. NCT04798001: Safety and Immunogenicity of an Intranasal RSV Vaccine Expressing SARS-CoV-2 Spike Protein (COVID-19 Vaccine) in Adults [https://clinicaltrials.gov/ct2/show/NCT04798001?term=covid-19+vaccine&draw=2]
  71. NCT04893512: First-In-Human Study Of Orally Administered CoV2-OGEN1 In Healthy Subjects [https://clinicaltrials.gov/ct2/show/study/NCT04893512]
  72. NCT04953078: A Study to Evaluate Safety, Tolerability, and Reactogenicity of an RBD-Fc-based Vaccine to Prevent COVID-19 [https://clinicaltrials.gov/ct2/show/NCT04953078]
  73. NCT05047445 - COVIDITY: A First Time in Human Phase 1 Open-Label Study of the COVIDITY Vaccine Administered by Needle-free Injection [https://clinicaltrials.gov/ct2/show/NCT05047445]
  74. NCT05094609: Phase 1 Trial of ChAd68 and Ad5 Adenovirus COVID-19 Vaccines Delivered by Aerosol [https://clinicaltrials.gov/ct2/show/NCT05094609]
  75. NCT05125926: A Phase â…  Trial to Evaluate the Safety and Immunogenicity of SARS-CoV-2 Vaccine LYB001 [https://clinicaltrials.gov/ct2/show/NCT05125926]
  76. NCT05171946: Phase-I Study to Evaluate the Safety and Immunogenicity of a Prophylactic pDNA Vaccine Candidate Against COVID-19 in Healthy Adults [https://clinicaltrials.gov/ct2/show/NCT05171946]
  77. NCT05385991: . Booster Dose Study to Assess the Safety and Immunogenicity of ACM-001 Administered Intramuscularly or Intranasally. . 2022; ; . [PubMed: NCT05385991].
  78. NCT05434585: . A Study to Evaluate Safety, Tolerability, and Immunogenicity of SARS-CoV-2 Variant mRNA Vaccines. . 2022; ; . [PubMed: NCT05434585].
  79. Polack et al., 2020: Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, Bailey R, Swanson KA, Roychoudhury S, Koury K, Li P, Kalina WV, Cooper D, Frenck RW Jr, Hammitt LL, Türeci Ö, Nell H, Schaefer A, Ünal S, Tresnan DB, Mather S, Dormitzer PR, Şahin U, Jansen KU, Gruber WC. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. The New England journal of medicine. 2020; 383(27); 2603-2615. [PubMed: 33301246].
  80. Richmond et al., 2021: Peter Richmond 1, Lara Hatchuel 2, Min Dong 3, Brenda Ma 3, Branda Hu 3, Igor Smolenov 3, Ping Li 3, Peng Liang 3, Htay Htay Han 3, Joshua Liang 3, Ralf Clemens 4. Safety and immunogenicity of S-Trimer (SCB-2019), a protein subunit vaccine candidate for COVID-19 in healthy adults: a phase 1, randomised, double-blind, placebo-controlled trial. . 2021; ; . [PubMed: 33524311].
  81. Saha et al., 2020: Saha RP, Sharma AR, Singh MK, Samanta S, Bhakta S, Mandal S, Bhattacharya M, Lee SS, Chakraborty C. Repurposing Drugs, Ongoing Vaccine, and New Therapeutic Development Initiatives Against COVID-19. Frontiers in pharmacology. 2020; 11; 1258. [PubMed: 32973505].
  82. Sahin et al., 2020: BNT162b2 induces SARS-CoV-2-neutralising antibodies and T cells in humans [https://www.medrxiv.org/content/10.1101/2020.12.09.20245175v1.full?fbclid=IwAR2Drk0yoZUvLdve1MCKeMXm4s7lVqUD2BmPnJ07Og7eE3rOQgWDdwwAEdA]
  83. Sanchez-Felipe et al., 2021: Sanchez-Felipe L, Vercruysse T, Sharma S, Ma J, Lemmens V, Van Looveren D, Arkalagud Javarappa MP, Boudewijns R, Malengier-Devlies B, Liesenborghs L, Kaptein SJF, De Keyzer C, Bervoets L, Debaveye S, Rasulova M, Seldeslachts L, Li LH, Jansen S, Yakass MB, Verstrepen BE, Böszörményi KP, Kiemenyi-Kayere G, van Driel N, Quaye O, Zhang X, Ter Horst S, Mishra N, Deboutte W, Matthijnssens J, Coelmont L, Vandermeulen C, Heylen E, Vergote V, Schols D, Wang Z, Bogers W, Kuiken T, Verschoor E, Cawthorne C, Van Laere K, Opdenakker G, Vande Velde G, Weynand B, Teuwen DE, Matthys P, Neyts J, Jan Thibaut H, Dallmeier K. A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Nature. 2021; 590(7845); 320-325. [PubMed: 33260195].
  84. Smith et al., 2020: Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, Gary EN, Walker SN, Schultheis K, Purwar M, Xu Z, Walters J, Bhojnagarwala P, Yang M, Chokkalingam N, Pezzoli P, Parzych E, Reuschel EL, Doan A, Tursi N, Vasquez M, Choi J, Tello-Ruiz E, Maricic I, Bah MA, Wu Y, Amante D, Park DH, Dia Y, Ali AR, Zaidi FI, Generotti A, Kim KY, Herring TA, Reeder S, Andrade VM, Buttigieg K, Zhao G, Wu JM, Li D, Bao L, Liu J, Deng W, Qin C, Brown AS, Khoshnejad M, Wang N, Chu J, Wrapp D, McLellan JS, Muthumani K, Wang B, Carroll MW, Kim JJ, Boyer J, Kulp DW, Humeau LMPF, Weiner DB, Broderick KE. Immunogenicity of a DNA vaccine candidate for COVID-19. Nature communications. 2020; 11(1); 2601. [PubMed: 32433465].
  85. Spencer et. al 2022 [PubMed ID: 35228013]: Alexandra J Spencer,, Susan Morris , Marta Ulaszewska , Claire Powers , Reshma Kailath , Cameron Bissett, Adam Truby, Nazia Thakur, Joseph Newman, Elizabeth R Allen , Indra Rudiansyah, Chang Liu, Wanwisa Dejnirattisai, Juthathip Mongkolsapaya, Hannah Davies, Francesca R Donnellan, David Pulido, Thomas P Peacock, Wendy S Barclay, Helen Bright, Kuishu Ren, Gavin Screaton, Patrick McTamney, Dalan Bailey, Sarah C Gilbert, Teresa Lambe. The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 beta (B.1.351) and other variants of concern in preclinical studies. . 2022; ; . [PubMed: 35228013].
  86. Sun et al., 2020: Sun W, Leist SR, McCroskery S, Liu Y, Slamanig S, Oliva J, Amanat F, Schäfer A, Dinnon KH 3rd, García-Sastre A, Krammer F, Baric RS, Palese P. Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as a live virus vaccine candidate. EBioMedicine. 2020; 62; 103132. [PubMed: 33232870].
  87. Tebas et al., 2020: Tebas P, Yang S, Boyer JD, Reuschel EL, Patel A, Christensen-Quick A, Andrade VM, Morrow MP, Kraynyak K, Agnes J, Purwar M, Sylvester A, Gillespie E, Maricic I, Zaidi FI, Kim KY, Dia Y, Frase D, Pezzoli P, Schultheis K, Smith TRF, Ramos SJ, McMullan T, Buttigieg K, Carroll MW, Ervin J, Diehl MC, Blackwood E, Mammen MP, Lee J, Dallas MJ, Brown AS, Shea JE, Kim JJ, Weiner DB, Broderick KE, Humeau LM. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of an open-label, Phase 1 clinical trial. EClinicalMedicine. 2020; ; 100689. [PubMed: 33392485].
  88. Thiagarajan, 2021: What do we know about India’s Covaxin vaccine? [https://www.bmj.com/content/373/bmj.n997]
  89. Tian et al., 2021: Tian JH, Patel N, Haupt R, Zhou H, Weston S, Hammond H, Logue J, Portnoff AD, Norton J, Guebre-Xabier M, Zhou B, Jacobson K, Maciejewski S, Khatoon R, Wisniewska M, Moffitt W, Kluepfel-Stahl S, Ekechukwu B, Papin J, Boddapati S, Jason Wong C, Piedra PA, Frieman MB, Massare MJ, Fries L, Bengtsson KL, Stertman L, Ellingsworth L, Glenn G, Smith G. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nature communications. 2021; 12(1); 372. [PubMed: 33446655].
  90. Tran et. al 2021: Thi Nhu Mai Tran, Bruce Pearson May, Trong Thuan Ung, Mai Khoi Nguyen, Thi Thuy Trang Nguyen, Van Long Dinh, Chinh Chung Doan 1, The Vinh Tran 1, Hiep Khong 1, Thi Thanh Truc Nguyen 1, Hoang Quoc Huy Hua 1, Viet Anh Nguyen 1, Tan Phat Ha 1, Dang Luu Phan 1, Truong An Nguyen 1, Thi Ngoc Bui 1, Tieu My Tu 1, Thi Theo Nguyen 1, Thi Thuy Hang Le 1, Thi Lan Dong 1, Trong Hieu Huynh 1, Phien Huong Ho 1, Nguyen Thanh Thao Le 1, Cong Thao Truong 1, Hoang Phi Pham 1, Cong Y Luong 1, Nie Lim Y 1, Minh Ngoc Cao 1, Duy Khanh Nguyen 1, Thi Thanh Le 2, Duc Cuong Vuong 2, Le Khanh Hang Nguyen 2, Minh Si Do 1. Preclinical Immune Response and Safety Evaluation of the Protein Subunit Vaccine Nanocovax for COVID-19. . 2021; ; . [PubMed: 34938290].
  91. van et al., 2020: van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, Avanzato VA, Bushmaker T, Flaxman A, Ulaszewska M, Feldmann F, Allen ER, Sharpe H, Schulz J, Holbrook M, Okumura A, Meade-White K, Pérez-Pérez L, Edwards NJ, Wright D, Bissett C, Gilbride C, Williamson BN, Rosenke R, Long D, Ishwarbhai A, Kailath R, Rose L, Morris S, Powers C, Lovaglio J, Hanley PW, Scott D, Saturday G, de Wit E, Gilbert SC, Munster VJ. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020; 586(7830); 578-582. [PubMed: 32731258].
  92. Vogel et al., 2020: A prefusion SARS-CoV-2 spike RNA vaccine is highly immunogenic and prevents lung infection in non-human primates [https://www.biorxiv.org/content/10.1101/2020.09.08.280818v1.full?fbclid=IwAR1hGehYH9pEO70RRGT56XB_aJ2O5NFux9YN6XBzmCkXzNsjREuo11q5ub4]
  93. Walsh et al., 2020: Walsh EE, Frenck R, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, Swanson KA, Li P, Koury K, Kalina W, Cooper D, Fontes-Garfias C, Shi PY, Türeci Ö, Thompkins KR, Lyke KE, Raabe V, Dormitzer PR, Jansen KU, Sahin U, Gruber WC. RNA-Based COVID-19 Vaccine BNT162b2 Selected for a Pivotal Efficacy Study. medRxiv : the preprint server for health sciences. 2020; ; . [PubMed: 32839784].
  94. Walsh et al., 2020: Walsh EE, Frenck RW Jr, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, Swanson KA, Li P, Koury K, Kalina W, Cooper D, Fontes-Garfias C, Shi PY, Türeci Ö, Tompkins KR, Lyke KE, Raabe V, Dormitzer PR, Jansen KU, Şahin U, Gruber WC. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. The New England journal of medicine. 2020; 383(25); 2439-2450. [PubMed: 33053279].
  95. Wang et al. 2022: Xuan-Yi Wang 1 2 3, Syed Faisal Mahmood 4, Fang Jin 5 6, Wee Kooi Cheah 7, Muhammad Ahmad 8, Mian Amjad Sohail 9, Waheed Ahmad 10, Vijaya K Suppan 11, Muneeba Ahsan Sayeed 12, Shobha Luxmi 13, Aik-Howe Teo 14, Li Yuan Lee 15, Yang-Yang Qi 1 2, Rong-Juan Pei 16, Wei Deng 6, Zhong-Hui Xu 17, Jia-Ming Yang 17, Yan Zhang 17, Wu-Xiang Guan 16, Xiong Yu 18. Efficacy of heterologous boosting against SARS-CoV-2 using a recombinant interferon-armed fusion protein vaccine (V-01): a randomized, double-blind and placebo-controlled phase III trial. . 2022; ; . [PubMed: 35686572].
  96. Wang et al., 2020: Wang F, Kream RM, Stefano GB. An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development. Medical science monitor : international medical journal of experimental and clinical research. 2020; 26; e924700. [PubMed: 32366816].
  97. Wang et al., 2020: Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, Xu W, Zhao Y, Li N, Zhang J, Liang H, Bao L, Xu Y, Ding L, Zhou W, Gao H, Liu J, Niu P, Zhao L, Zhen W, Fu H, Yu S, Zhang Z, Xu G, Li C, Lou Z, Xu M, Qin C, Wu G, Gao GF, Tan W, Yang X. Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. Cell. 2020; 182(3); 713-721.e9. [PubMed: 32778225].
  98. Wang et al., 2021: Ying Wang 1, Chen Yang 1, Yutong Song 1, J Robert Coleman 1, Marcin Stawowczyk 1, Juliana Tafrova 1, Sybil Tasker 1, David Boltz 2, Robert Baker 2, Liliana Garcia 2, Olivia Seale 2, Anna Kushnir 1, Eckard Wimmer 3, Steffen Mueller 4. Scalable live-attenuated SARS-CoV-2 vaccine candidate demonstrates preclinical safety and efficacy. . 2021; ; . [PubMed: 34193524].
  99. Winokur et al., 2023: Winokur P, Gayed J, Fitz-Patrick D, Thomas SJ, Diya O, Lockhart S, Xu X, Zhang Y, Bangad V, Schwartz HI, Denham D, Cardona JF, Usdan L, Ginis J, Mensa FJ, Zou J, Xie X, Shi PY, Lu C, Buitrago S, Scully IL, Cooper D, Koury K, Jansen KU, Türeci Ö, Şahin U, Swanson KA, Gruber WC, Kitchin N. Bivalent Omicron BA.1-Adapted BNT162b2 Booster in Adults Older than 55 Years. The New England journal of medicine. 2023; 388(3); 214-227. [PubMed: 36652353].
  100. Wuertz et al., 2021: . A SARS-CoV-2 spike ferritin nanoparticle vaccine protects hamsters against Alpha and Beta virus variant challenge. . ; ; . [PubMed: 34711815].
  101. Xia et al., 2020: Xia S, Duan K, Zhang Y, Zhao D, Zhang H, Xie Z, Li X, Peng C, Zhang Y, Zhang W, Yang Y, Chen W, Gao X, You W, Wang X, Wang Z, Shi Z, Wang Y, Yang X, Zhang L, Huang L, Wang Q, Lu J, Yang Y, Guo J, Zhou W, Wan X, Wu C, Wang W, Huang S, Du J, Meng Z, Pan A, Yuan Z, Shen S, Guo W, Yang X. Effect of an Inactivated Vaccine Against SARS-CoV-2 on Safety and Immunogenicity Outcomes: Interim Analysis of 2 Randomized Clinical Trials. JAMA. 2020; ; . [PubMed: 32789505].
  102. Xu et al., 2023: Ke Xu 1, Wenwen Lei 1, Bin Kang 2 3, Hanyu Yang 2 3, Yajuan Wang 2 3, Yanli Lu 2 3, Lu Lv 2 3, Yufei Sun 2 3, Jing Zhang 1, Xiaolin Wang 2 3, Mengjie Yang 1, Mo Dan 2 3, Guizhen Wu 1. A novel mRNA vaccine, SYS6006, against SARS-CoV-2. . ; ; . [PubMed: 36685587].
  103. Ying et al., 2022: Baoling Ying 1, Suzanne M Scheaffer 1, Bradley Whitener 1, Chieh-Yu Liang 2, Oleksandr Dmytrenko 1, Samantha Mackin 2, Kai Wu 3, Diana Lee 3, Laura E Avena 3, Zhenlu Chong 1, James Brett Case 1, LingZhi Ma 3, Thu T M Kim 3, Caralyn E Sein 3, Angela Woods 3, Daniela Montes Berrueta 3, Gwo-Yu Chang 3, Guillaume Stewart-Jones 3, Isabella Renzi 3, Yen-Ting Lai 3, Agata Malinowski 3, Andrea Carfi 3, Sayda M Elbashir 3, Darin K Edwards 3, Larissa B Thackray 4, Michael S Diamond 5. Boosting with variant-matched or historical mRNA vaccines protects against Omicron infection in mice. . ; ; . [PubMed: 35452622].
  104. Zaman et al., 2019: Khalequ Zaman 1, Robert Kingma 2, Md Yunus 3, Ineke van Straaten 2, Dirk Mekkes 2, Xandra Bouwstra 2, Bhagwat Gunale 4, Prasad S Kulkarni 4. Safety, immunogenicity and lot-to-lot consistency of a new Bivalent Oral Polio Vaccine (bOPV) in healthy Infants: Results of a Phase III, observer blind, randomized, controlled clinical study. . 2019; ; . [PubMed: 31235374].
  105. Zha, et al., 2020: Lisha Zha, Hongxin Zhao, Mona O. Mohsen, Liang Hong, Yuhang Zhou, Chuankai Yao, Lijie Guo, Zehua Li, Hongquan Chen, Xuelan Liu, Xinyue Chang, Jie Zhang, Dong Li, Ke Wu, Monique Vogel, Martin F Bachmann, Junfeng Wang. Development of a COVID-19 vaccine based on the receptor binding domain displayed on virus-like particles. . ; ; .
  106. Zhang et al., 2020: Zhang NN, Li XF, Deng YQ, Zhao H, Huang YJ, Yang G, Huang WJ, Gao P, Zhou C, Zhang RR, Guo Y, Sun SH, Fan H, Zu SL, Chen Q, He Q, Cao TS, Huang XY, Qiu HY, Nie JH, Jiang Y, Yan HY, Ye Q, Zhong X, Xue XL, Zha ZY, Zhou D, Yang X, Wang YC, Ying B, Qin CF. A Thermostable mRNA Vaccine against COVID-19. Cell. 2020; 182(5); 1271-1283.e16. [PubMed: 32795413].
  107. Zhang et al., 2020: Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, Han W, Chen Z, Tang R, Yin W, Chen X, Hu Y, Liu X, Jiang C, Li J, Yang M, Song Y, Wang X, Gao Q, Zhu F. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. The Lancet. Infectious diseases. 2020; ; . [PubMed: 33217362].
  108. Zhang et al., 2022: Zhiren Zhang 1, Qiaren He 2, Wei Zhao 1, Yong Li 1, Jiaming Yang 3, Zhenxiang Hu 3, Xi Chen 3, Hua Peng 4, Yang-Xin Fu 5, Long Chen 2, Ligong Lu 1. A Heterologous V-01 or Variant-Matched Bivalent V-01D-351 Booster following Primary Series of Inactivated Vaccine Enhances the Neutralizing Capacity against SARS-CoV-2 Delta and Omicron Strains. . ; ; . [PubMed: 35887928].
  109. Zhang et. al: Zheng M, Wang P, Song W, Lau SY, Liu S, Huang X, Mok BW, Liu YC, Chen Y, Yuen KY, Chen H. An. A14U Substitution in the 3' Noncoding Region of the M Segment of Viral RNA Supports Replication of Influenza Virus with an NS1 Deletion by Modulating Alternative Splicing of M Segment mRNAs. . 2015; ; . [PubMed: 26223635].
  110. Zhu et al., 2020: Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, Wu SP, Wang BS, Wang Z, Wang L, Jia SY, Jiang HD, Wang L, Jiang T, Hu Y, Gou JB, Xu SB, Xu JJ, Wang XW, Wang W, Chen W. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet (London, England). 2020; 395(10240); 1845-1854. [PubMed: 32450106].

Schistosoma japonicum

  1. Balen et al., 2007: Balen J, Zhao ZY, Williams GM, McManus DP, Raso G, Utzinger J, Zhou J, Li YS. Prevalence, intensity and associated morbidity of Schistosoma japonicum infection in the Dongting Lake region, China. Bulletin of the World Health Organization. 2007; 85(7); 519-526. [PubMed: 17768500].
  2. Chen et al., 2016: Chen L, Chen Y, Zhang D, Hou M, Yang B, Zhang F, Zhang W, Luo X, Ji M, Wu G. Protection and immunological study on two tetraspanin-derived vaccine candidates against schistosomiasis japonicum. Parasite immunology. 2016; 38(10); 589-598. [PubMed: 27189226].
  3. Da'dara et al., 2008: Da'dara AA, Li YS, Xiong T, Zhou J, Williams GM, McManus DP, Feng Z, Yu XL, Gray DJ, Harn DA. DNA-based vaccines protect against zoonotic schistosomiasis in water buffalo. Vaccine. 2008; 26(29-30); 3617-3625. [PubMed: 18524429].
  4. Dai et al., 2014: Dai Y, Wang X, Zhao S, Tang J, Zhang L, Dai J, Zeng M, Lu S, Zhu Y, Su C. Construction and evaluation of replication-defective recombinant optimized triosephosphate isomerase adenoviral vaccination in Schistosoma japonicum challenged mice. Vaccine. 2014; 32(7); 771-778. [PubMed: 24397904].
  5. Gan et al., 2004: Gan Y, Shi YE, Bu LY, Zhu XH, Ning CX, Zhu HG. Immune responses against Schistosoma japonicum after vaccinating mice with a multivalent DNA vaccine encoding integrated membrane protein Sj23 and cytokine interleukin-12. Chinese medical journal. 2004; 117(12); 1842-1846. [PubMed: 15603716].
  6. Gao et al., 2017: Gao Y, Zhou X, Wang H, Liu R, Ye Q, Zhao Q, Ming Z, Dong H. Immunization with recombinant schistosome adenylate kinase 1 partially protects mice against Schistosoma japonicum infection. Parasitology research. 2017; 116(6); 1665-1674. [PubMed: 28455627].
  7. Ke et al., 2017: Ke XD, Shen S, Song LJ, Yu CX, Kikuchi M, Hirayama K, Gao H, Wang J, Yin X, Yao Y, Liu Q, Zhou W. Characterization of Schistosoma japonicum CP1412 protein as a novel member of the ribonuclease T2 molecule family with immune regulatory function. Parasites & vectors. 2017; 10(1); 89. [PubMed: 28212670].
  8. Wang et al., 2013: Wang L, Liu W, Yang M, Peng D, Chen L. Development of a Streptococcus gordonii vaccine strain expressing Schistosoma japonicum Sj-F1 and evaluation of using this strain for intranasal immunization in mice. Parasitology research. 2013; 112(4); 1701-1708. [PubMed: 23403993].
  9. Wei et al., 2009: Wei F, Liu Q, Zhai Y, Fu Z, Liu W, Shang L, Men J, Gao S, Lian H, Jin H, Chen C, Lin J, Shi Y, Xia Z, Zhu XQ. IL-18 enhances protective effect in mice immunized with a Schistosoma japonicum FABP DNA vaccine. Acta tropica. 2009; 111(3); 284-288. [PubMed: 19467215].
  10. Zhou et al., 2000: Zhou S, Liu S, Song G, Xu Y, Sun W. Protective immunity induced by the full-length cDNA encoding paramyosin of Chinese Schistosoma japonicum. Vaccine. 2000; 18(27); 3196-3204. [PubMed: 10856799].

Schistosoma mansoni

  1. CDC - Schistosomiasis: Parasites - Schistosomiasis [http://www.cdc.gov/parasites/schistosomiasis/gen_info/faqs.html]
  2. Da'dara et al., 2001: Da'dara AA, Skelly PJ, Wang MM, Harn DA. Immunization with plasmid DNA encoding the integral membrane protein, Sm23, elicits a protective immune response against schistosome infection in mice. Vaccine. 2001; 20(3-4); 359-369. [PubMed: 11672898].
  3. Mossallam et al., 2015: Mossallam SF, Amer EI, Ewaisha RE, Khalil AM, Aboushleib HM, Bahey-El-Din M. Fusion protein comprised of the two schistosomal antigens, Sm14 and Sm29, provides significant protection against Schistosoma mansoni in murine infection model. BMC infectious diseases. 2015; 15; 147. [PubMed: 25887456].
  4. Shalaby et al., 2003: Shalaby KA, Yin L, Thakur A, Christen L, Niles EG, LoVerde PT. Protection against Schistosoma mansoni utilizing DNA vaccination with genes encoding Cu/Zn cytosolic superoxide dismutase, signal peptide-containing superoxide dismutase and glutathione peroxidase enzymes. Vaccine. 2003; 22(1); 130-136. [PubMed: 14604580].
  5. Siddiqui et al., 2003: Siddiqui AA, Phillips T, Charest H, Podesta RB, Quinlin ML, Pinkston JR, Lloyd JD, Pompa J, Villalovos RM, Paz M. Enhancement of Sm-p80 (large subunit of calpain) induced protective immunity against Schistosoma mansoni through co-delivery of interleukin-2 and interleukin-12 in a DNA vaccine formulation. Vaccine. 2003; 21(21-22); 2882-2889. [PubMed: 12798631].
  6. Tallima et al., 2017: Tallima H, Dvo?ák J, Kareem S, Abou El Dahab M, Abdel Aziz N, Dalton JP, El Ridi R. Protective immune responses against Schistosoma mansoni infection by immunization with functionally active gut-derived cysteine peptidases alone and in combination with glyceraldehyde 3-phosphate dehydrogenase. PLoS neglected tropical diseases. 2017; 11(3); e0005443. [PubMed: 28346516].

Shigella

  1. Altboum et al., 2001: Altboum Z, Barry EM, Losonsky G, Galen JE, Levine MM. Attenuated Shigella flexneri 2a Delta guaBA strain CVD 1204 expressing enterotoxigenic Escherichia coli (ETEC) CS2 and CS3 fimbriae as a live mucosal vaccine against Shigella and ETEC infection. Infection and immunity. 2001; 69(5); 3150-3158. [PubMed: 11292735].
  2. Barnoy et al., 2010: Barnoy S, Jeong KI, Helm RF, Suvarnapunya AE, Ranallo RT, Tzipori S, Venkatesan MM. Characterization of WRSs2 and WRSs3, new second-generation virG(icsA)-based Shigella sonnei vaccine candidates with the potential for reduced reactogenicity. Vaccine. 2010; 28(6); 1642-1654. [PubMed: 19932216].
  3. Chakrabarti et al., 1999: Chakrabarti MK, Bhattacharya J, Bhattacharya MK, Nair GB, Bhattacharya SK, Mahalanabis D. Killed oral Shigella vaccine made from Shigella flexneri 2a protects against challenge in the rabbit model of shigellosis. Acta paediatrica (Oslo, Norway : 1992). 1999; 88(2); 161-165. [PubMed: 10102148].
  4. Coster et al., 1999: Coster TS, Hoge CW, VanDeVerg LL, Hartman AB, Oaks EV, Venkatesan MM, Cohen D, Robin G, Fontaine-Thompson A, Sansonetti PJ, Hale TL. Vaccination against shigellosis with attenuated Shigella flexneri 2a strain SC602. Infection and immunity. 1999; 67(7); 3437-3443. [PubMed: 10377124].
  5. Dharmasena et al., 2013: Dharmasena MN, Hanisch BW, Wai TT, Kopecko DJ. Stable expression of Shigella sonnei form I O-polysaccharide genes recombineered into the chromosome of live Salmonella oral vaccine vector Ty21a. International journal of medical microbiology : IJMM. 2013; 303(3); 105-113. [PubMed: 23474241].
  6. Gupta et al., 2011: Gupta P, Singh MK, Singh Y, Gautam V, Kumar S, Kumar O, Dhaked RK. Recombinant Shiga toxin B subunit elicits protection against Shiga toxin via mixed Th type immune response in mice. Vaccine. 2011; 29(45); 8094-8100. [PubMed: 21856355].
  7. Hartman and Venkatesan, 1998: Hartman AB, Venkatesan MM. Construction of a stable attenuated Shigella sonnei DeltavirG vaccine strain, WRSS1, and protective efficacy and immunogenicity in the guinea pig keratoconjunctivitis model. Infection and immunity. 1998; 66(9); 4572-4576. [PubMed: 9712824].
  8. Hartman et al., 1991: Hartman AB, Powell CJ, Schultz CL, Oaks EV, Eckels KH. Small-animal model to measure efficacy and immunogenicity of Shigella vaccine strains. Infection and immunity. 1991; 59(11); 4075-4083. [PubMed: 1937767].
  9. Heine et al., 2014: Heine SJ, Diaz-McNair J, Andar AU, Drachenberg CB, van de Verg L, Walker R, Picking WL, Pasetti MF. Intradermal delivery of Shigella IpaB and IpaD type III secretion proteins: kinetics of cell recruitment and antigen uptake, mucosal and systemic immunity, and protection across serotypes. Journal of immunology (Baltimore, Md. : 1950). 2014; 192(4); 1630-1640. [PubMed: 24453241].
  10. Kärnell et al., 1993: Kärnell A, Cam PD, Verma N, Lindberg AA. AroD deletion attenuates Shigella flexneri strain 2457T and makes it a safe and efficacious oral vaccine in monkeys. Vaccine. 1993; 11(8); 830-836. [PubMed: 8356844].
  11. Klee et al., 1997: Klee SR, Tzschaschel BD, Fält I, Kärnell A, Lindberg AA, Timmis KN, Guzmán CA. Construction and characterization of a live attenuated vaccine candidate against Shigella dysenteriae type 1. Infection and immunity. 1997; 65(6); 2112-2118. [PubMed: 9169740].
  12. Kotloff et al., 1992: Kotloff KL, Herrington DA, Hale TL, Newland JW, Van De Verg L, Cogan JP, Snoy PJ, Sadoff JC, Formal SB, Levine MM. Safety, immunogenicity, and efficacy in monkeys and humans of invasive Escherichia coli K-12 hybrid vaccine candidates expressing Shigella flexneri 2a somatic antigen. Infection and immunity. 1992; 60(6); 2218-2224. [PubMed: 1587589].
  13. Kotloff et al., 2000: Kotloff KL, Noriega FR, Samandari T, Sztein MB, Losonsky GA, Nataro JP, Picking WD, Barry EM, Levine MM. Shigella flexneri 2a strain CVD 1207, with specific deletions in virG, sen, set, and guaBA, is highly attenuated in humans. Infection and immunity. 2000; 68(3); 1034-1039. [PubMed: 10678904].
  14. Kotloff et al., 2002: Kotloff KL, Taylor DN, Sztein MB, Wasserman SS, Losonsky GA, Nataro JP, Venkatesan M, Hartman A, Picking WD, Katz DE, Campbell JD, Levine MM, Hale TL. Phase I evaluation of delta virG Shigella sonnei live, attenuated, oral vaccine strain WRSS1 in healthy adults. Infection and immunity. 2002; 70(4); 2016-2021. [PubMed: 11895966].
  15. Kotloff et al., 2004: Kotloff KL, Pasetti MF, Barry EM, Nataro JP, Wasserman SS, Sztein MB, Picking WD, Levine MM. Deletion in the Shigella enterotoxin genes further attenuates Shigella flexneri 2a bearing guanine auxotrophy in a phase 1 trial of CVD 1204 and CVD 1208. The Journal of infectious diseases. 2004; 190(10); 1745-1754. [PubMed: 15499528].
  16. Kotloff et al., 2007: Kotloff KL, Simon JK, Pasetti MF, Sztein MB, Wooden SL, Livio S, Nataro JP, Blackwelder WC, Barry EM, Picking W, Levine MM. Safety and Immunogenicity of CVD 1208S, a Live, Oral DeltaguaBA Deltasen Deltaset Shigella flexneri 2a Vaccine Grown on Animal-Free Media. Human vaccines. 2007; 3(6); . [PubMed: 17938573 ].
  17. Malaei et al., 2013: Malaei F, Hesaraki M, Saadati M, Ahdi AM, Sadraeian M, Honari H, Nazarian S. Immunogenicity of a new recombinant IpaC from Shigella dysenteriae type I in guinea pig as a vaccine candidate. Iranian journal of immunology : IJI. 2013; 10(2); 110-117. [PubMed: 23811550].
  18. Marteyn et al., 2010: Marteyn B, West NP, Browning DF, Cole JA, Shaw JG, Palm F, Mounier J, Prévost MC, Sansonetti P, Tang CM. Modulation of Shigella virulence in response to available oxygen in vivo. Nature. 2010; 465(7296); 355-358. [PubMed: 20436458].
  19. Niyogi, 2005: Niyogi SK. Shigellosis. Journal of microbiology (Seoul, Korea). 2005; 43(2); 133-143. [PubMed: 15880088].
  20. Noriega et al., 1994: Noriega FR, Wang JY, Losonsky G, Maneval DR, Hone DM, Levine MM. Construction and characterization of attenuated delta aroA delta virG Shigella flexneri 2a strain CVD 1203, a prototype live oral vaccine. Infection and immunity. 1994; 62(11); 5168-5172. [PubMed: 7927802].
  21. Noriega et al., 1996: Noriega FR, Losonsky G, Lauderbaugh C, Liao FM, Wang JY, Levine MM. Engineered deltaguaB-A deltavirG Shigella flexneri 2a strain CVD 1205: construction, safety, immunogenicity, and potential efficacy as a mucosal vaccine. Infection and immunity. 1996; 64(8); 3055-3061. [PubMed: 8757833].
  22. Oany et al., 2017: Oany AR, Pervin T, Mia M, Hossain M, Shahnaij M, Mahmud S, Kibria KMK. Vaccinomics Approach for Designing Potential Peptide Vaccine by Targeting <i>Shigella</i> spp. Serine Protease Autotransporter Subfamily Protein SigA. Journal of immunology research. 2017; 2017; 6412353. [PubMed: 29082265].
  23. Orr et al., 1993: Orr N, Robin G, Cohen D, Arnon R, Lowell GH. Immunogenicity and efficacy of oral or intranasal Shigella flexneri 2a and Shigella sonnei proteosome-lipopolysaccharide vaccines in animal models. Infection and immunity. 1993; 61(6); 2390-2395. [PubMed: 8500877].
  24. Orr et al., 2005: Orr N, Katz DE, Atsmon J, Radu P, Yavzori M, Halperin T, Sela T, Kayouf R, Klein Z, Ambar R, Cohen D, Wolf MK, Venkatesan MM, Hale TL. Community-based safety, immunogenicity, and transmissibility study of the Shigella sonnei WRSS1 vaccine in Israeli volunteers. Infection and immunity. 2005; 73(12); 8027-8032. [PubMed: 16299296].
  25. Osorio et al., 2007: Osorio M, Bray MD, Walker RI. Vaccine potential for inactivated shigellae. Vaccine. 2007; 25(9); 1581-1592. [PubMed: 17178431].
  26. Pore and Chakrabarti, 2013: Pore D, Chakrabarti MK. Outer membrane protein A (OmpA) from Shigella flexneri 2a: a promising subunit vaccine candidate. Vaccine. 2013; 31(36); 3644-3650. [PubMed: 23764536].
  27. Sansonetti et al., 1991: Sansonetti PJ, Arondel J, Fontaine A, d'Hauteville H, Bernardini ML. OmpB (osmo-regulation) and icsA (cell-to-cell spread) mutants of Shigella flexneri: vaccine candidates and probes to study the pathogenesis of shigellosis. Vaccine. 1991; 9(6); 416-422. [PubMed: 1887672].
  28. Schneider et al., 1998: Schneider J, Gilbert SC, Blanchard TJ, Hanke T, Robson KJ, Hannan CM, Becker M, Sinden R, Smith GL, Hill AV. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nature medicine. 1998; 4(4); 397-402. [PubMed: 9546783].
  29. Shim et al., 2007: Shim DH, Chang SY, Park SM, Jang H, Carbis R, Czerkinsky C, Uematsu S, Akira S, Kweon MN. Immunogenicity and protective efficacy offered by a ribosomal-based vaccine from Shigella flexneri 2a. Vaccine. 2007; 25(25); 4828-4836. [PubMed: 17507120].
  30. Turbyfill et al., 1995: Turbyfill KR, Joseph SW, Oaks EV. Recognition of three epitopic regions on invasion plasmid antigen C by immune sera of rhesus monkeys infected with Shigella flexneri 2a. Infection and immunity. 1995; 63(10); 3927-3935. [PubMed: 7558301].
  31. Turbyfill et al., 2000: Turbyfill KR, Hartman AB, Oaks EV. Isolation and characterization of a Shigella flexneri invasin complex subunit vaccine. Infection and immunity. 2000; 68(12); 6624-6632. [PubMed: 11083774].
  32. Venkatesan et al., 2002: Venkatesan MM, Hartman AB, Newland JW, Ivanova VS, Hale TL, McDonough M, Butterton J. Construction, characterization, and animal testing of WRSd1, a Shigella dysenteriae 1 vaccine. Infection and immunity. 2002; 70(6); 2950-2958. [PubMed: 12010984].
  33. Xu et al., 2007: Xu de Q, Cisar JO, Osorio M, Wai TT, Kopecko DJ. Core-linked LPS expression of Shigella dysenteriae serotype 1 O-antigen in live Salmonella Typhi vaccine vector Ty21a: preclinical evidence of immunogenicity and protection. Vaccine. 2007; 25(33); 6167-6175. [PubMed: 17629369].

Simian Immunodeficiency Virus

  1. Ami et al., 2005: Ami Y, Izumi Y, Matsuo K, Someya K, Kanekiyo M, Horibata S, Yoshino N, Sakai K, Shinohara K, Matsumoto S, Yamada T, Yamazaki S, Yamamoto N, Honda M. Priming-boosting vaccination with recombinant Mycobacterium bovis bacillus Calmette-Guérin and a nonreplicating vaccinia virus recombinant leads to long-lasting and effective immunity. Journal of virology. 2005; 79(20); 12871-12879. [PubMed: 16188989].
  2. Barouch et al., 2000: Barouch DH, Santra S, Schmitz JE, Kuroda MJ, Fu TM, Wagner W, Bilska M, Craiu A, Zheng XX, Krivulka GR, Beaudry K, Lifton MA, Nickerson CE, Trigona WL, Punt K, Freed DC, Guan L, Dubey S, Casimiro D, Simon A, Davies ME, Chastain M, Strom TB, Gelman RS, Montefiori DC, Lewis MG, Emini EA, Shiver JW, Letvin NL. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science (New York, N.Y.). 2000; 290(5491); 486-492. [PubMed: 11039923].
  3. Barouch et al., 2000: Barouch DH, Craiu A, Kuroda MJ, Schmitz JE, Zheng XX, Santra S, Frost JD, Krivulka GR, Lifton MA, Crabbs CL, Heidecker G, Perry HC, Davies ME, Xie H, Nickerson CE, Steenbeke TD, Lord CI, Montefiori DC, Strom TB, Shiver JW, Lewis MG, Letvin NL. Augmentation of immune responses to HIV-1 and simian immunodeficiency virus DNA vaccines by IL-2/Ig plasmid administration in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America. 2000; 97(8); 4192-4197. [PubMed: 10759543].
  4. Bertley et al., 2004: Bertley FM, Kozlowski PA, Wang SW, Chappelle J, Patel J, Sonuyi O, Mazzara G, Montefiori D, Carville A, Mansfield KG, Aldovini A. Control of simian/human immunodeficiency virus viremia and disease progression after IL-2-augmented DNA-modified vaccinia virus Ankara nasal vaccination in nonhuman primates. Journal of immunology (Baltimore, Md. : 1950). 2004; 172(6); 3745-3757. [PubMed: 15004179].
  5. Boyer et al., 2005: Boyer JD, Robinson TM, Kutzler MA, Parkinson R, Calarota SA, Sidhu MK, Muthumani K, Lewis M, Pavlakis G, Felber B, Weiner D. SIV DNA vaccine co-administered with IL-12 expression plasmid enhances CD8 SIV cellular immune responses in cynomolgus macaques. Journal of medical primatology. 2005; 34(5-6); 262-270. [PubMed: 16128921].
  6. Boyer et al., 2007: Boyer JD, Robinson TM, Kutzler MA, Vansant G, Hokey DA, Kumar S, Parkinson R, Wu L, Sidhu MK, Pavlakis GN, Felber BK, Brown C, Silvera P, Lewis MG, Monforte J, Waldmann TA, Eldridge J, Weiner DB. Protection against simian/human immunodeficiency virus (SHIV) 89.6P in macaques after coimmunization with SHIV antigen and IL-15 plasmid. Proceedings of the National Academy of Sciences of the United States of America. 2007; 104(47); 18648-18653. [PubMed: 18000037].
  7. Chong et al., 2007: Chong SY, Egan MA, Kutzler MA, Megati S, Masood A, Roopchard V, Garcia-Hand D, Montefiori DC, Quiroz J, Rosati M, Schadeck EB, Boyer JD, Pavlakis GN, Weiner DB, Sidhu M, Eldridge JH, Israel ZR. Comparative ability of plasmid IL-12 and IL-15 to enhance cellular and humoral immune responses elicited by a SIVgag plasmid DNA vaccine and alter disease progression following SHIV(89.6P) challenge in rhesus macaques. Vaccine. 2007; 25(26); 4967-4982. [PubMed: 17335943].
  8. Crotty et al., 2001: Crotty S, Miller CJ, Lohman BL, Neagu MR, Compton L, Lu D, Lü FX, Fritts L, Lifson JD, Andino R. Protection against simian immunodeficiency virus vaginal challenge by using Sabin poliovirus vectors. Journal of virology. 2001; 75(16); 7435-7452. [PubMed: 11462016].
  9. Daniel et al., 1992: Daniel MD, Kirchhoff F, Czajak SC, Sehgal PK, Desrosiers RC. Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene. Science (New York, N.Y.). 1992; 258(5090); 1938-1941. [PubMed: 1470917].
  10. Flatz et al., 2012: Flatz L, Cheng C, Wang L, Foulds KE, Ko SY, Kong WP, Roychoudhuri R, Shi W, Bao S, Todd JP, Asmal M, Shen L, Donaldson M, Schmidt SD, Gall JG, Pinschewer DD, Letvin NL, Rao S, Mascola JR, Roederer M, Nabel GJ. Gene-based vaccination with a mismatched envelope protects against simian immunodeficiency virus infection in nonhuman primates. Journal of virology. 2012; 86(15); 7760-7770. [PubMed: 22593152].
  11. Kwa et al., 2014: Kwa S, Lai L, Gangadhara S, Siddiqui M, Pillai VB, Labranche C, Yu T, Moss B, Montefiori DC, Robinson HL, Kozlowski PA, Amara RR. CD40L-adjuvanted DNA/MVA SIV239 vaccine enhances SIV-specific humoral and cellular immunity, and improves protection against a heterologous SIVE660 mucosal challenge. Journal of virology. 2014; ; . [PubMed: 24920805].
  12. Lu et al., 1996: Lu S, Arthos J, Montefiori DC, Yasutomi Y, Manson K, Mustafa F, Johnson E, Santoro JC, Wissink J, Mullins JI, Haynes JR, Letvin NL, Wyand M, Robinson HL. Simian immunodeficiency virus DNA vaccine trial in macaques. Journal of virology. 1996; 70(6); 3978-3991. [PubMed: 8648735].
  13. Wiki: Simian immunodeficiency virus: Simian immunodeficiency virus [http://en.wikipedia.org/wiki/Simian_immunodeficiency_virus]

Sindbis virus

  1. Wikipedia - Sindbis virus: Sindbis virus [http://en.wikipedia.org/wiki/Sindbis_virus]
  2. Zanin et al., 2007: Zanin MP, Webster DE, Wesselingh SL. A DNA prime, orally delivered protein boost vaccination strategy against viral encephalitis. Journal of neurovirology. 2007; 13(3); 284-289. [PubMed: 17613719].

Staphylococcus aureus

  1. Bagnoli et al., 2015: Bagnoli F, Fontana MR, Soldaini E, Mishra RP, Fiaschi L, Cartocci E, Nardi-Dei V, Ruggiero P, Nosari S, De Falco MG, Lofano G, Marchi S, Galletti B, Mariotti P, Bacconi M, Torre A, Maccari S, Scarselli M, Rinaudo CD, Inoshima N, Savino S, Mori E, Rossi-Paccani S, Baudner B, Pallaoro M, Swennen E, Petracca R, Brettoni C, Liberatori S, Norais N, Monaci E, Bubeck Wardenburg J, Schneewind O, O'Hagan DT, Valiante NM, Bensi G, Bertholet S, De Gregorio E, Rappuoli R, Grandi G. Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of America. 2015; 112(12); 3680-3685. [PubMed: 25775551].
  2. Buzzola et al., 2006: Buzzola FR, Barbagelata MS, Caccuri RL, Sordelli DO. Attenuation and persistence of and ability to induce protective immunity to a Staphylococcus aureus aroA mutant in mice. Infection and immunity. 2006; 74(6); 3498-3506. [PubMed: 16714581].
  3. Castagliuolo et al., 2006: Castagliuolo I, Piccinini R, Beggiao E, Palù G, Mengoli C, Ditadi F, Vicenzoni G, Zecconi A. Mucosal genetic immunization against four adhesins protects against Staphylococcus aureus-induced mastitis in mice. Vaccine. 2006; 24(20); 4393-4402. [PubMed: 16580097].
  4. Clarke et al., 2006: Clarke SR, Brummell KJ, Horsburgh MJ, McDowell PW, Mohamad SA, Stapleton MR, Acevedo J, Read RC, Day NP, Peacock SJ, Mond JJ, Kokai-Kun JF, Foster SJ. Identification of in vivo-expressed antigens of Staphylococcus aureus and their use in vaccinations for protection against nasal carriage. The Journal of infectious diseases. 2006; 193(8); 1098-1108. [PubMed: 16544250].
  5. Cui et al., 2005: Cui JC, Hu DL, Lin YC, Qian AD, Nakane A. Immunization with glutathione S-transferase and mutant toxic shock syndrome toxin 1 fusion protein protects against Staphylococcus aureus infection. FEMS immunology and medical microbiology. 2005; 45(1); 45-51. [PubMed: 15985222].
  6. Delfani et al., 2016: Delfani S, Mohabati Mobarez A, Imani Fooladi AA, Amani J, Emaneini M. Protection of mice against Staphylococcus aureus infection by a recombinant protein ClfA-IsdB-Hlg as a vaccine candidate. Medical microbiology and immunology. 2016; 205(1); 47-55. [PubMed: 26155981].
  7. Gaudreau et al., 2007: Gaudreau MC, Lacasse P, Talbot BG. Protective immune responses to a multi-gene DNA vaccine against Staphylococcus aureus. Vaccine. 2007; 25(5); 814-824. [PubMed: 17027124].
  8. Harro et al., 2010: Harro C, Betts R, Orenstein W, Kwak EJ, Greenberg HE, Onorato MT, Hartzel J, Lipka J, DiNubile MJ, Kartsonis N. Safety and immunogenicity of a novel Staphylococcus aureus vaccine: results from the first study of the vaccine dose range in humans. Clinical and vaccine immunology : CVI. 2010; 17(12); 1868-1874. [PubMed: 20943877].
  9. Josefsson et al., 2001: Josefsson E, Hartford O, O'Brien L, Patti JM, Foster T. Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. The Journal of infectious diseases. 2001; 184(12); 1572-1580. [PubMed: 11740733].
  10. Karauzum et al., 2013: Karauzum H, Adhikari RP, Sarwar J, Devi VS, Abaandou L, Haudenschild C, Mahmoudieh M, Boroun AR, Vu H, Nguyen T, Warfield KL, Shulenin S, Aman MJ. Structurally designed attenuated subunit vaccines for S. aureus LukS-PV and LukF-PV confer protection in a mouse bacteremia model. PloS one. 2013; 8(6); e65384. [PubMed: 23762356].
  11. Kuipers et al., 2016: Kuipers A, Stapels DA, Weerwind LT, Ko YP, Ruyken M, Lee JC, van Kessel KP, Rooijakkers SH. The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis. Microbiology (Reading, England). 2016; 162(7); 1185-1194. [PubMed: 27112346].
  12. Kuklin et al., 2006: Kuklin NA, Clark DJ, Secore S, Cook J, Cope LD, McNeely T, Noble L, Brown MJ, Zorman JK, Wang XM, Pancari G, Fan H, Isett K, Burgess B, Bryan J, Brownlow M, George H, Meinz M, Liddell ME, Kelly R, Schultz L, Montgomery D, Onishi J, Losada M, Martin M, Ebert T, Tan CY, Schofield TL, Nagy E, Meineke A, Joyce JG, Kurtz MB, Caulfield MJ, Jansen KU, McClements W, Anderson AS. A novel Staphylococcus aureus vaccine: iron surface determinant B induces rapid antibody responses in rhesus macaques and specific increased survival in a murine S. aureus sepsis model. Infection and immunity. 2006; 74(4); 2215-2223. [PubMed: 16552052].
  13. Lacey et al., 2017: Lacey KA, Leech JM, Lalor SJ, McCormack N, Geoghegan JA, McLoughlin RM. The Staphylococcus aureus Cell Wall-Anchored Protein Clumping Factor A Is an Important T Cell Antigen. Infection and immunity. 2017; 85(12); . [PubMed: 28947645].
  14. Mamo et al., 1994: Mamo W, Jonsson P, Flock JI, Lindberg M, Müller HP, Wadström T, Nelson L. Vaccination against Staphylococcus aureus mastitis: immunological response of mice vaccinated with fibronectin-binding protein (FnBP-A) to challenge with S. aureus. Vaccine. 1994; 12(11); 988-992. [PubMed: 7975852].
  15. Mamo et al., 2000: Mamo W, Fröman G, Müller HP. Protection induced in mice vaccinated with recombinant collagen-binding protein (CnBP) and alpha-toxoid against intramammary infection with Staphylococcus aureus. Microbiology and immunology. 2000; 44(5); 381-384. [PubMed: 10888356].
  16. Narita et al., 2015: Narita K, Hu DL, Asano K, Nakane A. Vaccination with non-toxic mutant toxic shock syndrome toxin-1 induces IL-17-dependent protection against Staphylococcus aureus infection. Pathogens and disease. 2015; 73(4); . [PubMed: 25857736].
  17. Nilsson et al., 1998: Nilsson IM, Patti JM, Bremell T, Höök M, Tarkowski A. Vaccination with a recombinant fragment of collagen adhesin provides protection against Staphylococcus aureus-mediated septic death. The Journal of clinical investigation. 1998; 101(12); 2640-2649. [PubMed: 9637697].
  18. Nilsson et al., 1999: Nilsson IM, Verdrengh M, Ulrich RG, Bavari S, Tarkowski A. Protection against Staphylococcus aureus sepsis by vaccination with recombinant staphylococcal enterotoxin A devoid of superantigenicity. The Journal of infectious diseases. 1999; 180(4); 1370-1373. [PubMed: 10479175].
  19. Pozzi et al., 2015: Pozzi C, Lofano G, Mancini F, Soldaini E, Speziale P, De Gregorio E, Rappuoli R, Bertholet S, Grandi G, Bagnoli F. Phagocyte subsets and lymphocyte clonal deletion behind ineffective immune response to Staphylococcus aureus. FEMS microbiology reviews. 2015; 39(5); 750-763. [PubMed: 25994610].
  20. Rauch et al., 2014: Rauch S, Gough P, Kim HK, Schneewind O, Missiakas D. Vaccine protection of leukopenic mice against Staphylococcus aureus bloodstream infection. Infection and immunity. 2014; 82(11); 4889-4898. [PubMed: 25183728].
  21. Reddy et al., 2015: Reddy PN, Paul S, Sripathy MH, Batra HV. Evaluation of recombinant SEA-TSST fusion toxoid for protection against superantigen induced toxicity in mouse model. Toxicon : official journal of the International Society on Toxinology. 2015; 103; 106-113. [PubMed: 26091873].
  22. Senna et al., 2003: Senna JP, Roth DM, Oliveira JS, Machado DC, Santos DS. Protective immune response against methicillin resistant Staphylococcus aureus in a murine model using a DNA vaccine approach. Vaccine. 2003; 21(19-20); 2661-2666. [PubMed: 12744903].
  23. Stranger-Jones et al., 2006: Stranger-Jones YK, Bae T, Schneewind O. Vaccine assembly from surface proteins of Staphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103(45); 16942-16947. [PubMed: 17075065].
  24. Veloso et al., 2015: Veloso TR, Mancini S, Giddey M, Vouillamoz J, Que YA, Moreillon P, Entenza JM. Vaccination against Staphylococcus aureus experimental endocarditis using recombinant Lactococcus lactis expressing ClfA or FnbpA. Vaccine. 2015; 33(30); 3512-3517. [PubMed: 26048778].
  25. Wiki: S. aureus: Wiki: Staphylococcus aureus [http://en.wikipedia.org/wiki/Staphylococcus_aureus]
  26. Yang et al., 2016: Yang HJ, Zhang JY, Wei C, Yang LY, Zuo QF, Zhuang Y, Feng YJ, Srinivas S, Zeng H, Zou QM. Immunisation With Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus aureus Infection. PloS one. 2016; 11(2); e0149638. [PubMed: 26895191].
  27. Yang et al., 2017: Yang Y, Yu R, Yang X, Liu S, Fang T, Song X, Hou L, Yu C, Xu J, Fu L, Yi S, Chen W. Protection against Staphylococcus aureus and tetanus infections by a combined vaccine containing SasA and TeNT?Hc in mice. Molecular medicine reports. 2017; 15(4); 2369-2373. [PubMed: 28259925].
  28. Yu et al., 2014: Yu L, Fan Z, Ma J, Tong C, Song B, Zhu Z, Cui Y. Cross-protective effect of a novel multi-antigen-chimeric vaccine against Streptococcus and Staphylococcus aureus infection in mice. Journal of medical microbiology. 2014; 63(Pt 12); 1732-1740. [PubMed: 25288644].
  29. Yu et al., 2015: Yu S, Zhang H, Yao D, Liu W, Wang X, Chen X, Wei Y, Zhang Z, Wang J, Yu L, Sun H, Wu Z, Yu Y, Song B, Ma J, Tong C, Cui Y. Identification of CD4+ T-cell epitopes on iron-regulated surface determinant B of Staphylococcus aureus. Microbial pathogenesis. 2015; 89; 108-113. [PubMed: 26423555].
  30. Zhao et al., 2014: Zhao Z, Li B, Sun HQ, Zhang JY, Wang YL, Chen L, Hu J, He YF, Zeng H, Zou QM, Wu C. Fine-mapping of immunodominant linear B-cell epitopes of the Staphylococcus aureus SEB antigen using short overlapping peptides. PloS one. 2014; 9(3); e90445. [PubMed: 24599257].

Streptococcus agalactiae

  1. Brodeur et al., 2000: Brodeur BR, Boyer M, Charlebois I, Hamel J, Couture F, Rioux CR, Martin D. Identification of group B streptococcal Sip protein, which elicits cross-protective immunity. Infection and immunity. 2000; 68(10); 5610-5618. [PubMed: 10992461].
  2. Brzychczy-Wloch et al., 2013: Brzychczy-Wloch M, Gorska S, Brzozowska E, Gamian A, Heczko PB, Bulanda M. Identification of high immunoreactive proteins from Streptococcus agalactiae isolates recognized by human serum antibodies. FEMS microbiology letters. 2013; 349(1); 61-70. [PubMed: 24152143].
  3. Erdogan et al., 2002: Erdogan S, Fagan PK, Talay SR, Rohde M, Ferrieri P, Flores AE, Guzmán CA, Walker MJ, Chhatwal GS. Molecular analysis of group B protective surface protein, a new cell surface protective antigen of group B streptococci. Infection and immunity. 2002; 70(2); 803-811. [PubMed: 11796614].
  4. Grenningloh et al., 2008: Grenningloh R, Darj A, Bauer H, zur Lage S, Chakraborty T, Jacobs T, Weiss S. Liposome-encapsulated antigens induce a protective CTL response against Listeria monocytogenes independent of CD4+ T cell help. Scandinavian journal of immunology. 2008; 67(6); 594-602. [PubMed: 18433404].
  5. Kvam et al., 2011: Kvam AI, Mavenyengwa RT, Radtke A, Maeland JA. Streptococcus agalactiae alpha-like protein 1 possesses both cross-reacting and Alp1-specific epitopes. Clinical and vaccine immunology : CVI. 2011; 18(8); 1365-1370. [PubMed: 21653744].
  6. Larsson et al., 1996: Larsson C, Stålhammar-Carlemalm M, Lindahl G. Experimental vaccination against group B streptococcus, an encapsulated bacterium, with highly purified preparations of cell surface proteins Rib and alpha. Infection and immunity. 1996; 64(9); 3518-3523. [PubMed: 8751893].
  7. Li et al., 2016: Li W, Wang HQ, He RZ, Li YW, Su YL, Li AX. Major surfome and secretome profile of Streptococcus agalactiae from Nile tilapia (Oreochromis niloticus): Insight into vaccine development. Fish & shellfish immunology. 2016; 55; 737-746. [PubMed: 27327442].
  8. Liu et al., 2013: Liu G, Zhang W, Lu C. Identification of immunoreactive proteins of Streptococcus agalactiae isolated from cultured tilapia in China. Pathogens and disease. 2013; 69(3); 223-231. [PubMed: 23929656].
  9. MicrobeWiki: S. agalactiae: MicrobeWiki: S. agalactiae [http://microbewiki.kenyon.edu/index.php/Streptococcus_agalactiae]
  10. Pannaraj et al., 2008: Pannaraj PS, Kelly JK, Rench MA, Madoff LC, Edwards MS, Baker CJ. Alpha C protein-specific immunity in humans with group B streptococcal colonization and invasive disease. Vaccine. 2008; 26(4); 502-508. [PubMed: 18155812].
  11. Santi et al., 2007: Santi I, Scarselli M, Mariani M, Pezzicoli A, Masignani V, Taddei A, Grandi G, Telford JL, Soriani M. BibA: a novel immunogenic bacterial adhesin contributing to group B Streptococcus survival in human blood. Molecular microbiology. 2007; 63(3); 754-767. [PubMed: 17212592].
  12. Santi et al., 2009: Santi I, Maione D, Galeotti CL, Grandi G, Telford JL, Soriani M. BibA induces opsonizing antibodies conferring in vivo protection against group B Streptococcus. The Journal of infectious diseases. 2009; 200(4); 564-570. [PubMed: 19586417].
  13. Santillan et al., 2011: Santillan DA, Rai KK, Santillan MK, Krishnamachari Y, Salem AK, Hunter SK. Efficacy of polymeric encapsulated C5a peptidase-based group B streptococcus vaccines in a murine model. American journal of obstetrics and gynecology. 2011; 205(3); 249.e1-8. [PubMed: 21802065].
  14. Suvorov et al., 2010: Suvorov AN, Grabovskaia KB, Leont'eva GF, Meringova LF, Koroleva IN, Duplik NV, Totolian AA. [Recombinant fragments of conservative proteins of group B streptococci as a basis of specific vaccine]. Zhurnal mikrobiologii, epidemiologii, i immunobiologii. 2010; (2); 44-50. [PubMed: 20465000].
  15. Wiki: S. agalactiae: Wiki: Streptococcus agalactiae [http://en.wikipedia.org/wiki/Streptococcus_agalactiae]
  16. Xue et al., 2010: Xue G, Yu L, Li S, Shen X. Intranasal immunization with GBS surface protein Sip and ScpB induces specific mucosal and systemic immune responses in mice. FEMS immunology and medical microbiology. 2010; 58(2); 202-210. [PubMed: 19912341].
  17. Yang et al., 2007: Yang HH, Madoff LC, Guttormsen HK, Liu YD, Paoletti LC. Recombinant group B streptococcus Beta C protein and a variant with the deletion of its immunoglobulin A-binding site are protective mouse maternal vaccines and effective carriers in conjugate vaccines. Infection and immunity. 2007; 75(7); 3455-3461. [PubMed: 17470542].

Streptococcus equi

  1. Chanter et al., 1999: Chanter N, Ward CL, Talbot NC, Flanagan JA, Binns M, Houghton SB, Smith KC, Mumford JA. Recombinant hyaluronate associated protein as a protective immunogen against Streptococcus equi and Streptococcus zooepidemicus challenge in mice. Microbial pathogenesis. 1999; 27(3); 133-143. [PubMed: 10455004].
  2. Flock et al., 2004: Flock M, Jacobsson K, Frykberg L, Hirst TR, Franklin A, Guss B, Flock JI. Recombinant Streptococcus equi proteins protect mice in challenge experiments and induce immune response in horses. Infection and immunity. 2004; 72(6); 3228-3236. [PubMed: 15155624].
  3. Flock et al., 2004: Flock M, Jacobsson K, Frykberg L, Hirst TR, Franklin A, Guss B, Flock JI. Recombinant Streptococcus equi proteins protect mice in challenge experiments and induce immune response in horses. Infection and immunity. 2004; 72(6); 3228-3236. [PubMed: 15155624].
  4. Flock et al., 2006: Flock M, Karlström A, Lannergård J, Guss B, Flock JI. Protective effect of vaccination with recombinant proteins from Streptococcus equi subspecies equi in a strangles model in the mouse. Vaccine. 2006; 24(19); 4144-4151. [PubMed: 16580099].
  5. Fu et al., 2013: Fu Q, Wei Z, Liu X, Xiao P, Lu Z, Chen Y. Glyceraldehyde-3-phosphate dehydrogenase, an immunogenic Streptococcus equi ssp. zooepidemicus adhesion protein and protective antigen. Journal of microbiology and biotechnology. 2013; 23(4); 579-585. [PubMed: 23568215].
  6. Fu et al., 2013: Fu Q, Wei Z, Chen Y, Xiao P, Lu Z, Liu X. Identification of a surface protective antigen, CSP of Streptococcus equi ssp. zooepidemicus. Vaccine. 2013; 31(10); 1400-1405. [PubMed: 23306366].
  7. Jacobs et al., 2000: Jacobs AA, Goovaerts D, Nuijten PJ, Theelen RP, Hartford OM, Foster TJ. Investigations towards an efficacious and safe strangles vaccine: submucosal vaccination with a live attenuated Streptococcus equi. The Veterinary record. 2000; 147(20); 563-567. [PubMed: 11104039].
  8. Lin et al., 2011: Lin HX, Huang DY, Wang Y, Lu CP, Fan HJ. A novel vaccine against Streptococcus equi ssp. zooepidemicus infections: the recombinant swinepox virus expressing M-like protein. Vaccine. 2011; 29(40); 7027-7034. [PubMed: 21807055].
  9. Liu et al., 2008: Liu M, McClure MJ, Zhu H, Xie G, Lei B. The Two-Component Regulatory System VicRK is Important to Virulence of Streptococcus equi Subspecies equi. The open microbiology journal. 2008; 2; 89-93. [PubMed: 19088917].
  10. Meehan et al., 1998: Meehan M, Nowlan P, Owen P. Affinity purification and characterization of a fibrinogen-binding protein complex which protects mice against lethal challenge with Streptococcus equi subsp. equi. Microbiology (Reading, England). 1998; 144 ( Pt 4); 993-991003. [PubMed: 9579073].
  11. MicrobeWiki: S. zooepidemicus: MicrobeWiki: S. zooepidemicus [http://microbewiki.kenyon.edu/index.php/Streptococcus_zooepidemicus]
  12. Nally et al., 2000: Nally JE, Artiushin S, Sheoran AS, Burns PJ, Simon B, Gilley RM, Gibson J, Sullivan S, Timoney JF. Induction of mucosal and systemic antibody specific for SeMF3 of Streptococcus equi by intranasal vaccination using a sucrose acetate isobutyrate based delivery system. Vaccine. 2000; 19(4-5); 492-497. [PubMed: 11027813].
  13. Timoney, 2004: Timoney JF. The pathogenic equine streptococci. Veterinary research. 2004; 35(4); 397-409. [PubMed: 15236673].
  14. Velineni and Timoney, 2013: Velineni S, Timoney JF. Characterization and protective immunogenicity of the SzM protein of Streptococcus zooepidemicus NC78 from a clonal outbreak of equine respiratory disease. Clinical and vaccine immunology : CVI. 2013; 20(8); 1181-1188. [PubMed: 23740925].
  15. Waller et al., 2007: Waller A, Flock M, Smith K, Robinson C, Mitchell Z, Karlström A, Lannergård J, Bergman R, Guss B, Flock JI. Vaccination of horses against strangles using recombinant antigens from Streptococcus equi. Vaccine. 2007; 25(18); 3629-3635. [PubMed: 17321016].
  16. Wei et al., 2012: Wei Z, Fu Q, Liu X, Xiao P, Lu Z, Chen Y. Identification of Streptococcus equi ssp. zooepidemicus surface associated proteins by enzymatic shaving. Veterinary microbiology. 2012; 159(3-4); 519-525. [PubMed: 22613253].
  17. Wei et al., 2013: Wei Z, Fu Q, Chen Y, Li M, Cong P, Mo D, Liu X. Streptococcus equi ssp. zooepidemicus C5a peptidase, a putative invasin, induces protective immune response in mice. Research in veterinary science. 2013; 95(2); 444-450. [PubMed: 23632199].
  18. Wiki: Strangles: Strangles [http://en.wikipedia.org/wiki/Streptococcus_equi]

Streptococcus pneumoniae

  1. Anderson et al., 2016: Anderson RJ, Guru S, Weeratna R, Makinen S, Falconer DJ, Sheppard NC, Lang S, Chang B, Goenaga AL, Green BA, Merson JR, Gracheck SJ, Eyles JE. In vivo screen of genetically conserved Streptococcus pneumoniae proteins for protective immunogenicity. Vaccine. 2016; 34(50); 6292-6300. [PubMed: 27816374].
  2. Brown et al., 2001: Brown JS, Ogunniyi AD, Woodrow MC, Holden DW, Paton JC. Immunization with components of two iron uptake ABC transporters protects mice against systemic Streptococcus pneumoniae infection. Infection and immunity. 2001; 69(11); 6702-6706. [PubMed: 11598041].
  3. Chen et al., 2015: Chen A, Mann B, Gao G, Heath R, King J, Maissoneuve J, Alderson M, Tate A, Hollingshead SK, Tweten RK, Briles DE, Tuomanen EI, Paton JC. Multivalent Pneumococcal Protein Vaccines Comprising Pneumolysoid with Epitopes/Fragments of CbpA and/or PspA Elicit Strong and Broad Protection. Clinical and vaccine immunology : CVI. 2015; 22(10); 1079-1089. [PubMed: 26245351].
  4. Daniely et al., 2006: Daniely D, Portnoi M, Shagan M, Porgador A, Givon-Lavi N, Ling E, Dagan R, Mizrachi Nebenzahl Y. Pneumococcal 6-phosphogluconate-dehydrogenase, a putative adhesin, induces protective immune response in mice. Clinical and experimental immunology. 2006; 144(2); 254-263. [PubMed: 16634799].
  5. FDA: PNEUMOVAX 23: FDA: PNEUMOVAX 23 Vaccine for Streptococcus pneumoniae [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094055.htm]
  6. FDA: Prevnar: FDA: Pneumococcal 7-valent Conjugate Vaccine [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094057.htm]
  7. FDA: Prevnar 13: FDA: Prevnar 13 [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm201667.htm]
  8. Ferreira et al., 2006: Ferreira DM, Miyaji EN, Oliveira ML, Darrieux M, Arêas AP, Ho PL, Leite LC. DNA vaccines expressing pneumococcal surface protein A (PspA) elicit protection levels comparable to recombinant protein. Journal of medical microbiology. 2006; 55(Pt 4); 375-378. [PubMed: 16533983].
  9. Gianfaldoni et al., 2009: Gianfaldoni C, Maccari S, Pancotto L, Rossi G, Hilleringmann M, Pansegrau W, Sinisi A, Moschioni M, Masignani V, Rappuoli R, Del Giudice G, Ruggiero P. Sortase A confers protection against Streptococcus pneumoniae in mice. Infection and immunity. 2009; 77(7); 2957-2961. [PubMed: 19433540].
  10. González-Miro et al., 2017: González-Miro M, Rodríguez-Noda L, Fariñas-Medina M, García-Rivera D, Vérez-Bencomo V, Rehm BHA. Self-assembled particulate PsaA as vaccine against <i>Streptococcus pneumoniae</i> infection. Heliyon. 2017; 3(4); e00291. [PubMed: 28435909].
  11. GSK: Synflorix: GSK: Synflorix [http://www.gsk.ca/english/docs-pdf/Synflorix_PM_20090505_EN.pdf]
  12. Jakobsen et al., 1999: Jakobsen H, Schulz D, Pizza M, Rappuoli R, Jónsdóttir I. Intranasal immunization with pneumococcal polysaccharide conjugate vaccines with nontoxic mutants of Escherichia coli heat-labile enterotoxins as adjuvants protects mice against invasive pneumococcal infections. Infection and immunity. 1999; 67(11); 5892-5897. [PubMed: 10531245].
  13. Jang et al., 2017: Jang AY, Seo HS, Lin S, Chung GH, Kim HW, Lim S, Zhao L, Park IH, Lim JH, Kim KH. Molecular characterization of pneumococcal surface protein K, a potential pneumococcal vaccine antigen. Virulence. 2017; 8(6); 875-890. [PubMed: 28059611].
  14. Khan et al., 2006: Khan MN, Bansal A, Shukla D, Paliwal P, Sarada SK, Mustoori SR, Banerjee PK. Immunogenicity and protective efficacy of DnaJ (hsp40) of Streptococcus pneumoniae against lethal infection in mice. Vaccine. 2006; 24(37-39); 6225-6231. [PubMed: 16797798].
  15. Langermann et al., 1994: Langermann S, Palaszynski SR, Burlein JE, Koenig S, Hanson MS, Briles DE, Stover CK. Protective humoral response against pneumococcal infection in mice elicited by recombinant bacille Calmette-Guérin vaccines expressing pneumococcal surface protein A. The Journal of experimental medicine. 1994; 180(6); 2277-2286. [PubMed: 7964500].
  16. McNeil et al., 2005: McNeil SA, Halperin SA, Langley JM, Smith B, Warren A, Sharratt GP, Baxendale DM, Reddish MA, Hu MC, Stroop SD, Linden J, Fries LF, Vink PE, Dale JB. Safety and immunogenicity of 26-valent group a streptococcus vaccine in healthy adult volunteers. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2005; 41(8); 1114-1122. [PubMed: 16163629].
  17. Merck: PNEUMOVAX 23: Merck: PNEUMOVAX 23 [http://www.merckvaccines.com/vaccines/pneu/index.html]
  18. Miyaji et al., 2001: Miyaji EN, Dias WO, Gamberini M, Gebara VC, Schenkman RP, Wild J, Riedl P, Reimann J, Schirmbeck R, Leite LC. PsaA (pneumococcal surface adhesin A) and PspA (pneumococcal surface protein A) DNA vaccines induce humoral and cellular immune responses against Streptococcus pneumoniae. Vaccine. 2001; 20(5-6); 805-812. [PubMed: 11738744].
  19. Mizrachi et al., 2007: Mizrachi Nebenzahl Y, Bernstein A, Portnoi M, Shagan M, Rom S, Porgador A, Dagan R. Streptococcus pneumoniae surface-exposed glutamyl tRNA synthetase, a putative adhesin, is able to induce a partially protective immune response in mice. The Journal of infectious diseases. 2007; 196(6); 945-953. [PubMed: 17703427].
  20. Morsczeck et al., 2008: Morsczeck C, Prokhorova T, Sigh J, Pfeiffer M, Bille-Nielsen M, Petersen J, Boysen A, Kofoed T, Frimodt-Møller N, Nyborg-Nielsen P, Schrotz-King P. Streptococcus pneumoniae: proteomics of surface proteins for vaccine development. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2008; 14(1); 74-81. [PubMed: 18034862].
  21. Ogunniyi et al., 2001: Ogunniyi AD, Woodrow MC, Poolman JT, Paton JC. Protection against Streptococcus pneumoniae elicited by immunization with pneumolysin and CbpA. Infection and immunity. 2001; 69(10); 5997-6003. [PubMed: 11553536].
  22. Ogunniyi et al., 2007: Ogunniyi AD, Grabowicz M, Briles DE, Cook J, Paton JC. Development of a vaccine against invasive pneumococcal disease based on combinations of virulence proteins of Streptococcus pneumoniae. Infection and immunity. 2007; 75(1); 350-357. [PubMed: 17088353].
  23. Ortqvist et al., 2005: Ortqvist A, Hedlund J, Kalin M. Streptococcus pneumoniae: epidemiology, risk factors, and clinical features. Seminars in respiratory and critical care medicine. 2005; 26(6); 563-574. [PubMed: 16388428].
  24. Roche et al., 2007: Roche AM, King SJ, Weiser JN. Live attenuated Streptococcus pneumoniae strains induce serotype-independent mucosal and systemic protection in mice. Infection and immunity. 2007; 75(5); 2469-2475. [PubMed: 17339359].
  25. Salha et al., 2012: Salha D, Szeto J, Myers L, Claus C, Sheung A, Tang M, Ljutic B, Hanwell D, Ogilvie K, Ming M, Messham B, van den Dobbelsteen G, Hopfer R, Ochs MM, Gallichan S. Neutralizing antibodies elicited by a novel detoxified pneumolysin derivative, PlyD1, provide protection against both pneumococcal infection and lung injury. Infection and immunity. 2012; 80(6); 2212-2220. [PubMed: 22473606].
  26. Shi et al., 2010: Shi H, Wang S, Roland KL, Gunn BM, Curtiss R 3rd. Immunogenicity of a live recombinant Salmonella enterica serovar typhimurium vaccine expressing pspA in neonates and infant mice born from naive and immunized mothers. Clinical and vaccine immunology : CVI. 2010; 17(3); 363-371. [PubMed: 20053873].
  27. Shivshankar et al., 2009: Shivshankar P, Sanchez C, Rose LF, Orihuela CJ. The Streptococcus pneumoniae adhesin PsrP binds to Keratin 10 on lung cells. Molecular microbiology. 2009; 73(4); 663-679. [PubMed: 19627498].
  28. Textbook of Bacteriology: Online Textbook of Bacteriology: Streptococcus pneumoniae [http://textbookofbacteriology.net/S.pneumoniae.html]
  29. Tostes et al., 2017: Tostes RO, Rodrigues TC, da Silva JB, Schanoski AS, Oliveira ML, Miyaji EN. Protection Elicited by Nasal Immunization with Recombinant Pneumococcal Surface Protein A (rPspA) Adjuvanted with Whole-Cell Pertussis Vaccine (wP) against Co-Colonization of Mice with Streptococcus pneumoniae. PloS one. 2017; 12(1); e0170157. [PubMed: 28103277].
  30. Vadesilho et al., 2012: Vadesilho CF, Ferreira DM, Moreno AT, Chavez-Olortegui C, Machado de Avila RA, Oliveira ML, Ho PL, Miyaji EN. Characterization of the antibody response elicited by immunization with pneumococcal surface protein A (PspA) as recombinant protein or DNA vaccine and analysis of protection against an intranasal lethal challenge with Streptococcus pneumoniae. Microbial pathogenesis. 2012; 53(5-6); 243-249. [PubMed: 22981893].
  31. Wang et al., 2010: Wang S, Li Y, Shi H, Scarpellini G, Torres-Escobar A, Roland KL, Curtiss R 3rd. Immune responses to recombinant pneumococcal PsaA antigen delivered by a live attenuated Salmonella vaccine. Infection and immunity. 2010; 78(7); 3258-3271. [PubMed: 20479086].
  32. Wiki: S. pneumoniae: Wikipedia: Streptococcus pneumoniae [http://en.wikipedia.org/wiki/Streptococcus_pneumoniae]
  33. Wu et al., 2010: Wu K, Zhang X, Shi J, Li N, Li D, Luo M, Cao J, Yin N, Wang H, Xu W, He Y, Yin Y. Immunization with a combination of three pneumococcal proteins confers additive and broad protection against Streptococcus pneumoniae Infections in Mice. Infection and immunity. 2010; 78(3); 1276-1283. [PubMed: 20038538].
  34. Xu et al., 2017: Xu Q, Pryharski K, Pichichero ME. Trivalent pneumococcal protein vaccine protects against experimental acute otitis media caused by Streptococcus pneumoniae in an infant murine model. Vaccine. 2017; 35(2); 337-344. [PubMed: 27919628].
  35. Zhang et al., 2001: Zhang Y, Masi AW, Barniak V, Mountzouros K, Hostetter MK, Green BA. Recombinant PhpA protein, a unique histidine motif-containing protein from Streptococcus pneumoniae, protects mice against intranasal pneumococcal challenge. Infection and immunity. 2001; 69(6); 3827-3836. [PubMed: 11349048].
  36. Zhang et al., 2017: Zhang J, Cui YL, Jiang YM. [Immunoprotective effect of combined pneumococcal endopeptidase O and pneumococcal surface adhesin A vaccines against Streptococcus pneumoniae infection]. Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics. 2017; 19(5); 583-589. [PubMed: 28506354].

Streptococcus pyogenes

  1. Bensi et al., 2012: Bensi G, Mora M, Tuscano G, Biagini M, Chiarot E, Bombaci M, Capo S, Falugi F, Manetti AG, Donato P, Swennen E, Gallotta M, Garibaldi M, Pinto V, Chiappini N, Musser JM, Janulczyk R, Mariani M, Scarselli M, Telford JL, Grifantini R, Norais N, Margarit I, Grandi G. Multi high-throughput approach for highly selective identification of vaccine candidates: the Group A Streptococcus case. Molecular & cellular proteomics : MCP. 2012; 11(6); M111.015693. [PubMed: 22286755].
  2. Chen et al., 2016: Chen X, Li N, Bi S, Wang X, Wang B. Co-Activation of Th17 and Antibody Responses Provides Efficient Protection against Mucosal Infection by Group A Streptococcus. PloS one. 2016; 11(12); e0168861. [PubMed: 28030629].
  3. Courtney et al., 2017: Courtney HS, Niedermeyer SE, Penfound TA, Hohn CM, Greeley A, Dale JB. Trivalent M-related protein as a component of next generation group A streptococcal vaccines. Clinical and experimental vaccine research. 2017; 6(1); 45-49. [PubMed: 28168173].
  4. Dale et al., 2015: Dale JB, Niedermeyer SE, Agbaosi T, Hysmith ND, Penfound TA, Hohn CM, Pullen M, Bright MI, Murrell DS, Shenep LE, Courtney HS. Protective immunogenicity of group A streptococcal M-related proteins. Clinical and vaccine immunology : CVI. 2015; 22(3); 344-350. [PubMed: 25630406].
  5. Guerino et al., 2011: Guerino MT, Postol E, Demarchi LM, Martins CO, Mundel LR, Kalil J, Guilherme L. HLA class II transgenic mice develop a safe and long lasting immune response against StreptInCor, an anti-group A streptococcus vaccine candidate. Vaccine. 2011; 29(46); 8250-8256. [PubMed: 21907752].
  6. Guzmán et al., 1999: Guzmán CA, Talay SR, Molinari G, Medina E, Chhatwal GS. Protective immune response against Streptococcus pyogenes in mice after intranasal vaccination with the fibronectin-binding protein SfbI. The Journal of infectious diseases. 1999; 179(4); 901-906. [PubMed: 10068585].
  7. Kagawa et al., 2009: Kagawa TF, O'Connell MR, Mouat P, Paoli M, O'Toole PW, Cooney JC. Model for substrate interactions in C5a peptidase from Streptococcus pyogenes: A 1.9 A crystal structure of the active form of ScpA. Journal of molecular biology. 2009; 386(3); 754-772. [PubMed: 19152799].
  8. Kawabata et al., 2001: Kawabata S, Kunitomo E, Terao Y, Nakagawa I, Kikuchi K, Totsuka K, Hamada S. Systemic and mucosal immunizations with fibronectin-binding protein FBP54 induce protective immune responses against Streptococcus pyogenes challenge in mice. Infection and immunity. 2001; 69(2); 924-930. [PubMed: 11159987].
  9. Kawabata et al., 2001: Kawabata S, Kunitomo E, Terao Y, Nakagawa I, Kikuchi K, Totsuka K, Hamada S. Systemic and mucosal immunizations with fibronectin-binding protein FBP54 induce protective immune responses against Streptococcus pyogenes challenge in mice. Infection and immunity. 2001; 69(2); 924-930. [PubMed: 11159987].
  10. Kotloff et al., 2004: Kotloff KL, Corretti M, Palmer K, Campbell JD, Reddish MA, Hu MC, Wasserman SS, Dale JB. Safety and immunogenicity of a recombinant multivalent group a streptococcal vaccine in healthy adults: phase 1 trial. JAMA : the journal of the American Medical Association. 2004; 292(6); 709-715. [PubMed: 15304468].
  11. Lei et al., 2004: Lei B, Liu M, Chesney GL, Musser JM. Identification of new candidate vaccine antigens made by Streptococcus pyogenes: purification and characterization of 16 putative extracellular lipoproteins. The Journal of infectious diseases. 2004; 189(1); 79-89. [PubMed: 14702157].
  12. Ma et al., 2009: Ma CQ, Li CH, Wang XR, Zeng RH, Yin XL, Feng HD, Wei L. Similar ability of FbaA with M protein to elicit protective immunity against group A streptococcus challenge in mice. Cellular & molecular immunology. 2009; 6(1); 73-77. [PubMed: 19254483].
  13. Ma et al., 2014: Ma C, Liu Z, Li W, Qian X, Zhang S, Gao X, Jiang S, Wei L. FbaA- and M protein-based multi-epitope vaccine elicits strong protective immune responses against group A streptococcus in mouse model. Microbes and infection. 2014; 16(5); 409-418. [PubMed: 24704476].
  14. Mansour and Abdelaziz, 2016: Mansour NM, Abdelaziz SA. Oral immunization of mice with engineered Lactobacillus gasseri NM713 strain expressing Streptococcus pyogenes M6 antigen. Microbiology and immunology. 2016; 60(8); 527-532. [PubMed: 27301486].
  15. McNeil et al., 2005: McNeil SA, Halperin SA, Langley JM, Smith B, Warren A, Sharratt GP, Baxendale DM, Reddish MA, Hu MC, Stroop SD, Linden J, Fries LF, Vink PE, Dale JB. Safety and immunogenicity of 26-valent group a streptococcus vaccine in healthy adult volunteers. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2005; 41(8); 1114-1122. [PubMed: 16163629].
  16. Morefield et al., 2014: Morefield G, Touhey G, Lu F, Dunham A, HogenEsch H. Development of a recombinant fusion protein vaccine formulation to protect against Streptococcus pyogenes. Vaccine. 2014; 32(30); 3810-3815. [PubMed: 24837509].
  17. Mortensen et al., 2016: Mortensen R, Nissen TN, Fredslund S, Rosenkrands I, Christensen JP, Andersen P, Dietrich J. Identifying protective Streptococcus pyogenes vaccine antigens recognized by both B and T cells in human adults and children. Scientific reports. 2016; 6; 22030. [PubMed: 26911649].
  18. Niedermeyer et al., 2014: Niedermeyer SE, Penfound TA, Hohn C, Li Y, Homayouni R, Zhao J, Dale JB. Group A streptococcus expresses a trio of surface proteins containing protective epitopes. Clinical and vaccine immunology : CVI. 2014; 21(10); 1421-1425. [PubMed: 25080552].
  19. Okamoto et al., 2005: Okamoto S, Tamura Y, Terao Y, Hamada S, Kawabata S. Systemic immunization with streptococcal immunoglobulin-binding protein Sib 35 induces protective immunity against group: a Streptococcus challenge in mice. Vaccine. 2005; 23(40); 4852-4859. [PubMed: 15990202].
  20. Okamoto et al., 2005: Okamoto S, Tamura Y, Terao Y, Hamada S, Kawabata S. Systemic immunization with streptococcal immunoglobulin-binding protein Sib 35 induces protective immunity against group: a Streptococcus challenge in mice. Vaccine. 2005; 23(40); 4852-4859. [PubMed: 15990202].
  21. Pandey et al., 2015: Pandey M, Langshaw E, Hartas J, Lam A, Batzloff MR, Good MF. A synthetic M protein peptide synergizes with a CXC chemokine protease to induce vaccine-mediated protection against virulent streptococcal pyoderma and bacteremia. Journal of immunology (Baltimore, Md. : 1950). 2015; 194(12); 5915-5925. [PubMed: 25980008].
  22. Poirier et al., 1988: Poirier TP, Kehoe MA, Beachey EH. Protective immunity evoked by oral administration of attenuated aroA Salmonella typhimurium expressing cloned streptococcal M protein. The Journal of experimental medicine. 1988; 168(1); 25-32. [PubMed: 3294331].
  23. Radcliff et al., 2015: Radcliff FJ, Fraser JD, Proft T. Vaccination with Streptococcus pyogenes nuclease A stimulates a high antibody response but no protective immunity in a mouse model of infection. Medical microbiology and immunology. 2015; 204(2); 185-191. [PubMed: 25119670].
  24. Reglinski et al., 2016: Reglinski M, Lynskey NN, Choi YJ, Edwards RJ, Sriskandan S. Development of a multicomponent vaccine for Streptococcus pyogenes based on the antigenic targets of IVIG. The Journal of infection. 2016; 72(4); 450-459. [PubMed: 26880087].
  25. Rivera-Hernandez et al., 2016: Rivera-Hernandez T, Pandey M, Henningham A, Cole J, Choudhury B, Cork AJ, Gillen CM, Ghaffar KA, West NP, Silvestri G, Good MF, Moyle PM, Toth I, Nizet V, Batzloff MR, Walker MJ. Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models. mBio. 2016; 7(3); . [PubMed: 27302756].
  26. Rodríguez-Ortega et al., 2006: Rodríguez-Ortega MJ, Norais N, Bensi G, Liberatori S, Capo S, Mora M, Scarselli M, Doro F, Ferrari G, Garaguso I, Maggi T, Neumann A, Covre A, Telford JL, Grandi G. Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nature biotechnology. 2006; 24(2); 191-197. [PubMed: 16415855].
  27. Sagar et al., 2012: Sagar V, Bergmann R, Nerlich A, McMillan DJ, Nitsche Schmitz DP, Chhatwal GS. Variability in the distribution of genes encoding virulence factors and putative extracellular proteins of Streptococcus pyogenes in India, a region with high streptococcal disease burden, and implication for development of a regional multisubunit vaccine. Clinical and vaccine immunology : CVI. 2012; 19(11); 1818-1825. [PubMed: 22971782].
  28. Schulze et al., 2006: Schulze K, Olive C, Ebensen T, Guzmán CA. Intranasal vaccination with SfbI or M protein-derived peptides conjugated to diphtheria toxoid confers protective immunity against a lethal challenge with Streptococcus pyogenes. Vaccine. 2006; 24(35-36); 6088-6095. [PubMed: 16828529].
  29. Schulze et al., 2017: Schulze K, Ebensen T, Chandrudu S, Skwarczynski M, Toth I, Olive C, Guzman CA. Bivalent mucosal peptide vaccines administered using the LCP carrier system stimulate protective immune responses against Streptococcus pyogenes infection. Nanomedicine : nanotechnology, biology, and medicine. 2017; 13(8); 2463-2474. [PubMed: 28887213].
  30. Severin et al., 2007: Severin A, Nickbarg E, Wooters J, Quazi SA, Matsuka YV, Murphy E, Moutsatsos IK, Zagursky RJ, Olmsted SB. Proteomic analysis and identification of Streptococcus pyogenes surface-associated proteins. Journal of bacteriology. 2007; 189(5); 1514-1522. [PubMed: 17142387].
  31. Textbook of Bacteriology: Streptococcus pyogenes and Streptococcal Disease [http://textbookofbacteriology.net/streptococcus]
  32. Tsao et al., 2013: Tsao N, Cheng MH, Yang HC, Wang YC, Liu YL, Kuo CF. Determining antibody-binding site of streptococcal pyrogenic exotoxin B to protect mice from group a streptococcus infection. PloS one. 2013; 8(1); e55028. [PubMed: 23383045].
  33. Wiki: S. pyogenes: Wiki: Streptococcus pyogenes [http://en.wikipedia.org/wiki/Streptococcus_pyogenes]
  34. Zhang et al., 2006: Zhang S, Green NM, Sitkiewicz I, Lefebvre RB, Musser JM. Identification and characterization of an antigen I/II family protein produced by group A Streptococcus. Infection and immunity. 2006; 74(7); 4200-4213. [PubMed: 16790795].
  35. Zhang et al., 2017: Zhang X, Song Y, Li Y, Cai M, Meng Y, Zhu H. Immunization with Streptococcal Heme Binding Protein (Shp) Protects Mice Against Group A Streptococcus Infection. Advances in experimental medicine and biology. 2017; 973; 115-124. [PubMed: 28190144].

Streptococcus suis

  1. Huang et al., 2012: Huang D, Zhu H, Lin H, Xu J, Lu C. First insights into the protective effects of a recombinant swinepox virus expressing truncated MRP of Streptococcus suis type 2 in mice. Berliner und Munchener tierarztliche Wochenschrift. 2012; 125(3-4); 144-152. [PubMed: 22515033].

Theileria annulata

  1. Boulter et al., 1998: Boulter NR, Brown CG, Kirvar E, Glass E, Campbell J, Morzaria S, Nene V, Musoke A, D'Oliveira C, Gubbels MJ, Jongejan F, Hall FR. Different vaccine strategies used to protect against Theileria annulata. Annals of the New York Academy of Sciences. 1998; 849; 234-246. [PubMed: 9668470].
  2. d'Oliveira et al., 1997: d'Oliveira C, Feenstra A, Vos H, Osterhaus AD, Shiels BR, Cornelissen AW, Jongejan F. Induction of protective immunity to Theileria annulata using two major merozoite surface antigens presented by different delivery systems. Vaccine. 1997; 15(16); 1796-1804. [PubMed: 9364686].
  3. Pipano and Shkap, 2000: Pipano E, Shkap V. Vaccination against tropical theileriosis. Annals of the New York Academy of Sciences. 2000; 916; 484-500. [PubMed: 11193663].
  4. Schnittger et al., 2002: Schnittger L, Katzer F, Biermann R, Shayan P, Boguslawski K, McKellar S, Beyer D, Shiels BR, Ahmed JS. Characterization of a polymorphic Theileria annulata surface protein (TaSP) closely related to PIM of Theileria parva: implications for use in diagnostic tests and subunit vaccines. Molecular and biochemical parasitology. 2002; 120(2); 247-256. [PubMed: 11897130].
  5. Shkap and Pipano, 2000: Shkap V, Pipano E. Culture-derived parasites in vaccination of cattle against tick-borne diseases. Annals of the New York Academy of Sciences. 2000; 916; 154-171. [PubMed: 11193616].
  6. Wiki: T. annulata: Wiki: T. annulata [http://en.wikipedia.org/wiki/Theileria_annulata]

Theileria parva

  1. Boulter and Hall, 1999: Boulter N, Hall R. Immunity and vaccine development in the bovine theilerioses. Advances in parasitology. 1999; 44; 41-97. [PubMed: 10563395].
  2. Graham et al., 2006: Graham SP, Pellé R, Honda Y, Mwangi DM, Tonukari NJ, Yamage M, Glew EJ, de Villiers EP, Shah T, Bishop R, Abuya E, Awino E, Gachanja J, Luyai AE, Mbwika F, Muthiani AM, Ndegwa DM, Njahira M, Nyanjui JK, Onono FO, Osaso J, Saya RM, Wildmann C, Fraser CM, Maudlin I, Gardner MJ, Morzaria SP, Loosmore S, Gilbert SC, Audonnet JC, van der Bruggen P, Nene V, Taracha EL. Theileria parva candidate vaccine antigens recognized by immune bovine cytotoxic T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103(9); 3286-3291. [PubMed: 16492763].
  3. Morzaria et al., 2000: Morzaria S, Nene V, Bishop R, Musoke A. Vaccines against Theileria parva. Annals of the New York Academy of Sciences. 2000; 916; 464-473. [PubMed: 11193661].
  4. Musoke et al., 1992: Musoke A, Morzaria S, Nkonge C, Jones E, Nene V. A recombinant sporozoite surface antigen of Theileria parva induces protection in cattle. Proceedings of the National Academy of Sciences of the United States of America. 1992; 89(2); 514-518. [PubMed: 1731322].

Tick-borne Encephalitis Virus (TBEV)

  1. Aberle et al., 1999: Aberle JH, Aberle SW, Allison SL, Stiasny K, Ecker M, Mandl CW, Berger R, Heinz FX. A DNA immunization model study with constructs expressing the tick-borne encephalitis virus envelope protein E in different physical forms. Journal of immunology (Baltimore, Md. : 1950). 1999; 163(12); 6756-6761. [PubMed: 10586074].
  2. CDC: TBE: CDC: Tick-borne Encephalitis [http://www.cdc.gov/ncidod/dvrd/Spb/mnpages/dispages/TBE.htm]
  3. Dmitriev et al., 1996: Dmitriev IP, Khromykh AA, Ignatyev GM, Gainullina MN, Ageenko VA, Dryga SA, Vorobyeva MS, Sandakhchiev LS. Immunization with recombinant vaccinia viruses expressing structural and part of the nonstructural region of tick-borne encephalitis virus cDNA protect mice against lethal encephalitis. Journal of biotechnology. 1996; 44(1-3); 97-103. [PubMed: 8717392].
  4. Kofler et al., 2002: Kofler RM, Heinz FX, Mandl CW. Capsid protein C of tick-borne encephalitis virus tolerates large internal deletions and is a favorable target for attenuation of virulence. Journal of virology. 2002; 76(7); 3534-3543. [PubMed: 11884577].
  5. Salat et al., 2020: Salat J, Mikulasek K, Larralde O, Pokorna Formanova P, Chrdle A, Haviernik J, Elsterova J, Teislerova D, Palus M, Eyer L, Zdrahal Z, Petrik J, Ruzek D. Tick-Borne Encephalitis Virus Vaccines Contain Non-Structural Protein 1 Antigen and may Elicit NS1-Specific Antibody Responses in Vaccinated Individuals. Vaccines. 2020; 8(1); . [PubMed: 32059489].
  6. Stenkova et al., 2017: Stenkova AM, Chopenko NS, Davydova LA, Mazeika AN, Bystritskaya EP, Portnyagina OY, Anastyuk SD, Kulbatskii DS, Lyukmanova EN, Dolgikh DA, Kostetsky EY, Sanina NM. Engineering of Chimeric Protein Based on E Protein Domain III of Tick- Borne Encephalitis Virus and OmpF Porin of Yersinia pseudotuberculosis. Protein and peptide letters. 2017; 24(10); 974-981. [PubMed: 28741465].
  7. Tang et al., 2023: Tang J, Fu M, Xu C, Xue B, Zhou A, Chen S, Zhao H, Zhou Y, Chen J, Yang Q, Chen X. Development of a novel virus-like particle-based vaccine for preventing tick-borne encephalitis virus infection. Virologica Sinica. 2023; ; . [PubMed: 37328107].

Toxoplasma gondii

  1. Abdelbaset et al., 2017: Abdelbaset AE, Fox BA, Karram MH, Abd Ellah MR, Bzik DJ, Igarashi M. Lactate dehydrogenase in Toxoplasma gondii controls virulence, bradyzoite differentiation, and chronic infection. PloS one. 2017; 12(3); e0173745. [PubMed: 28323833].
  2. Bhopale, 2003: Bhopale GM. Pathogenesis of toxoplasmosis. Comparative immunology, microbiology and infectious diseases. 2003; 26(4); 213-222. [PubMed: 12676122].
  3. Buxton and Innes, 1995: Buxton D, Innes EA. A commercial vaccine for ovine toxoplasmosis. Parasitology. 1995; 110 Suppl; S11-16. [PubMed: 7784124].
  4. Chen et al., 2014: Chen J, Li ZY, Huang SY, Petersen E, Song HQ, Zhou DH, Zhu XQ. Protective efficacy of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) adjuvated with recombinant IL-15 and IL-21 against experimental toxoplasmosis in mice. BMC infectious diseases. 2014; 14; 487. [PubMed: 25192845].
  5. Chen et al., 2016: Chen J, Li ZY, Petersen E, Liu WG, Zhu XQ. Co-administration of interleukins 7 and 15 with DNA vaccine improves protective immunity against Toxoplasma gondii. Experimental parasitology. 2016; 162; 18-23. [PubMed: 26706605].
  6. Chen et al., 2018: Chen Y, Yu M, Hemandez JA, Li J, Yuan ZG, Yan H. Immuno-efficacy of DNA vaccines encoding PLP1 and ROP18 against experimental Toxoplasma gondii infection in mice. Experimental parasitology. 2018; 188; 73-78. [PubMed: 29626423].
  7. Ching et al., 2017: Ching XT, Fong MY, Lau YL. Evaluation of the Protective Effect of Deoxyribonucleic Acid Vaccines Encoding Granule Antigen 2 and 5 Against Acute Toxoplasmosis in BALB/c Mice. The American journal of tropical medicine and hygiene. 2017; 96(6); 1441-1447. [PubMed: 28719288].
  8. Chu et al., 2018: Chu JQ, Huang S, Ye W, Fan XY, Huang R, Ye SC, Yu CY, Wu WY, Zhou Y, Zhou W, Lee YH, Quan JH. Evaluation of Protective Immune Response Induced by a DNA Vaccine Encoding GRA8 against Acute Toxoplasmosis in a Murine Model. The Korean journal of parasitology. 2018; 56(4); 325-334. [PubMed: 30196664].
  9. Cong et al., 2008: Cong H, Gu QM, Yin HE, Wang JW, Zhao QL, Zhou HY, Li Y, Zhang JQ. Multi-epitope DNA vaccine linked to the A2/B subunit of cholera toxin protect mice against Toxoplasma gondii. Vaccine. 2008; 26(31); 3913-3921. [PubMed: 18555564].
  10. Cui et al., 2008: Cui YL, He SY, Xue MF, Zhang J, Wang HX, Yao Y. Protective effect of a multiantigenic DNA vaccine against Toxoplasma gondii with co-delivery of IL-12 in mice. Parasite immunology. 2008; 30(5); 309-313. [PubMed: 18331395].
  11. Czarnewski et al., 2017: Czarnewski P, Araújo ECB, Oliveira MC, Mineo TWP, Silva NM. Recombinant <i>Tg</i>HSP70 Immunization Protects against <i>Toxoplasma gondii</i> Brain Cyst Formation by Enhancing Inducible Nitric Oxide Expression. Frontiers in cellular and infection microbiology. 2017; 7; 142. [PubMed: 28487847].
  12. Dar et al., 2013: Dar P, Kalaivanan R, Sied N, Mamo B, Kishore S, Suryanarayana VV, Kondabattula G. Montanide ISAâ„¢ 201 adjuvanted FMD vaccine induces improved immune responses and protection in cattle. Vaccine. 2013; 31(33); 3327-3332. [PubMed: 23735678].
  13. Echeverria et al., 2006: Echeverria PC, de Miguel N, Costas M, Angel SO. Potent antigen-specific immunity to Toxoplasma gondii in adjuvant-free vaccination system using Rop2-Leishmania infantum Hsp83 fusion protein. Vaccine. 2006; 24(19); 4102-4110. [PubMed: 16545504].
  14. El et al., 2014: El Bissati K, Zhou Y, Dasgupta D, Cobb D, Dubey JP, Burkhard P, Lanar DE, McLeod R. Effectiveness of a novel immunogenic nanoparticle platform for Toxoplasma peptide vaccine in HLA transgenic mice. Vaccine. 2014; 32(26); 3243-3248. [PubMed: 24736000].
  15. El et al., 2016: El Temsahy MM, El Kerdany ED, Eissa MM, Shalaby TI, Talaat IM, Mogahed NM. The effect of chitosan nanospheres on the immunogenicity of Toxoplasma lysate vaccine in mice. Journal of parasitic diseases : official organ of the Indian Society for Parasitology. 2016; 40(3); 611-626. [PubMed: 27605755].
  16. Foroutan et al., 2020: Foroutan M, Ghaffarifar F, Sharifi Z, Dalimi A. Vaccination with a novel multi-epitope ROP8 DNA vaccine against acute Toxoplasma gondii infection induces strong B and T cell responses in mice. Comparative immunology, microbiology and infectious diseases. 2020; 69; 101413. [PubMed: 31954995].
  17. Fox and Bzik, 2010: Fox BA, Bzik DJ. Avirulent uracil auxotrophs based on disruption of orotidine-5'-monophosphate decarboxylase elicit protective immunity to Toxoplasma gondii. Infection and immunity. 2010; 78(9); 3744-3752. [PubMed: 20605980].
  18. Gold et al., 2015: Gold DA, Kaplan AD, Lis A, Bett GC, Rosowski EE, Cirelli KM, Bougdour A, Sidik SM, Beck JR, Lourido S, Egea PF, Bradley PJ, Hakimi MA, Rasmusson RL, Saeij JP. The Toxoplasma Dense Granule Proteins GRA17 and GRA23 Mediate the Movement of Small Molecules between the Host and the Parasitophorous Vacuole. Cell host & microbe. 2015; 17(5); 642-652. [PubMed: 25974303].
  19. Hu et al., 2017: Hu LY, Zhang NZ, Zhang FK, Wang M, Gao Q, Wang JL, Zhu XQ. Resistance to Chronic Toxoplasma gondii Infection Induced by a DNA Vaccine Expressing GRA16. BioMed research international. 2017; 2017; 1295038. [PubMed: 28875149].
  20. Huynh and Carruthers, 2006: Huynh MH, Carruthers VB. Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS pathogens. 2006; 2(8); e84. [PubMed: 16933991].
  21. Ismael et al., 2009: Ismael AB, Hedhli D, Cérède O, Lebrun M, Dimier-Poisson I, Mévélec MN. Further analysis of protection induced by the MIC3 DNA vaccine against T. gondii: CD4 and CD8 T cells are the major effectors of the MIC3 DNA vaccine-induced protection, both Lectin-like and EGF-like domains of MIC3 conferred protection. Vaccine. 2009; 27(22); 2959-2966. [PubMed: 19428907].
  22. Kikumura et al., 2010: Kikumura A, Fang H, Mun HS, Uemura N, Makino M, Sayama Y, Norose K, Aosai F. Protective immunity against lethal anaphylactic reaction in Toxoplasma gondii-infected mice by DNA vaccination with T. gondii-derived heat shock protein 70 gene. Parasitology international. 2010; 59(2); 105-111. [PubMed: 20346412].
  23. Lagal et al., 2015: Lagal V, Dinis M, Cannella D, Bargieri D, Gonzalez V, Andenmatten N, Meissner M, Tardieux I. AMA1-deficient Toxoplasma gondii parasites transiently colonize mice and trigger an innate immune response that leads to long-lasting protective immunity. Infection and immunity. 2015; 83(6); 2475-2486. [PubMed: 25847964].
  24. Lee et al., 2016: Lee DH, Kim AR, Lee SH, Quan FS. Cross-protection induced by Toxoplasma gondii virus-like particle vaccine upon intraperitoneal route challenge. Acta tropica. 2016; 164; 77-83. [PubMed: 27586039].
  25. Li et al., 2015: Li XZ, Wang XH, Xia LJ, Weng YB, Hernandez JA, Tu LQ, Li LT, Li SJ, Yuan ZG. Protective efficacy of recombinant canine adenovirus type-2 expressing TgROP18 (CAV-2-ROP18) against acute and chronic Toxoplasma gondii infection in mice. BMC infectious diseases. 2015; 15; 114. [PubMed: 25886737].
  26. Li et al., 2016: Li XZ, Lv L, Zhang X, Anchang KY, Abdullahi AY, Tu L, Wang X, Xia L, Zhang XX, Feng W, Lu C, Li S, Yuan ZG. Recombinant canine adenovirus type-2 expressing TgROP16 provides partial protection against acute Toxoplasma gondii infection in mice. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2016; 45; 447-453. [PubMed: 27742446].
  27. Li et al., 2018: Li X, Wu Y, Huang S, Lu F. Disodium cromoglycate may act as a novel adjuvant for UV-attenuated Toxoplasma gondii vaccine in mouse model. Parasitology international. 2018; 67(3); 351-356. [PubMed: 29421521].
  28. Liu et al., 2010: Liu MM, Yuan ZG, Peng GH, Zhou DH, He XH, Yan C, Yin CC, He Y, Lin RQ, Song HQ, Zhu XQ. Toxoplasma gondii microneme protein 8 (MIC8) is a potential vaccine candidate against toxoplasmosis. Parasitology research. 2010; 106(5); 1079-1084. [PubMed: 20177910].
  29. Liu et al., 2016: Liu Z, Yin L, Li Y, Yuan F, Zhang X, Ma J, Liu H, Wang Y, Zheng K, Cao J. Intranasal immunization with recombinant Toxoplasma gondii actin depolymerizing factor confers protective efficacy against toxoplasmosis in mice. BMC immunology. 2016; 17(1); 37. [PubMed: 27716047].
  30. Liu et al., 2017: Liu Y, Cao A, Li Y, Li X, Cong H, He S, Zhou H. Immunization with a DNA vaccine encoding Toxoplasma gondii Superoxide dismutase (TgSOD) induces partial immune protection against acute toxoplasmosis in BALB/c mice. BMC infectious diseases. 2017; 17(1); 403. [PubMed: 28592247].
  31. Lu et al., 2017: Lu G, Zhou J, Zhou A, Han Y, Guo J, Song P, Zhou H, Cong H, Hou M, Wang L, He S. SAG5B and SAG5C combined vaccine protects mice against Toxoplasma gondii infection. Parasitology international. 2017; 66(5); 596-602. [PubMed: 28602862].
  32. Mavi et al., 2019: Mavi SA, Modarressi MH, Mohebali M, Shojaee S, Zeraati H, Teimouri A, Keshavarz H. Assessment of the immunogenicity and protective efficiency of a novel dual-promoter DNA vaccine, harboring SAG1 and GRA7 genes, from RH strain of Toxoplasma gondii in BALB/c mice. Infection and drug resistance. 2019; 12; 2519-2530. [PubMed: 31616167].
  33. Parthasarathy et al., 2013: Parthasarathy S, Fong MY, Ramaswamy K, Lau YL. Protective Immune Response in BALB/c Mice Induced by DNA Vaccine of the ROP8 gene of Toxoplasma gondii. The American journal of tropical medicine and hygiene. 2013; 88(5); 883-887. [PubMed: 23509124].
  34. Picchio et al., 2018: Picchio MS, Sánchez VR, Arcon N, Soto AS, Perrone Sibilia M, Aldirico MLA, Urrutia M, Moretta R, Fenoy IM, Goldman A, Martin V. Vaccine potential of antigen cocktails composed of recombinant Toxoplasma gondii TgPI-1, ROP2 and GRA4 proteins against chronic toxoplasmosis in C3H mice. Experimental parasitology. 2018; 185; 62-70. [PubMed: 29309783].
  35. Pinzan et al., 2015: Pinzan CF, Sardinha-Silva A, Almeida F, Lai L, Lopes CD, Lourenço EV, Panunto-Castelo A, Matthews S, Roque-Barreira MC. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice. PloS one. 2015; 10(11); e0143087. [PubMed: 26575028].
  36. Qu et al., 2008: Qu D, Wang S, Cai W, Du A. Protective effect of a DNA vaccine delivered in attenuated Salmonella typhimurium against Toxoplasma gondii infection in mice. Vaccine. 2008; 26(35); 4541-4548. [PubMed: 18590785].
  37. Scorza et al., 2003: Scorza T, D'Souza S, Laloup M, Dewit J, De Braekeleer J, Verschueren H, Vercammen M, Huygen K, Jongert E. A GRA1 DNA vaccine primes cytolytic CD8(+) T cells to control acute Toxoplasma gondii infection. Infection and immunity. 2003; 71(1); 309-316. [PubMed: 12496180].
  38. Sun et al., 2011: Sun XM, Zou J, A A ES, Yan WC, Liu XY, Suo X, Wang H, Chen QJ. DNA vaccination with a gene encoding Toxoplasma gondii GRA6 induces partial protection against toxoplasmosis in BALB/c mice. Parasites & vectors. 2011; 4; 213. [PubMed: 22070984].
  39. Tanaka et al., 2014: Tanaka S, Kuroda Y, Ihara F, Nishimura M, Hiasa J, Kojima N, Nishikawa Y. Vaccination with profilin encapsulated in oligomannose-coated liposomes induces significant protective immunity against Toxoplasma gondii. Vaccine. 2014; 32(16); 1781-1785. [PubMed: 24530937].
  40. Tao et al., 2013: Tao Q, Fang R, Zhang W, Wang Y, Cheng J, Li Y, Fang K, Khan MK, Hu M, Zhou Y, Zhao J. Protective immunity induced by a DNA vaccine-encoding Toxoplasma gondii microneme protein 11 against acute toxoplasmosis in BALB/c mice. Parasitology research. 2013; 112(8); 2871-2877. [PubMed: 23749087].
  41. Tian et al., 2022: Tian X, Wang M, Xie T, Wan G, Sun H, Mei X, Zhang Z, Li X, Wang S. A recombinant protein vaccine encoding Toxoplasma gondii Cyst wall 2 (dense granule protein 47) provides partial protection against acute and chronic T. gondii infection in BALB/c mice. Acta tropica. 2022; 232; 106514. [PubMed: 35580637].
  42. Wang et al., 2014: Wang HL, Zhang TE, Yin LT, Pang M, Guan L, Liu HL, Zhang JH, Meng XL, Bai JZ, Zheng GP, Yin GR. Partial protective effect of intranasal immunization with recombinant Toxoplasma gondii rhoptry protein 17 against toxoplasmosis in mice. PloS one. 2014; 9(9); e108377. [PubMed: 25255141].
  43. Wang et al., 2014: Wang HL, Pang M, Yin LT, Zhang JH, Meng XL, Yu BF, Guo R, Bai JZ, Zheng GP, Yin GR. Intranasal immunisation of the recombinant Toxoplasma gondii receptor for activated C kinase 1 partly protects mice against T. gondii infection. Acta tropica. 2014; 137; 58-66. [PubMed: 24813415].
  44. Wang et al., 2016: Wang HL, Wen LM, Pei YJ, Wang F, Yin LT, Bai JZ, Guo R, Wang CF, Yin GR. Recombinant Toxoplasma gondii phosphoglycerate mutase 2 confers protective immunity against toxoplasmosis in BALB/c mice. Parasite (Paris, France). 2016; 23; 12. [PubMed: 26984115].
  45. Wang et al., 2017: Wang JL, Elsheikha HM, Zhu WN, Chen K, Li TT, Yue DM, Zhang XX, Huang SY, Zhu XQ. Immunization with Toxoplasma gondii GRA17 Deletion Mutant Induces Partial Protection and Survival in Challenged Mice. Frontiers in immunology. 2017; 8; 730. [PubMed: 28706518].
  46. Wang et al., 2018: Wang JL, Li TT, Elsheikha HM, Chen K, Cong W, Yang WB, Bai MJ, Huang SY, Zhu XQ. Live Attenuated Pru:Δcdpk2 Strain of Toxoplasma gondii Protects Against Acute, Chronic, and Congenital Toxoplasmosis. The Journal of infectious diseases. 2018; 218(5); 768-777. [PubMed: 29669003].
  47. Wiki: T. gondii: Wiki: T. gondii [http://en.wikipedia.org/wiki/T._gondii]
  48. Xiang et al., 2009: Xiang W, Qiong Z, Li-peng L, Kui T, Jian-wu G, Heng-ping S. The location of invasion-related protein MIC3 of Toxoplasma gondii and protective effect of its DNA vaccine in mice. Veterinary parasitology. 2009; 166(1-2); 1-7. [PubMed: 19800170].
  49. Xu et al., 2014: Xu Y, Zhang NZ, Tan QD, Chen J, Lu J, Xu QM, Zhu XQ. Evaluation of immuno-efficacy of a novel DNA vaccine encoding Toxoplasma gondii rhoptry protein 38 (TgROP38) against chronic toxoplasmosis in a murine model. BMC infectious diseases. 2014; 14; 525. [PubMed: 25267356].
  50. Xu et al., 2015: Xu Y, Zhang NZ, Wang M, Dong H, Feng SY, Guo HC, Zhu XQ. A long-lasting protective immunity against chronic toxoplasmosis in mice induced by recombinant rhoptry proteins encapsulated in poly (lactide-co-glycolide) microparticles. Parasitology research. 2015; 114(11); 4195-4203. [PubMed: 26243574].
  51. Xu et al., 2019: Xu XP, Liu WG, Xu QM, Zhu XQ, Chen J. Evaluation of immune protection against Toxoplasma gondii infection in mice induced by a multi-antigenic DNA vaccine containing TgGRA24, TgGRA25 and TgMIC6. Parasite (Paris, France). 2019; 26; 58. [PubMed: 31535970].
  52. Xue et al., 2008: Xue M, He S, Zhang J, Cui Y, Yao Y, Wang H. Comparison of cholera toxin A2/B and murine interleukin-12 as adjuvants of Toxoplasma multi-antigenic SAG1-ROP2 DNA vaccine. Experimental parasitology. 2008; 119(3); 352-357. [PubMed: 18442818].
  53. Yan et al., 2012: Yan HK, Yuan ZG, Song HQ, Petersen E, Zhou Y, Ren D, Zhou DH, Li HX, Lin RQ, Yang GL, Zhu XQ. Vaccination with a DNA vaccine coding for perforin-like protein 1 and MIC6 induces significant protective immunity against Toxoplasma gondii. Clinical and vaccine immunology : CVI. 2012; 19(5); 684-689. [PubMed: 22379063].
  54. Yu et al., 2013: Yu Q, Huang X, Gong P, Zhang Q, Li J, Zhang G, Yang J, Li H, Wang N, Zhang X. Protective immunity induced by a recombinant BCG vaccine encoding the cyclophilin gene of Toxoplasma gondii. Vaccine. 2013; ; . [PubMed: 24176493].
  55. Yuan et al., 2013: Yuan ZG, Ren D, Zhou DH, Zhang XX, Petersen E, Li XZ, Zhou Y, Yang GL, Zhu XQ. Evaluation of protective effect of pVAX-TgMIC13 plasmid against acute and chronic Toxoplasma gondii infection in a murine model. Vaccine. 2013; ; . [PubMed: 23707448].
  56. Zhang et al., 2016: Zhang NZ, Xu Y, Wang M, Chen J, Huang SY, Gao Q, Zhu XQ. Vaccination with Toxoplasma gondii calcium-dependent protein kinase 6 and rhoptry protein 18 encapsulated in poly(lactide-co-glycolide) microspheres induces long-term protective immunity in mice. BMC infectious diseases. 2016; 16; 168. [PubMed: 27090890].
  57. Zheng et al., 2017: Zheng L, Hu Y, Hua Q, Luo F, Xie G, Li X, Lin J, Wan Y, Ren S, Pan C, Tan F. Protective immune response in mice induced by a suicidal DNA vaccine encoding NTPase-II gene of Toxoplasma gondii. Acta tropica. 2017; 166; 336-342. [PubMed: 27940233].
  58. Zhou and Wang, 2017: Zhou J, Wang L. SAG4 DNA and Peptide Vaccination Provides Partial Protection against T. gondii Infection in BALB/c Mice. Frontiers in microbiology. 2017; 8; 1733. [PubMed: 28936207].
  59. Zhou et al., 2019: Zhou J, Li C, Luo Y, Wang L. Antigenic Epitope Analysis and Efficacy Evaluation of GRA41 DNA Vaccine Against T. gondii Infection. Acta parasitologica. 2019; 64(3); 471-478. [PubMed: 31187386].
  60. Zhu et al., 2017: Zhu WN, Wang JL, Chen K, Yue DM, Zhang XX, Huang SY, Zhu XQ. Evaluation of protective immunity induced by DNA vaccination with genes encoding Toxoplasma gondii GRA17 and GRA23 against acute toxoplasmosis in mice. Experimental parasitology. 2017; 179; 20-27. [PubMed: 28625894].
  61. Zhu et al., 2022: Zhu Y, Xu J, Lian S, Zhang R, Hou J, Wang M, Yan X. Difference Analysis Between Canine Adenovirus Types 1 And 2. Frontiers in cellular and infection microbiology. 2022; 12; 854876. [PubMed: 35360116].
  62. Zorgi et al., 2016: Zorgi NE, Galisteo AJ Jr, Sato MN, do Nascimento N, de Andrade HF Jr. Immunity in the spleen and blood of mice immunized with irradiated Toxoplasma gondii tachyzoites. Medical microbiology and immunology. 2016; 205(4); 297-314. [PubMed: 26732075].

Transmissible gastroenteritis virus

  1. Laude et al., 1990: Laude H, Rasschaert D, Delmas B, Godet M, Gelfi J, Charley B. Molecular biology of transmissible gastroenteritis virus. Veterinary microbiology. 1990; 23(1-4); 147-154. [PubMed: 2169670].
  2. Mou et al., 2016: Mou C, Zhu L, Xing X, Lin J, Yang Q. Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs. Antiviral research. 2016; 131; 74-84. [PubMed: 26988122].
  3. Wiki: Transmissible gastroenteritis coronavirus: Wiki: Transmissible gastroenteritis coronavirus [http://en.wikipedia.org/wiki/Transmissible_gastroenteritis_coronavirus]

Treponema pallidum

  1. Borenstein et al., 1988: Borenstein LA, Radolf JD, Fehniger TE, Blanco DR, Miller JN, Lovett MA. Immunization of rabbits with recombinant Treponema pallidum surface antigen 4D alters the course of experimental syphilis. Journal of immunology (Baltimore, Md. : 1950). 1988; 140(7); 2415-2421. [PubMed: 2450921].
  2. Brautigam et al., 2016: Brautigam CA, Deka RK, Liu WZ, Norgard MV. The Tp0684 (MglB-2) Lipoprotein of Treponema pallidum: A Glucose-Binding Protein with Divergent Topology. PloS one. 2016; 11(8); e0161022. [PubMed: 27536942].
  3. Cameron et al., 1998: Cameron CE, Castro C, Lukehart SA, Van Voorhis WC. Function and protective capacity of Treponema pallidum subsp. pallidum glycerophosphodiester phosphodiesterase. Infection and immunity. 1998; 66(12); 5763-5770. [PubMed: 9826352].
  4. Cameron et al., 1998: Cameron CE, Castro C, Lukehart SA, Van Voorhis WC. Function and protective capacity of Treponema pallidum subsp. pallidum glycerophosphodiester phosphodiesterase. Infection and immunity. 1998; 66(12); 5763-5770. [PubMed: 9826352].
  5. Cameron et al., 2000: Cameron CE, Lukehart SA, Castro C, Molini B, Godornes C, Van Voorhis WC. Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92. The Journal of infectious diseases. 2000; 181(4); 1401-1413. [PubMed: 10762571].
  6. Cameron et al., 2000: Cameron CE, Lukehart SA, Castro C, Molini B, Godornes C, Van Voorhis WC. Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92. The Journal of infectious diseases. 2000; 181(4); 1401-1413. [PubMed: 10762571].
  7. Centurion-Lara et al., 1997: Centurion-Lara A, Arroll T, Castillo R, Shaffer JM, Castro C, Van Voorhis WC, Lukehart SA. Conservation of the 15-kilodalton lipoprotein among Treponema pallidum subspecies and strains and other pathogenic treponemes: genetic and antigenic analyses. Infection and immunity. 1997; 65(4); 1440-1444. [PubMed: 9119485].
  8. Centurion-Lara et al., 1999: Centurion-Lara A, Castro C, Barrett L, Cameron C, Mostowfi M, Van Voorhis WC, Lukehart SA. Treponema pallidum major sheath protein homologue Tpr K is a target of opsonic antibody and the protective immune response. The Journal of experimental medicine. 1999; 189(4); 647-656. [PubMed: 9989979].
  9. Clark et al., 1993: Clark KL, Halay ED, Lai E, Burley SK. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature. 1993; 364(6436); 412-420. [PubMed: 8332212].
  10. Jiang et al., 2013: Jiang C, Zhao F, Xiao J, Zeng T, Yu J, Ma X, Wu H, Wu Y. Evaluation of the recombinant protein TpF1 of Treponema pallidum for serodiagnosis of syphilis. Clinical and vaccine immunology : CVI. 2013; 20(10); 1563-1568. [PubMed: 23945159].
  11. Kao et al., 2017: Kao WA, P?trošová H, Ebady R, Lithgow KV, Rojas P, Zhang Y, Kim YE, Kim YR, Odisho T, Gupta N, Moter A, Cameron CE, Moriarty TJ. Identification of Tp0751 (Pallilysin) as a Treponema pallidum Vascular Adhesin by Heterologous Expression in the Lyme disease Spirochete. Scientific reports. 2017; 7(1); 1538. [PubMed: 28484210].
  12. Lithgow et al., 2017: Lithgow KV, Hof R, Wetherell C, Phillips D, Houston S, Cameron CE. A defined syphilis vaccine candidate inhibits dissemination of Treponema pallidum subspecies pallidum. Nature communications. 2017; 8; 14273. [PubMed: 28145405].
  13. McGill et al., 2010: McGill MA, Edmondson DG, Carroll JA, Cook RG, Orkiszewski RS, Norris SJ. Characterization and serologic analysis of the Treponema pallidum proteome. Infection and immunity. 2010; 78(6); 2631-2643. [PubMed: 20385758].
  14. MicrobeWiki: T. pallidum: MicrobeWiki: Treponema pallidum [http://microbewiki.kenyon.edu/index.php/Treponema_pallidum]
  15. Morgan et al., 2002: Morgan CA, Lukehart SA, Van Voorhis WC. Immunization with the N-terminal portion of Treponema pallidum repeat protein K attenuates syphilitic lesion development in the rabbit model. Infection and immunity. 2002; 70(12); 6811-6816. [PubMed: 12438357].
  16. Salyers and Whitt., 2002: Abigail A. Salyers, Dixie D. Whitt. The Spirochetes: Borrelia burgdorferi and Treponema pallidum. 197-99. Bacterial Pathogenesis: A Molecular Approach. 2002. ASM Press, Washington D.C. USA.
  17. Sun et al., 2004: Sun ES, Molini BJ, Barrett LK, Centurion-Lara A, Lukehart SA, Van Voorhis WC. Subfamily I Treponema pallidum repeat protein family: sequence variation and immunity. Microbes and infection. 2004; 6(8); 725-737. [PubMed: 15207819].
  18. Tomson et al., 2007: Tomson FL, Conley PG, Norgard MV, Hagman KE. Assessment of cell-surface exposure and vaccinogenic potentials of Treponema pallidum candidate outer membrane proteins. Microbes and infection. 2007; 9(11); 1267-1275. [PubMed: 17890130].
  19. Wicher et al., 1991: Wicher K, Schouls LM, Wicher V, Van Embden JD, Nakeeb SS. Immunization of guinea pigs with recombinant TmpB antigen induces protection against challenge infection with Treponema pallidum Nichols. Infection and immunity. 1991; 59(12); 4343-4348. [PubMed: 1937794].
  20. Wicher et al., 1991: Wicher K, Schouls LM, Wicher V, Van Embden JD, Nakeeb SS. Immunization of guinea pigs with recombinant TmpB antigen induces protection against challenge infection with Treponema pallidum Nichols. Infection and immunity. 1991; 59(12); 4343-4348. [PubMed: 1937794].
  21. Wiki: T. pallidum: Wiki: T. pallidum [http://en.wikipedia.org/wiki/Treponema_pallidum]

Trichinella spiralis

  1. Liu et al., 2015: Liu P, Cui J, Liu RD, Wang M, Jiang P, Liu LN, Long SR, Li LG, Zhang SB, Zhang XZ, Wang ZQ. Protective immunity against Trichinella spiralis infection induced by TsNd vaccine in mice. Parasites & vectors. 2015; 8(1); 185. [PubMed: 25889976].
  2. Liu et al., 2017: Liu CY, Song YY, Ren HN, Sun GG, Liu RD, Jiang P, Long SR, Zhang X, Wang ZQ, Cui J. Cloning and expression of a Trichinella spiralis putative glutathione S-transferase and its elicited protective immunity against challenge infections. Parasites & vectors. 2017; 10(1); 448. [PubMed: 28962639].
  3. Pompa-Mera et al., 2011: Pompa-Mera EN, Yépez-Mulia L, Ocaña-Mondragón A, García-Zepeda EA, Ortega-Pierres G, González-Bonilla CR. Trichinella spiralis: intranasal immunization with attenuated Salmonella enterica carrying a gp43 antigen-derived 30mer epitope elicits protection in BALB/c mice. Experimental parasitology. 2011; 129(4); 393-401. [PubMed: 21907709].
  4. Yang et al., 2018: Yang Z, Li W, Yang Z, Pan A, Liao W, Zhou X. A novel antigenic cathepsin B protease induces protective immunity in Trichinella-infected mice. Vaccine. 2018; 36(2); 248-255. [PubMed: 29199042].

Trichomonas foetus

  1. Wiki: Tritrichomonas foetus: Wiki: Tritrichomonas foetus [http://en.wikipedia.org/wiki/Tritrichomonas_foetus]

Trypanosoma brucei

  1. Rasooly and Balaban, 2004: Rasooly R, Balaban N. Trypanosome microtubule-associated protein p15 as a vaccine for the prevention of African sleeping sickness. Vaccine. 2004; 22(8); 1007-1015. [PubMed: 15161078].
  2. Silva et al., 2009: Silva MS, Prazeres DM, Lança A, Atouguia J, Monteiro GA. Trans-sialidase from Trypanosoma brucei as a potential target for DNA vaccine development against African trypanosomiasis. Parasitology research. 2009; 105(5); 1223-1229. [PubMed: 19582478].
  3. Wiki: T. brucei: Wiki: Trypanosoma brucei [http://en.wikipedia.org/wiki/T._brucei]

Trypanosoma cruzi

  1. Aparicio-Burgos et al., 2015: Aparicio-Burgos JE, Zepeda-Escobar JA, de Oca-Jimenez RM, Estrada-Franco JG, Barbabosa-Pliego A, Ochoa-García L, Alejandre-Aguilar R, Rivas N, Peñuelas-Rivas G, Val-Arreola M, Gupta S, Salazar-García F, Garg NJ, Vázquez-Chagoyán JC. Immune protection against Trypanosoma cruzi induced by TcVac4 in a canine model. PLoS neglected tropical diseases. 2015; 9(4); e0003625. [PubMed: 25853654].
  2. Araújo et al., 2005: Araújo AF, de Alencar BC, Vasconcelos JR, Hiyane MI, Marinho CR, Penido ML, Boscardin SB, Hoft DF, Gazzinelli RT, Rodrigues MM. CD8+-T-cell-dependent control of Trypanosoma cruzi infection in a highly susceptible mouse strain after immunization with recombinant proteins based on amastigote surface protein 2. Infection and immunity. 2005; 73(9); 6017-6025. [PubMed: 16113322].
  3. Araujo and Morein, 1991: Araujo FG, Morein B. Immunization with Trypanosoma cruzi epimastigote antigens incorporated into iscoms protects against lethal challenge in mice. Infection and immunity. 1991; 59(9); 2909-2914. [PubMed: 1908826].
  4. Arce-Fonseca et al., 2011: Arce-Fonseca M, Ramos-Ligonio A, López-Monteón A, Salgado-Jiménez B, Talamás-Rohana P, Rosales-Encina JL. A DNA vaccine encoding for TcSSP4 induces protection against acute and chronic infection in experimental Chagas disease. International journal of biological sciences. 2011; 7(9); 1230-1238. [PubMed: 22110377].
  5. Arce-Fonseca et al., 2018: Arce-Fonseca M, González-Vázquez MC, Rodríguez-Morales O, Graullera-Rivera V, Aranda-Fraustro A, Reyes PA, Carabarin-Lima A, Rosales-Encina JL. Recombinant Enolase of Trypanosoma cruzi as a Novel Vaccine Candidate against Chagas Disease in a Mouse Model of Acute Infection. Journal of immunology research. 2018; 2018; 8964085. [PubMed: 29854848].
  6. Arnal et al., 2020: Arnal A, Villanueva-Lizama L, Teh-Poot C, Herrera C, Dumonteil E. Extent of polymorphism and selection pressure on the Trypanosoma cruzi vaccine candidate antigen Tc24. Evolutionary applications. 2020; 13(10); 2663-2672. [PubMed: 33294015].
  7. Barry et al., 2016: Barry MA, Wang Q, Jones KM, Heffernan MJ, Buhaya MH, Beaumier CM, Keegan BP, Zhan B, Dumonteil E, Bottazzi ME, Hotez PJ. A therapeutic nanoparticle vaccine against Trypanosoma cruzi in a BALB/c mouse model of Chagas disease. Human vaccines & immunotherapeutics. 2016; 12(4); 976-987. [PubMed: 26890466].
  8. Barry et al., 2019: Barry MA, Versteeg L, Wang Q, Pollet J, Zhan B, Gusovsky F, Bottazzi ME, Hotez PJ, Jones KM. A therapeutic vaccine prototype induces protective immunity and reduces cardiac fibrosis in a mouse model of chronic Trypanosoma cruzi infection. PLoS neglected tropical diseases. 2019; 13(5); e0007413. [PubMed: 31145733].
  9. Bhatia and Garg, 2008: Bhatia V, Garg NJ. Previously unrecognized vaccine candidates control Trypanosoma cruzi infection and immunopathology in mice. Clinical and vaccine immunology : CVI. 2008; 15(8); 1158-1164. [PubMed: 18550728].
  10. Bhatia et al., 2004: Bhatia V, Sinha M, Luxon B, Garg N. Utility of the Trypanosoma cruzi sequence database for identification of potential vaccine candidates by in silico and in vitro screening. Infection and immunity. 2004; 72(11); 6245-6254. [PubMed: 15501750].
  11. Bivona et al., 2018: Bivona AE, Sánchez Alberti A, Matos MN, Cerny N, Cardoso AC, Morales C, González G, Cazorla SI, Malchiodi EL. Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80) as a novel immunogen for Chagas disease vaccine. PLoS neglected tropical diseases. 2018; 12(3); e0006384. [PubMed: 29601585].
  12. Caeiro et al., 2018: Caeiro LD, Alba-Soto CD, Rizzi M, Solana ME, Rodriguez G, Chidichimo AM, Rodriguez ME, Sánchez DO, Levy GV, Tekiel V. The protein family TcTASV-C is a novel Trypanosoma cruzi virulence factor secreted in extracellular vesicles by trypomastigotes and highly expressed in bloodstream forms. PLoS neglected tropical diseases. 2018; 12(5); e0006475. [PubMed: 29727453].
  13. Caeiro et al., 2020: Caeiro LD, Masip YE, Rizzi M, Rodríguez ME, Pueblas Castro C, Sánchez DO, Coria ML, Cassataro J, Tekiel V. The Trypanosoma cruzi TcTASV-C protein subfamily administrated with U-Omp19 promotes a protective response against a lethal challenge in mice. Vaccine. 2020; 38(48); 7645-7653. [PubMed: 33071003].
  14. Carabarin-Lima A, et al., 2011: Carabarin-Lima A, González-Vázquez MC, Baylon-Pacheco L, Tsutsumi V, Talamas-Rohana P, Rosales-Encina JL. Immunization with the recombinant surface protein rTcSP2 alone or fused to the CHP or ATPase domain of TcHSP70 induces protection against acute Trypanosoma cruzi infection. journal of vaccines and vaccination. 2011; 1(3); .
  15. Chou et al., 2008: Chou B, Hisaeda H, Shen J, Duan X, Imai T, Tu L, Murata S, Tanaka K, Himeno K. Critical contribution of immunoproteasomes in the induction of protective immunity against Trypanosoma cruzi in mice vaccinated with a plasmid encoding a CTL epitope fused to green fluorescence protein. Microbes and infection / Institut Pasteur. 2008; 10(3); 241-250. [PubMed: 18321749].
  16. Chou et al., 2010: Chou B, Hiromatsu K, Hisaeda H, Duan X, Imai T, Murata S, Tanaka K, Himeno K. Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi. Biochemical and biophysical research communications. 2010; 392(3); 277-282. [PubMed: 20059980].
  17. Coria et al., 2016: Coria LM, Ibañez AE, Tkach M, Sabbione F, Bruno L, Carabajal MV, Berguer PM, Barrionuevo P, Schillaci R, Trevani AS, Giambartolomei GH, Pasquevich KA, Cassataro J. A Brucella spp. Protease Inhibitor Limits Antigen Lysosomal Proteolysis, Increases Cross-Presentation, and Enhances CD8+ T Cell Responses. Journal of immunology (Baltimore, Md. : 1950). 2016; 196(10); 4014-4029. [PubMed: 27084100].
  18. Costa et al., 1998: Costa F, Franchin G, Pereira-Chioccola VL, Ribeirão M, Schenkman S, Rodrigues MM. Immunization with a plasmid DNA containing the gene of trans-sialidase reduces Trypanosoma cruzi infection in mice. Vaccine. 1998; 16(8); 768-774. [PubMed: 9627933].
  19. Duan et al., 2009: Duan X, Yonemitsu Y, Chou B, Yoshida K, Tanaka S, Hasegawa M, Tetsutani K, Ishida H, Himeno K, Hisaeda H. Efficient protective immunity against Trypanosoma cruzi infection after nasal vaccination with recombinant Sendai virus vector expressing amastigote surface protein-2. Vaccine. 2009; 27(44); 6154-6159. [PubMed: 19712768].
  20. Egui et al., 2012: Egui A, Thomas MC, Morell M, Marañón C, Carrilero B, Segovia M, Puerta CJ, Pinazo MJ, Rosas F, Gascón J, López MC. Trypanosoma cruzi paraflagellar rod proteins 2 and 3 contain immunodominant CD8(+) T-cell epitopes that are recognized by cytotoxic T cells from Chagas disease patients. Molecular immunology. 2012; 52(3-4); 289-298. [PubMed: 22750229].
  21. Eickhoff et al., 2011: Eickhoff CS, Vasconcelos JR, Sullivan NL, Blazevic A, Bruna-Romero O, Rodrigues MM, Hoft DF. Co-administration of a plasmid DNA encoding IL-15 improves long-term protection of a genetic vaccine against Trypanosoma cruzi. PLoS neglected tropical diseases. 2011; 5(3); e983. [PubMed: 21408124].
  22. Gamba et al., 2021: Gamba JC, Roldán C, Prochetto E, Lupi G, Bontempi I, Poncini CV, Vermeulen M, Pérez AR, Marcipar I, Cabrera G. Targeting Myeloid-Derived Suppressor Cells to Enhance a Trans-Sialidase-Based Vaccine Against Trypanosoma cruzi. Frontiers in cellular and infection microbiology. 2021; 11; 671104. [PubMed: 34295832].
  23. Garg and Tarleton, 2002: Garg N, Tarleton RL. Genetic immunization elicits antigen-specific protective immune responses and decreases disease severity in Trypanosoma cruzi infection. Infection and immunity. 2002; 70(10); 5547-5555. [PubMed: 12228281].
  24. Gherardi et al., 2001: Gherardi MM, Ramírez JC, Esteban M. Towards a new generation of vaccines: the cytokine IL-12 as an adjuvant to enhance cellular immune responses to pathogens during prime-booster vaccination regimens. Histology and histopathology. 2001; 16(2); 655-667. [PubMed: 11332721].
  25. Gupta and Garg, 2010: Gupta S, Garg NJ. Prophylactic efficacy of TcVac2 against Trypanosoma cruzi in mice. PLoS neglected tropical diseases. 2010; 4(8); e797. [PubMed: 20706586].
  26. Gupta and Garg, 2012: Gupta S, Garg NJ. Delivery of antigenic candidates by a DNA/MVA heterologous approach elicits effector CD8(+)T cell mediated immunity against Trypanosoma cruzi. Vaccine. 2012; 30(50); 7179-7186. [PubMed: 23079191].
  27. Gupta and Garg, 2013: Gupta S, Garg NJ. TcVac3 induced control of Trypanosoma cruzi infection and chronic myocarditis in mice. PloS one. 2013; 8(3); e59434. [PubMed: 23555672].
  28. Gupta et al., 2015: Gupta S, Smith C, Auclair S, Delgadillo Ade J, Garg NJ. Therapeutic Efficacy of a Subunit Vaccine in Controlling Chronic Trypanosoma cruzi Infection and Chagas Disease Is Enhanced by Glutathione Peroxidase Over-Expression. PloS one. 2015; 10(6); e0130562. [PubMed: 26075398].
  29. Gupta et al., 2019: Gupta S, Salgado-Jiménez B, Lokugamage N, Vázquez-Chagoyán JC, Garg NJ. TcG2/TcG4 DNA Vaccine Induces Th1 Immunity Against Acute Trypanosoma cruzi Infection: Adjuvant and Antigenic Effects of Heterologous T. rangeli Booster Immunization. Frontiers in immunology. 2019; 10; 1456. [PubMed: 31293599].
  30. Katae et al., 2002: Katae M, Miyahira Y, Takeda K, Matsuda H, Yagita H, Okumura K, Takeuchi T, Kamiyama T, Ohwada A, Fukuchi Y, Aoki T. Coadministration of an interleukin-12 gene and a Trypanosoma cruzi gene improves vaccine efficacy. Infection and immunity. 2002; 70(9); 4833-4840. [PubMed: 12183527].
  31. Knight et al., 2014: Knight JM, Zingales B, Bottazzi ME, Hotez P, Zhan B. Limited antigenic variation in the Trypanosoma cruzi candidate vaccine antigen TSA-1. Parasite immunology. 2014; 36(12); 708-712. [PubMed: 25040249].
  32. Limon-Flores et al., 2010: Limon-Flores AY, Cervera-Cetina R, Tzec-Arjona JL, Ek-Macias L, Sánchez-Burgos G, Ramirez-Sierra MJ, Cruz-Chan JV, VanWynsberghe NR, Dumonteil E. Effect of a combination DNA vaccine for the prevention and therapy of Trypanosoma cruzi infection in mice: role of CD4+ and CD8+ T cells. Vaccine. 2010; 28(46); 7414-7419. [PubMed: 20850536].
  33. Luhrs et al., 2003: Luhrs KA, Fouts DL, Manning JE. Immunization with recombinant paraflagellar rod protein induces protective immunity against Trypanosoma cruzi infection. Vaccine. 2003; 21(21-22); 3058-3069. [PubMed: 12798650].
  34. Moraschi et al., 2021: Moraschi BF, Noronha IH, Ferreira CP, Cariste LM, Monteiro CB, Denapoli P, Vrechi T, Pereira GJS, Gazzinelli RT, Lannes-Vieira J, Rodrigues MM, Bortoluci KR, Vasconcelos JRC. Rapamycin Improves the Response of Effector and Memory CD8(+) T Cells Induced by Immunization With ASP2 of Trypanosoma cruzi. Frontiers in cellular and infection microbiology. 2021; 11; 676183. [PubMed: 34123875].
  35. Morell et al., 2006: Morell M, Thomas MC, Caballero T, Alonso C, López MC. The genetic immunization with paraflagellar rod protein-2 fused to the HSP70 confers protection against late Trypanosoma cruzi infection. Vaccine. 2006; 24(49-50); 7046-7055. [PubMed: 16901590].
  36. Planelles et al., 2001: Planelles L, Thomas MC, Alonso C, López MC. DNA immunization with Trypanosoma cruzi HSP70 fused to the KMP11 protein elicits a cytotoxic and humoral immune response against the antigen and leads to protection. Infection and immunity. 2001; 69(10); 6558-6563. [PubMed: 11553607].
  37. Quijano-Hernández et al., 2013: Quijano-Hernández IA, Castro-Barcena A, Vázquez-Chagoyán JC, Bolio-González ME, Ortega-López J, Dumonteil E. Preventive and therapeutic DNA vaccination partially protect dogs against an infectious challenge with Trypanosoma cruzi. Vaccine. 2013; 31(18); 2246-2252. [PubMed: 23499599].
  38. Rassi et al., 2010: Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet. 2010; 375(9723); 1388-1402. [PubMed: 20399979].
  39. Rigato et al., 2011: Rigato PO, de Alencar BC, de Vasconcelos JR, Dominguez MR, Araújo AF, Machado AV, Gazzinelli RT, Bruna-Romero O, Rodrigues MM. Heterologous plasmid DNA prime-recombinant human adenovirus 5 boost vaccination generates a stable pool of protective long-lived CD8(+) T effector memory cells specific for a human parasite, Trypanosoma cruzi. Infection and immunity. 2011; 79(5); 2120-2130. [PubMed: 21357719].
  40. Rodrigues et al., 1999: Rodrigues MM, Ribeirão M, Pereira-Chioccola V, Renia L, Costa F. Predominance of CD4 Th1 and CD8 Tc1 cells revealed by characterization of the cellular immune response generated by immunization with a DNA vaccine containing a Trypanosoma cruzi gene. Infection and immunity. 1999; 67(8); 3855-3863. [PubMed: 10417149].
  41. Rudd et al., 2007: Rudd BD, Schaller MA, Smit JJ, Kunkel SL, Neupane R, Kelley L, Berlin AA, Lukacs NW. MyD88-mediated instructive signals in dendritic cells regulate pulmonary immune responses during respiratory virus infection. Journal of immunology (Baltimore, Md. : 1950). 2007; 178(9); 5820-5827. [PubMed: 17442966].
  42. Sanchez-Burgos et al., 2007: Sanchez-Burgos G, Mezquita-Vega RG, Escobedo-Ortegon J, Ramirez-Sierra MJ, Arjona-Torres A, Ouaissi A, Rodrigues MM, Dumonteil E. Comparative evaluation of therapeutic DNA vaccines against Trypanosoma cruzi in mice. FEMS immunology and medical microbiology. 2007; 50(3); 333-341. [PubMed: 17521394].
  43. Schnapp et al., 2002: Schnapp AR, Eickhoff CS, Sizemore D, Curtiss R 3rd, Hoft DF. Cruzipain induces both mucosal and systemic protection against Trypanosoma cruzi in mice. Infection and immunity. 2002; 70(9); 5065-5074. [PubMed: 12183554].
  44. Sepulveda et al., 2000: Sepulveda P, Hontebeyrie M, Liegeard P, Mascilli A, Norris KA. DNA-Based immunization with Trypanosoma cruzi complement regulatory protein elicits complement lytic antibodies and confers protection against Trypanosoma cruzi infection. Infection and immunity. 2000; 68(9); 4986-4991. [PubMed: 10948115].
  45. Vasconcelos et al., 2004: Vasconcelos JR, Hiyane MI, Marinho CR, Claser C, Machado AM, Gazzinelli RT, Bruña-Romero O, Alvarez JM, Boscardin SB, Rodrigues MM. Protective immunity against trypanosoma cruzi infection in a highly susceptible mouse strain after vaccination with genes encoding the amastigote surface protein-2 and trans-sialidase. Human gene therapy. 2004; 15(9); 878-886. [PubMed: 15353042].
  46. Wizel et al., 1998: Wizel B, Garg N, Tarleton RL. Vaccination with trypomastigote surface antigen 1-encoding plasmid DNA confers protection against lethal Trypanosoma cruzi infection. Infection and immunity. 1998; 66(11); 5073-5081. [PubMed: 9784506].
  47. Wrightsman and Manning, 2000: Wrightsman RA, Manning JE. Paraflagellar rod proteins administered with alum and IL-12 or recombinant adenovirus expressing IL-12 generates antigen-specific responses and protective immunity in mice against Trypanosoma cruzi. Vaccine. 2000; 18(14); 1419-1427. [PubMed: 10618540].

Turkey hemorrhagic enteritis virus

  1. Sharma, 1991: Sharma JM. Hemorrhagic enteritis of turkeys. Veterinary immunology and immunopathology. 1991; 30(1); 67-71. [PubMed: 1664163].

Vaccinia virus

  1. Galmiche et al., 1999: Galmiche MC, Goenaga J, Wittek R, Rindisbacher L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. Virology. 1999; 254(1); 71-80. [PubMed: 9927575].
  2. Hooper et al., 2000: Hooper JW, Custer DM, Schmaljohn CS, Schmaljohn AL. DNA vaccination with vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge. Virology. 2000; 266(2); 329-339. [PubMed: 10639319].
  3. Hooper et al., 2007: Hooper JW, Golden JW, Ferro AM, King AD. Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine. 2007; 25(10); 1814-1823. [PubMed: 17240007].
  4. Otero et al., 2006: Otero M, Calarota SA, Dai A, De Groot AS, Boyer JD, Weiner DB. Efficacy of novel plasmid DNA encoding vaccinia antigens in improving current smallpox vaccination strategy. Vaccine. 2006; 24(21); 4461-4470. [PubMed: 16137803].
  5. Reeman et al., 2017: Reeman S, Gates AJ, Pulford DJ, Krieg A, Ulaeto DO. Protection of Mice from Lethal Vaccinia Virus Infection by Vaccinia Virus Protein Subunits with a CpG Adjuvant. Viruses. 2017; 9(12); . [PubMed: 29232844].
  6. Sakhatskyy et al., 2006: Sakhatskyy P, Wang S, Chou TH, Lu S. Immunogenicity and protection efficacy of monovalent and polyvalent poxvirus vaccines that include the D8 antigen. Virology. 2006; 355(2); 164-174. [PubMed: 16919703].
  7. Scherer et al., 2007: Scherer CA, Magness CL, Steiger KV, Poitinger ND, Caputo CM, Miner DG, Winokur PL, Klinzman D, McKee J, Pilar C, Ward PA, Gillham MH, Haulman NJ, Stapleton JT, Iadonato SP. Distinct gene expression profiles in peripheral blood mononuclear cells from patients infected with vaccinia virus, yellow fever 17D virus, or upper respiratory infections. Vaccine. 2007; 25(35); 6458-6473. [PubMed: 17651872].
  8. Stanford - Vaccinia Virus: Vaccinia Virus [http://www.stanford.edu/group/virus/pox/2000/vaccinia_virus.html]

Varicella-zoster virus

  1. FDA: ProQuad: FDA: ProQuad Vaccine [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094051.htm]
  2. FDA: Varivax: FDA: Varivax vaccine information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094073.htm]
  3. FDA: Zostavax: FDA: Zostavax vaccine information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094075.htm]
  4. GSK: Varilrix: GSK: Varilrix Product Information [http://www.gsk.ca/english/docs-pdf/varilrix_PM_20070110.pdf]
  5. Heineman et al., 2019: Heineman TC, Cunningham A, Levin M. Understanding the immunology of Shingrix, a recombinant glycoprotein E adjuvanted herpes zoster vaccine. Current opinion in immunology. 2019; 59; 42-48. [PubMed: 31003070].
  6. Keller et al., 1986: Keller PM, Lonergan K, Neff BJ, Morton DA, Ellis RW. Purification of individual varicella-zoster virus (VZV) glycoproteins gpI, gpII, and gpIII and their use in ELISA for detection of VZV glycoprotein-specific antibodies. Journal of virological methods. 1986; 14(2); 177-188. [PubMed: 3021804].
  7. Kimura et al., 1998: Kimura H, Wang Y, Pesnicak L, Cohen JI, Hooks JJ, Straus SE, Williams RK. Recombinant varicella-zoster virus glycoproteins E and I: immunologic responses and clearance of virus in a guinea pig model of chronic uveitis. The Journal of infectious diseases. 1998; 178(2); 310-317. [PubMed: 9697709].
  8. Wiki: Varicella zoster: Wiki: Varicella zoster [http://en.wikipedia.org/wiki/Varicella_zoster]
  9. Wu and Forghani, 1997: Wu L, Forghani B. Characterization of neutralizing domains on varicella-zoster virus glycoprotein E defined by monoclonal antibodies. Archives of virology. 1997; 142(2); 349-362. [PubMed: 9125048].

Variola virus

  1. Amanna et al., 2006: Amanna IJ, Slifka MK, Crotty S. Immunity and immunological memory following smallpox vaccination. Immunological reviews. 2006 Jun; 211; 320-37. [PubMed: 16824139 ].
  2. Belyakov et al., 2003: Belyakov IM, Earl P, Dzutsev A, Kuznetsov VA, Lemon M, Wyatt LS, Snyder JT, Ahlers JD, Franchini G, Moss B, Berzofsky JA. Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proceedings of the National Academy of Sciences of the United States of America. 2003 Aug 5; 100(16); 9458-63. [PubMed: 12869693 ].
  3. Berhanu et al., 2008: Berhanu A, Wilson RL, Kirkwood-Watts DL, King DS, Warren TK, Lund SA, Brown LL, Krupkin AK, Vandermay E, Weimers W, Honeychurch KM, Grosenbach DW, Jones KF, Hruby DE. Vaccination of BALB/c mice with Escherichia coli-expressed vaccinia virus proteins A27L, B5R, and D8L protects mice from lethal vaccinia virus challenge. Journal of virology. 2008; 82(7); 3517-3529. [PubMed: 18199639].
  4. Bielinska et al., 2008: Bielinska AU, Chepurnov AA, Landers JJ, Janczak KW, Chepurnova TS, Luker GD, Baker JR Jr. A novel, killed-virus nasal vaccinia virus vaccine. Clinical and vaccine immunology : CVI. 2008; 15(2); 348-358. [PubMed: 18057181].
  5. Casey et al., 2005: Casey CG, Iskander JK, Roper MH, Mast EE, Wen XJ, Torok TJ, Chapman LE, Swerdlow DL, Morgan J, Heffelfinger JD, Vitek C, Reef SE, Hasbrouck LM, Damon I, Neff L, Vellozzi C, McCauley M, Strikas RA, Mootrey G. Adverse events associated with smallpox vaccination in the United States, January-October 2003. JAMA : the journal of the American Medical Association. 2005 Dec 7; 294(21); 2734-43. [PubMed: 16333009 ].
  6. Davies et al., 2005: Davies DH, McCausland MM, Valdez C, Huynh D, Hernandez JE, Mu Y, Hirst S, Villarreal L, Felgner PL, Crotty S. Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. Journal of virology. 2005; 79(18); 11724-11733. [PubMed: 16140750].
  7. Earl et al., 2004: Earl PL, Americo JL, Wyatt LS, Eller LA, Whitbeck JC, Cohen GH, Eisenberg RJ, Hartmann CJ, Jackson DL, Kulesh DA, Martinez MJ, Miller DM, Mucker EM, Shamblin JD, Zwiers SH, Huggins JW, Jahrling PB, Moss B. Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature. 2004 Mar 11; 428(6979); 182-5. [PubMed: 15014500].
  8. Edghill-Smith et al., 2003: Edghill-Smith Y, Venzon D. Modeling a safer smallpox vaccination regimen, for human immunodeficiency virus type 1-infected patients, in immunocompromised macaques. The Journal of infectious diseases. 2003 Oct 15; 188(8); 1181-91. [PubMed: 14551889 ].
  9. Empig et al., 2006: Empig C, Kenner JR, Perret-Gentil M, Youree BE, Bell E, Chen A, Gurwith M, Higgins K, Lock M, Rice AD, Schriewer J, Sinangil F, White E, Buller RM, Dermody TS, Isaacs SN, Moyer RW. Highly attenuated smallpox vaccine protects rabbits and mice against pathogenic orthopoxvirus challenge. Vaccine. 2006 Apr 24; 24(17); 3686-94. [PubMed: 16430997 ].
  10. FDA: ACAM2000: FDA: ACAM2000 Vaccine for Variola Virus [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094065.htm]
  11. FDA: Dryvax: FDA: Dryvax Vaccine for Variola Virus [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094066.htm]
  12. Fogg et al., 2004: Fogg C, Lustig S, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B. Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. Journal of virology. 2004 Oct; 78(19); 10230-7. [PubMed: 15367588 ].
  13. Franz et al., 1997: Franz DR, Jahrling PB, Friedlander AM, McClain DJ, Hoover DL, Bryne WR, Pavlin JA, Christopher GW, Eitzen EM Jr. Clinical recognition and management of patients exposed to biological warfare agents. JAMA : the journal of the American Medical Association. 1997 Aug 6; 278(5); 399-411. [PubMed: 9244332].
  14. Golden et al., 2008: Golden JW, Josleyn MD, Hooper JW. Targeting the vaccinia virus L1 protein to the cell surface enhances production of neutralizing antibodies. Vaccine. 2008; 26(27-28); 3507-3515. [PubMed: 18485547].
  15. Grabenstein et al., 2003: Grabenstein JD, Winkenwerder W Jr. US military smallpox vaccination program experience. JAMA : the journal of the American Medical Association. 2003 Jun 25; 289(24); 3278-82. [PubMed: 12824209 ].
  16. Greenberg et al., 2005: Greenberg RN, Kennedy JS, Clanton DJ, Plummer EA, Hague L, Cruz J, Ennis FA, Blackwelder WC, Hopkins RJ. Safety and immunogenicity of new cell-cultured smallpox vaccine compared with calf-lymph derived vaccine: a blind, single-centre, randomised controlled trial. Lancet. 2005 Jan 29-Feb 4; 365(9457); 398-409. [PubMed: 15680454 ].
  17. Hassett, 2003: Hassett DE. Smallpox infections during pregnancy, lessons on pathogenesis from nonpregnant animal models of infection. Journal of reproductive immunology. 2003 Oct; 60(1); 13-24. [PubMed: 14568674].
  18. Henderson, 1999: Henderson DA. Smallpox: clinical and epidemiologic features. Emerging infectious diseases. 1999 Jul-Aug; 5(4); 537-9. [PubMed: 10458961].
  19. Hooper et al., 2004: Hooper JW, Thompson E, Wilhelmsen C, Zimmerman M, Ichou MA, Steffen SE, Schmaljohn CS, Schmaljohn AL, Jahrling PB. Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. Journal of virology. 2004 May; 78(9); 4433-43. [PubMed: 15078924].
  20. Hooper et al., 2006: Hooper JW, Golden JW, Ferro AM, King AD. Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine. 2006 Nov 27; ; . [PubMed: 17240007].
  21. Kim et al., 2013: Kim NH, Kang YM, Kim G, Choe PG, Song JS, Lee KH, Seong BL, Park WB, Kim NJ, Oh MD. An open-label, single arm, phase III clinical study to evaluate the efficacy and safety of CJ smallpox vaccine in previously vaccinated healthy adults. Vaccine. 2013; 31(45); 5239-5242. [PubMed: 24021303].
  22. Maksiutov and Shchelkunov, 2011: Maksiutov RA, Shchelkunov SN. [Comparison of protective properties of the smallpox DNA-vaccine based on the variola virus A30L gene and its variant with modified codon usage]. Molekuliarnaia genetika, mikrobiologiia i virusologiia. 2011; (2); 30-34. [PubMed: 21786633].
  23. McFadden, 2005: McFadden G. Poxvirus tropism. Nature reviews. Microbiology. 2005 Mar; 3(3); 201-13. [PubMed: 15738948].
  24. Meseda et al., 2005: Meseda CA, Garcia AD, Kumar A, Mayer AE, Manischewitz J, King LR, Golding H, Merchlinsky M, Weir JP. Enhanced immunogenicity and protective effect conferred by vaccination with combinations of modified vaccinia virus Ankara and licensed smallpox vaccine Dryvax in a mouse model. Virology. 2005 Sep 1; 339(2); 164-75. [PubMed: 15993917 ].
  25. Monath et al., 2004: Monath TP, Caldwell JR, Mundt W, Fusco J, Johnson CS, Buller M, Liu J, Gardner B, Downing G, Blum PS, Kemp T, Nichols R, Weltzin R. ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain)--a second-generation smallpox vaccine for biological defense. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2004 Oct; 8 Suppl 2; S31-44. [PubMed: 15491873].
  26. Morikawa et al., 2005: Morikawa S, Sakiyama T, Hasegawa H, Saijo M, Maeda A, Kurane I, Maeno G, Kimura J, Hirama C, Yoshida T, Asahi-Ozaki Y, Sata T, Kurata T, Kojima A. An attenuated LC16m8 smallpox vaccine: analysis of full-genome sequence and induction of immune protection. Journal of virology. 2005 Sep; 79(18); 11873-91. [PubMed: 16140764].
  27. NCBI: Entrez Gene [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene]
  28. Ober et al., 2002: Ober BT, Bruhl P, Schmidt M, Wieser V, Gritschenberger W, Coulibaly S, Savidis-Dacho H, Gerencer M, Falkner FG. Immunogenicity and safety of defective vaccinia virus lister: comparison with modified vaccinia virus Ankara. Journal of virology. 2002 Aug; 76(15); 7713-23. [PubMed: 12097585].
  29. Parrino et al., 2006: Parrino J, Graham BS. Smallpox vaccines: Past, present, and future. The Journal of allergy and clinical immunology. 2006 Dec; 118(6); 1320-6. [PubMed: 17157663 ].
  30. PathPort: Virginia Bioinformatics Institute [http://pathport.vbi.vt.edu/pathinfo/pathogens/Clostridium_botulinum_Info.shtml]
  31. Slifka, 2004: Slifka MK. Immunological memory to viral infection. Current opinion in immunology. 2004 Aug; 16(4); 443-50. [PubMed: 15245737].
  32. Stittelaar et al., 2005: Stittelaar KJ, van Amerongen G, Kondova I, Kuiken T, van Lavieren RF, Pistoor FH, Niesters HG, van Doornum G, van der Zeijst BA, Mateo L, Chaplin PJ, Osterhaus AD. Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus. Journal of virology. 2005 Jun; 79(12); 7845-51. [PubMed: 15919938 ].
  33. Sugimoto et al., 1994: Sugimoto M, Yamanouchi K. Characteristics of an attenuated vaccinia virus strain, LC16m0, and its recombinant virus vaccines. Vaccine. 1994 Jun; 12(8); 675-81. [PubMed: 8091843].
  34. Vilesova et al., 1985: Vilesova IS, Gurvich EB, Dzagurov SG, Grigor'eva LV, Abel H. [Changes in the properties of the vaccinia virus isolated in postvaccinal encephalitis]. Voprosy virusologii. 1985 Jul-Aug; 30(4); 477-82. [PubMed: 2865855].
  35. Vollmar et al., 2006: Vollmar J, Arndtz N, Eckl KM, Thomsen T, Petzold B, Mateo L, Schlereth B, Handley A, King L, Hulsemann V, Tzatzaris M, Merkl K, Wulff N, Chaplin P. Safety and immunogenicity of IMVAMUNE, a promising candidate as a third generation smallpox vaccine. Vaccine. 2006 Mar 15; 24(12); 2065-70. [PubMed: 16337719].
  36. Weltzin et al., 2003: Weltzin R, Liu J, Pugachev KV, Myers GA, Coughlin B, Blum PS, Nichols R, Johnson C, Cruz J, Kennedy JS, Ennis FA, Monath TP. Clonal vaccinia virus grown in cell culture as a new smallpox vaccine. Nature medicine. 2003 Sep; 9(9); 1125-30. [PubMed: 12925845 ].
  37. Wilck et al., 2010: Wilck MB, Seaman MS, Baden LR, Walsh SR, Grandpre LE, Devoy C, Giri A, Kleinjan JA, Noble LC, Stevenson KE, Kim HT, Dolin R. Safety and immunogenicity of modified vaccinia Ankara (ACAM3000): effect of dose and route of administration. The Journal of infectious diseases. 2010; 201(9); 1361-1370. [PubMed: 20350191].

VEE Virus

  1. Agapov et al., 1994: Agapov EV, Razumov IA, Frolov IV, Kolykhalov AA, Netesov SV, Loktev VB. Localization of four antigenic sites involved in Venezuelan equine encephalomyelitis virus protection. Archives of virology. 1994; 139(1-2); 173-181. [PubMed: 7529989].
  2. Bennett et al., 1999: Bennett AM, Phillpotts RJ, Perkins SD, Jacobs SC, Williamson ED. Gene gun mediated vaccination is superior to manual delivery for immunisation with DNA vaccines expressing protective antigens from Yersinia pestis or Venezuelan Equine Encephalitis virus. Vaccine. 1999; 18(7-8); 588-596. [PubMed: 10547416].
  3. Bennett et al., 2000: Bennett AM, Elvin SJ, Wright AJ, Jones SM, Phillpotts RJ. An immunological profile of Balb/c mice protected from airborne challenge following vaccination with a live attenuated Venezuelan equine encephalitis virus vaccine. Vaccine. 2000 Sep 15; 19(2-3); 337-47. [PubMed: 10930689].
  4. Bett et al., 1995: Bett AJ, Krougliak V, Graham FL. DNA sequence of the deletion/insertion in early region 3 of Ad5 dl309. Virus research. 1995 Nov; 39(1); 75-82. [PubMed: 8607286].
  5. BMDP Statistics Software 1992: . BMDP Statistics Software. 467. BMDP Statistics Software Release 7. 1992. , .
  6. Bray et al., 1999: Bray M, Davis K, Geisbert T, Schmaljohn C, Huggins J. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. The Journal of infectious diseases. 1999 Feb; 179 Suppl 1; S248-58. [PubMed: 9988191].
  7. Bredenbeek et al., 1993: Bredenbeek PJ, Frolov I, Rice CM, Schlesinger S. Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. Journal of virology. 1993 Nov; 67(11); 6439-46. [PubMed: 8411346 ].
  8. Connolly et al., 1999: Connolly BM, Steele KE, Davis KJ, Geisbert TW, Kell WM, Jaax NK, Jahrling PB. Pathogenesis of experimental Ebola virus infection in guinea pigs. The Journal of infectious diseases. 1999 Feb; 179 Suppl 1; S203-17. [PubMed: 9988186].
  9. Davis et al., 1989: Davis NL, Willis LV, Smith JF, Johnston RE. In vitro synthesis of infectious venezuelan equine encephalitis virus RNA from a cDNA clone: analysis of a viable deletion mutant. Virology. 1989 Jul; 171(1); 189-204. [PubMed: 2525837].
  10. Davis et al., 1991: Davis NL, Powell N, Greenwald GF, Willis LV, Johnson BJ, Smith JF, Johnston RE. Attenuating mutations in the E2 glycoprotein gene of Venezuelan equine encephalitis virus: construction of single and multiple mutants in a full-length cDNA clone. Virology. 1991 Jul; 183(1); 20-31. [PubMed: 2053280 ].
  11. Davis et al., 1995: Davis NL, Brown KW, Greenwald GF, Zajac AJ, Zacny VL, Smith JF, Johnston RE. Attenuated mutants of Venezuelan equine encephalitis virus containing lethal mutations in the PE2 cleavage signal combined with a second-site suppressor mutation in E1. Virology. 1995; 212(1); 102-110. [PubMed: 7676619].
  12. Davis et al., 1996: Davis NL, Brown KW, Johnston RE. A viral vaccine vector that expresses foreign genes in lymph nodes and protects against mucosal challenge. Journal of virology. 1996 Jun; 70(6); 3781-7. [PubMed: 8648713].
  13. Dupuy et al., 2009: Dupuy LC, Locher CP, Paidhungat M, Richards MJ, Lind CM, Bakken R, Parker MD, Whalen RG, Schmaljohn CS. Directed molecular evolution improves the immunogenicity and protective efficacy of a Venezuelan equine encephalitis virus DNA vaccine. Vaccine. 2009; 27(31); 4152-4160. [PubMed: 19406186].
  14. Eddy et al., 1972: Eddy GA, Martin DH, Reeves WC, Johnson KM. Field studies of an attenuated Venezuelan equine encephalomyelitis vaccine (strain TC-83). Infection and immunity. 1972 Feb; 5(2); 160-3. [PubMed: 4564397].
  15. Fine et al., 2007: Fine DL, Roberts BA, Teehee ML, Terpening SJ, Kelly CL, Raetz JL, Baker DC, Powers AM, Bowen RA. Venezuelan equine encephalitis virus vaccine candidate (V3526) safety, immunogenicity and efficacy in horses. Vaccine. 2007 Feb 26; 25(10); 1868-76. [PubMed: 17240002].
  16. Grieder et al., 1995: Grieder FB, Davis NL, Aronson JF, Charles PC, Sellon DC, Suzuki K, Johnston RE. Specific restrictions in the progression of Venezuelan equine encephalitis virus-induced disease resulting from single amino acid changes in the glycoproteins. Virology. 1995 Feb 1; 206(2); 994-1006. [PubMed: 7856110].
  17. Guyton, A.C., 1947: Guyton, A.C.. Measurement of the respiratory volume of laboratory animals. Am. J. Physiol.. 1947; 150; 10-11.
  18. Hart et al., 1997: Hart MK, Pratt W, Panelo F, Tammariello R, Dertzbaugh M. Venezuelan equine encephalitis virus vaccines induce mucosal IgA responses and protection from airborne infection in BALB/c, but not C3H/HeN mice. Vaccine. 1997 Mar; 15(4); 363-9. [PubMed: 9141206 ].
  19. Hevey et al., 1997: Hevey M, Negley D, Geisbert J, Jahrling P, Schmaljohn A. Antigenicity and vaccine potential of Marburg virus glycoprotein expressed by baculovirus recombinants. Virology. 1997 Dec 8; 239(1); 206-16. [PubMed: 9426460 ].
  20. Hunt and Roehrig, 1995: Hunt AR, Roehrig JT. Localization of a protective epitope on a Venezuelan equine encephalomyelitis (VEE) virus peptide that protects mice from both epizootic and enzootic VEE virus challenge and is immunogenic in horses. Vaccine. 1995; 13(3); 281-288. [PubMed: 7543231].
  21. Jones et al., 1979: Jones N, Shenk T. Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell. 1979 Jul; 17(3); 683-9. [PubMed: 476833].
  22. Moe et al., 1981: Moe JB, Lambert RD, Lupton HW. Plaque assay for Ebola virus. Journal of clinical microbiology. 1981 Apr; 13(4); 791-3. [PubMed: 7014628].
  23. Negrette et al., 2001: Negrette B, Bonilla E, Valero N, Giraldoth D, Medina-Leendertz S, Añez F. In mice the efficiency of immunization with Venezuelan Equine Encephalomyelitis virus TC-83 is transiently increased by dehydroepiandrosterone. Investigacion clinica. 2001; 42(4); 235-240. [PubMed: 11787268].
  24. Paessler et al., 2003: Paessler S, Fayzulin RZ, Anishchenko M, Greene IP, Weaver SC, Frolov I. Recombinant sindbis/Venezuelan equine encephalitis virus is highly attenuated and immunogenic. Journal of virology. 2003 Sep; 77(17); 9278-86. [PubMed: 12915543 ].
  25. Paessler et al., 2006: Paessler S, Ni H, Petrakova O, Fayzulin RZ, Yun N, Anishchenko M, Weaver SC, Frolov I. Replication and clearance of Venezuelan equine encephalitis virus from the brains of animals vaccinated with chimeric SIN/VEE viruses. Journal of virology. 2006 Mar; 80(6); 2784-96. [PubMed: 16501087].
  26. Perkins et al., 2006: Perkins SD, O'Brien LM, Phillpotts RJ. Boosting with an adenovirus-based vaccine improves protective efficacy against Venezuelan equine encephalitis virus following DNA vaccination. Vaccine. 2006; 24(17); 3440-3445. [PubMed: 16527377].
  27. Phillpotts et al., 1997: Phillpotts RJ, Brooks TJ, Cox CS. A simple device for the exposure of animals to infectious microorganisms by the airborne route. Epidemiology and infection. 1997 Feb; 118(1); 71-5. [PubMed: 9042037 ].
  28. Phillpotts et al., 1999: Phillpotts RJ, Wright AJ. TC-83 vaccine protects against airborne or subcutaneous challenge with heterologous mouse-virulent strains of Venezuelan equine encephalitis virus. Vaccine. 1999 Feb 26; 17(7-8); 982-8. [PubMed: 10067707].
  29. Phillpotts et al., 2002: Phillpotts RJ, Jones LD, Howard SC. Monoclonal antibody protects mice against infection and disease when given either before or up to 24 h after airborne challenge with virulent Venezuelan equine encephalitis virus. Vaccine. 2002 Feb 22; 20(11-12); 1497-504. [PubMed: 11858855 ].
  30. Phillpotts et al., 2005: Phillpotts RJ, O'brien L, Appleton RE, Carr S, Bennett A. Intranasal immunisation with defective adenovirus serotype 5 expressing the Venezuelan equine encephalitis virus E2 glycoprotein protects against airborne challenge with virulent virus. Vaccine. 2005 Feb 18; 23(13); 1615-23. [PubMed: 15694514].
  31. Phillpotts, 2006: Phillpotts RJ. Venezuelan equine encephalitis virus complex-specific monoclonal antibody provides broad protection, in murine models, against airborne challenge with viruses from serogroups I, II and III. Virus research. 2006 Sep; 120(1-2); 107-12. [PubMed: 16621103 ].
  32. Pifat et al., 1988: Pifat DY, Osterling MC, Smith JF. Antigenic analysis of Punta Toro virus and identification of protective determinants with monoclonal antibodies. Virology. 1988 Dec; 167(2); 442-50. [PubMed: 2462308 ].
  33. Pratt et al., 1998: Pratt WD, Gibbs P, Pitt ML, Schmaljohn AL. Use of telemetry to assess vaccine-induced protection against parenteral and aerosol infections of Venezuelan equine encephalitis virus in non-human primates. Vaccine. 1998 May-Jun; 16(9-10); 1056-64. [PubMed: 9682359].
  34. Pratt et al., 2003: Pratt WD, Davis NL, Johnston RE, Smith JF. Genetically engineered, live attenuated vaccines for Venezuelan equine encephalitis: testing in animal models. Vaccine. 2003 Sep 8; 21(25-26); 3854-62. [PubMed: 12922119].
  35. Pushko et al., 1997: Pushko P, Parker M, Ludwig GV, Davis NL, Johnston RE, Smith JF. Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology. 1997 Dec 22; 239(2); 389-401. [PubMed: 9434729].
  36. Pushko et al., 2000: Pushko P, Bray M, Ludwig GV, Parker M, Schmaljohn A, Sanchez A, Jahrling PB, Smith JF. Recombinant RNA replicons derived from attenuated Venezuelan equine encephalitis virus protect guinea pigs and mice from Ebola hemorrhagic fever virus. Vaccine. 2000 Aug 15; 19(1); 142-53. [PubMed: 10924796].
  37. Riemenschneider et al., 2003: Riemenschneider J, Garrison A, Geisbert J, Jahrling P, Hevey M, Negley D, Schmaljohn A, Lee J, Hart MK, Vanderzanden L, Custer D, Bray M, Ruff A, Ivins B, Bassett A, Rossi C, Schmaljohn C. Comparison of individual and combination DNA vaccines for B. anthracis, Ebola virus, Marburg virus and Venezuelan equine encephalitis virus. Vaccine. 2003; 21(25-26); 4071-4080. [PubMed: 12922144].
  38. Sanchez et al., 1989: Sanchez A, Kiley MP, Holloway BP, McCormick JB, Auperin DD. The nucleoprotein gene of Ebola virus: cloning, sequencing, and in vitro expression. Virology. 1989 May; 170(1); 81-91. [PubMed: 2718390].
  39. Sanchez et al., 1993: Sanchez A, Kiley MP, Holloway BP, Auperin DD. Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus research. 1993 Sep; 29(3); 215-40. [PubMed: 8237108 ].
  40. Tollefson et al., 2007: Tollefson AE, Kuppuswamy M, Shashkova EV, Doronin K, Wold WS. Preparation and titration of CsCl-banded adenovirus stocks. Methods in molecular medicine. 2007; 130; 223-35. [PubMed: 17401177].
  41. Walton et al., 1972: Walton TE, Alvarez O Jr, Buckwalter RM, Johnson KM. Experimental infection of horses with an attenuated Venezuelan equine encephalomyelitis vaccine (strain TC-83). Infection and immunity. 1972 May; 5(5); 750-6. [PubMed: 4637604].
  42. Walton et al., 1973: Walton TE, Alvarez O Jr, Buckwalter RM, Johnson KM. Experimental infection of horses with enzootic and epizootic strains of Venezuelan equine encephalomyelitis virus. The Journal of infectious diseases. 1973 Sep; 128(3); 271-82. [PubMed: 4728689 ].
  43. Weaver et al., 2004: Weaver SC, Ferro C, Barrera R, Boshell J, Navarro JC. Venezuelan equine encephalitis. Annual review of entomology. 2004; 49; 141-74. [PubMed: 14651460 ].
  44. Wright et al., 1998: Wright AJ, Phillpotts RJ. Humane endpoints are an objective measure of morbidity in Venezuelan encephalomyelitis virus infection of mice. Archives of virology. 1998; 143(6); 1155-62. [PubMed: 9687872 ].

Vibrio anguillarum (Listonella anguillarum)

  1. Kumar et al., 2007: Kumar SR, Parameswaran V, Ahmed VP, Musthaq SS, Hameed AS. Protective efficiency of DNA vaccination in Asian seabass (Lates calcarifer) against Vibrio anguillarum. Fish & shellfish immunology. 2007; 23(2); 316-326. [PubMed: 17337208].
  2. Vibriosis: Vibriosis [http://www.spaquaculture.com/default.aspx?pageid=528]

Vibrio cholerae

  1. Aktar et al., 2016: Aktar A, Rahman MA, Afrin S, Faruk MO, Uddin T, Akter A, Sami MIN, Yasmin T, Chowdhury F, Khan AI, Leung DT, LaRocque RC, Charles RC, Bhuiyan TR, Mandlik A, Kelly M, Ková? P, Xu P, Calderwood SB, Harris JB, Qadri F, Ryan ET. O-Specific Polysaccharide-Specific Memory B Cell Responses in Young Children, Older Children, and Adults Infected with Vibrio cholerae O1 Ogawa in Bangladesh. Clinical and vaccine immunology : CVI. 2016; 23(5); 427-435. [PubMed: 27009211].
  2. Eko et al., 2000: Eko FO, Mayr UB, Attridge SR, Lubitz W. Characterization and immunogenicity of Vibrio cholerae ghosts expressing toxin-coregulated pili. Journal of biotechnology. 2000; 83(1-2); 115-123. [PubMed: 11000467].
  3. Ekong et al., 2009: Ekong EE, Okenu DN, Mania-Pramanik J, He Q, Igietseme JU, Ananaba GA, Lyn D, Black C, Eko FO. A Vibrio cholerae ghost-based subunit vaccine induces cross-protective chlamydial immunity that is enhanced by CTA2B, the nontoxic derivative of cholera toxin. FEMS immunology and medical microbiology. 2009; 55(2); 280-291. [PubMed: 19040663].
  4. FDA: Vaxchora: FDA: Vaxchora vaccine information [https://www.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM506235.pdf]
  5. Kirn and Taylor, 2005: Kirn TJ, Taylor RK. TcpF is a soluble colonization factor and protective antigen secreted by El Tor and classical O1 and O139 Vibrio cholerae serogroups. Infection and immunity. 2005; 73(8); 4461-4470. [PubMed: 16040956].
  6. Osek et al., 1994: Osek J, Jonson G, Svennerholm AM, Holmgren J. Role of antibodies against biotype-specific Vibrio cholerae pili in protection against experimental classical and El Tor cholera. Infection and immunity. 1994; 62(7); 2901-2907. [PubMed: 7911787].
  7. Product Monograph: Dukoral: Product Monograph: Dukoral vaccine information [http://healthsensetravelclinic.ca/wp-content/uploads/dukoral.pdf]
  8. Ravichandran et al., 2006: Ravichandran M, Ali SA, Rashid NH, Kurunathan S, Yean CY, Ting LC, Bakar AS, Lalitha P, Zainuddin ZF. Construction and evaluation of a O139 Vibrio cholerae vaccine candidate based on a hemA gene mutation. Vaccine. 2006; 24(18); 3750-3761. [PubMed: 16102875].
  9. Sharma et al., 2008: Sharma MK, Singh NK, Jani D, Sisodia R, Thungapathra M, Gautam JK, Meena LS, Singh Y, Ghosh A, Tyagi AK, Sharma AK. Expression of toxin co-regulated pilus subunit A (TCPA) of Vibrio cholerae and its immunogenic epitopes fused to cholera toxin B subunit in transgenic tomato (Solanum lycopersicum). Plant cell reports. 2008; 27(2); 307-318. [PubMed: 17962948].
  10. Vishwakarma et al., 2015: Vishwakarma V, Sahoo SS, Das S, Ray S, Hardt WD, Suar M. Cholera toxin-B (ctxB) antigen expressing Salmonella Typhimurium polyvalent vaccine exerts protective immune response against Vibrio cholerae infection. Vaccine. 2015; 33(15); 1880-1889. [PubMed: 25701672].
  11. WHO: Cholera: WHO: Cholera [http://www.who.int/topics/cholera/about/en/index.html]
  12. Xu et al., 2009: Xu G, Wang S, Zhuang L, Hackett A, Gu L, Zhang L, Zhang C, Wang H, Huang Z, Lu S. Intramuscular delivery of a cholera DNA vaccine primes both systemic and mucosal protective antibody responses against cholera. Vaccine. 2009; 27(29); 3821-3830. [PubMed: 19443090].
  13. Yu et al., 2005: Yu F, Qi G, Liu Y, Gao S, Kan B. Construction and characterization of a thyA mutant derived from cholera vaccine candidate IEM101. Molecular biotechnology. 2005; 29(3); 191-196. [PubMed: 15767696].

Vibrio vulnificus

  1. Lee et al., 2014: Lee TH, Kim MH, Lee CS, Lee JH, Rhee JH, Chung KM. Protection against Vibrio vulnificus infection by active and passive immunization with the C-terminal region of the RtxA1/MARTXVv protein. Vaccine. 2014; 32(2); 271-276. [PubMed: 24252692].

Viral haemorrhagic septicaemia virus

  1. Edupuganti et al., 2013: Edupuganti S, Eidex RB, Keyserling H, Akondy RS, Lanciotti R, Orenstein W, del Rio C, Pan Y, Querec T, Lipman H, Barrett A, Ahmed R, Teuwen D, Cetron M, Mulligan MJ. A randomized, double-blind, controlled trial of the 17D yellow fever virus vaccine given in combination with immune globulin or placebo: comparative viremia and immunogenicity. The American journal of tropical medicine and hygiene. 2013; 88(1); 172-177. [PubMed: 23208880].
  2. Heppel et al., 1997: JOËL HEPPELL, NIELS LORENZEN, NEIL K. ARMSTRONG, TONG WU, ELLEN LORENZEN, KATJA EINER-JENSEN, JOACHIM SCHORR, HEATHER L. DAVIS. Development of DNA vaccines for fish: vector design, intramuscular injection and antigen expression using viral haemorrhagic septicaemia virus genes as model. Fish & Shellfish Immunology. 1997; 8(4); 271-286.
  3. Jung et al., 2022: Jung MH, Jung SJ, Kim T. Saponin and chitosan-based oral vaccine against viral haemorrhagic septicaemia virus (VHSV) provides protective immunity in olive flounder (Paralichthys olivaceus). Fish & shellfish immunology. 2022; 126; 336-346. [PubMed: 35643353].
  4. Lorenzen et al., 2002: Lorenzen N, Lorenzen E, Einer-Jensen K, LaPatra SE. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens. Developmental and comparative immunology. 2002; 26(2); 173-179. [PubMed: 11696382].
  5. Standish et al., 2016: Standish IF, Millard EV, Brenden TO, Faisal M. A DNA vaccine encoding the viral hemorrhagic septicemia virus genotype IVb glycoprotein confers protection in muskellunge (Esox masquinongy), rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta), and lake trout (Salvelinus namaycush). Virology journal. 2016; 13(1); 203. [PubMed: 27912771].
  6. WISC - VHSV: Viral Hemorrhagic Septicemia Virus [http://www.invasivespecies.wa.gov/priorities/viral_hemorrhagic.shtml]

West Nile virus

  1. Angenvoort et al., 2014: Angenvoort J, Fischer D, Fast C, Ziegler U, Eiden M, de la Fuente JG, Lierz M, Groschup MH. Limited efficacy of West Nile virus vaccines in large falcons (Falco spp.). Veterinary research. 2014; 45; 41. [PubMed: 24708385].
  2. Arroyo et al., 2004: Arroyo J, Miller C, Catalan J, Myers GA, Ratterree MS, Trent DW, Monath TP. ChimeriVax-West Nile virus live-attenuated vaccine: preclinical evaluation of safety, immunogenicity, and efficacy. Journal of virology. 2004; 78(22); 12497-12507. [PubMed: 15507637].
  3. Brandler and Tangy, 2013: Brandler S, Tangy F. Vaccines in development against West Nile virus. Viruses. 2013; 5(10); 2384-2409. [PubMed: 24084235].
  4. Davis et al., 2001: Davis BS, Chang GJ, Cropp B, Roehrig JT, Martin DA, Mitchell CJ, Bowen R, Bunning ML. West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. Journal of virology. 2001; 75(9); 4040-4047. [PubMed: 11287553].
  5. Durbin et al., 2013: Durbin AP, Wright PF, Cox A, Kagucia W, Elwood D, Henderson S, Wanionek K, Speicher J, Whitehead SS, Pletnev AG. The live attenuated chimeric vaccine rWN/DEN4Δ30 is well-tolerated and immunogenic in healthy flavivirus-naïve adult volunteers. Vaccine. 2013; 31(48); 5772-5777. [PubMed: 23968769].
  6. Franco et al., 2010: Franco D, Li W, Qing F, Stoyanov CT, Moran T, Rice CM, Ho DD. Evaluation of yellow fever virus 17D strain as a new vector for HIV-1 vaccine development. Vaccine. 2010; 28(35); 5676-5685. [PubMed: 20600494].
  7. Karaca et al., 2005: Karaca K, Bowen R, Austgen LE, Teehee M, Siger L, Grosenbaugh D, Loosemore L, Audonnet JC, Nordgren R, Minke JM. Recombinant canarypox vectored West Nile virus (WNV) vaccine protects dogs and cats against a mosquito WNV challenge. Vaccine. 2005; 23(29); 3808-3813. [PubMed: 15893618].
  8. Lieberman et al., 2009: Lieberman MM, Nerurkar VR, Luo H, Cropp B, Carrion R Jr, de la Garza M, Coller BA, Clements D, Ogata S, Wong T, Martyak T, Weeks-Levy C. Immunogenicity and protective efficacy of a recombinant subunit West Nile virus vaccine in rhesus monkeys. Clinical and vaccine immunology : CVI. 2009; 16(9); 1332-1337. [PubMed: 19641099].
  9. Minke et al., 2004: Minke JM, Audonnet JC, Fischer L. Equine viral vaccines: the past, present and future. Veterinary research. 2004; 35(4); 425-443. [PubMed: 15236675].
  10. Monath et al., 2001: Monath TP, Arroyo J, Miller C, Guirakhoo F. West Nile virus vaccine. Current drug targets. Infectious disorders. 2001; 1(1); 37-50. [PubMed: 12455232].
  11. Samuel and Diamond, 2006: Samuel MA, Diamond MS. Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. Journal of virology. 2006; 80(19); 9349-9360. [PubMed: 16973541].
  12. Schlick et al., 2010: Schlick P, Kofler RM, Schittl B, Taucher C, Nagy E, Meinke A, Mandl CW. Characterization of West Nile virus live vaccine candidates attenuated by capsid deletion mutations. Vaccine. 2010; 28(36); 5903-5909. [PubMed: 20600500].
  13. Seino et al., 2007: Seino KK, Long MT, Gibbs EP, Bowen RA, Beachboard SE, Humphrey PP, Dixon MA, Bourgeois MA. Comparative efficacies of three commercially available vaccines against West Nile Virus (WNV) in a short-duration challenge trial involving an equine WNV encephalitis model. Clinical and vaccine immunology : CVI. 2007; 14(11); 1465-1471. [PubMed: 17687109].
  14. Van et al., 2016: Van Hoeven N, Joshi SW, Nana GI, Bosco-Lauth A, Fox C, Bowen RA, Clements DE, Martyak T, Parks DE, Baldwin S, Reed SG, Coler RN. A Novel Synthetic TLR-4 Agonist Adjuvant Increases the Protective Response to a Clinical-Stage West Nile Virus Vaccine Antigen in Multiple Formulations. PloS one. 2016; 11(2); e0149610. [PubMed: 26901122].
  15. Wiki: West Nile: Wiki: West Nile virus [http://en.wikipedia.org/wiki/West_Nile_virus]

Western equine encephalomyelitis virus

  1. Das et al., 2007: Das D, Nagata LP, Suresh MR. Immunological evaluation of Escherichia coli expressed E2 protein of Western equine encephalitis virus. Virus research. 2007; 128(1-2); 26-33. [PubMed: 17499379].
  2. Gauci et al., 2010: Gauci PJ, Wu JQ, Rayner GA, Barabé ND, Nagata LP, Proll DF. Identification of Western equine encephalitis virus structural proteins that confer protection after DNA vaccination. Clinical and vaccine immunology : CVI. 2010; 17(1); 176-179. [PubMed: 19923571].
  3. Nagata et al., 2005: Nagata LP, Hu WG, Masri SA, Rayner GA, Schmaltz FL, Das D, Wu J, Long MC, Chan C, Proll D, Jager S, Jebailey L, Suresh MR, Wong JP. Efficacy of DNA vaccination against western equine encephalitis virus infection. Vaccine. 2005; 23(17-18); 2280-2283. [PubMed: 15755611].
  4. Phillips et al., 2014: Phillips AT, Schountz T, Toth AM, Rico AB, Jarvis DL, Powers AM, Olson KE. Liposome-antigen-nucleic acid complexes protect mice from lethal challenge with western and eastern equine encephalitis viruses. Journal of virology. 2014; 88(3); 1771-1780. [PubMed: 24257615].
  5. Turell et al., 2003: Turell MJ, O'Guinn ML, Parker MD. Limited potential for mosquito transmission of genetically engineered, live-attenuated western equine encephalitis virus vaccine candidates. The American journal of tropical medicine and hygiene. 2003; 68(2); 218-221. [PubMed: 12641414].
  6. Wiki: Western equine encephalomyelitis virus: Western equine encephalomyelitis virus [http://en.wikipedia.org/wiki/Western_equine_encephalitis_virus]
  7. Wu et al., 2007: Wu JQ, Barabé ND, Chau D, Wong C, Rayner GR, Hu WG, Nagata LP. Complete protection of mice against a lethal dose challenge of western equine encephalitis virus after immunization with an adenovirus-vectored vaccine. Vaccine. 2007; 25(22); 4368-4375. [PubMed: 17467858].

Yellow fever virus

  1. Akondy et al., 2009: Akondy RS, Monson ND, Miller JD, Edupuganti S, Teuwen D, Wu H, Quyyumi F, Garg S, Altman JD, Del Rio C, Keyserling HL, Ploss A, Rice CM, Orenstein WA, Mulligan MJ, Ahmed R. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. Journal of immunology (Baltimore, Md. : 1950). 2009; 183(12); 7919-7930. [PubMed: 19933869].
  2. Barros et al., 2011: Barros MC, Galasso TG, Chaib AJ, Degallier N, Nagata T, Ribeiro BM. Yellow fever virus envelope protein expressed in insect cells is capable of syncytium formation in lepidopteran cells and could be used for immunodetection of YFV in human sera. Virology journal. 2011; 8; 261. [PubMed: 21619598].
  3. Bonaldo et al., 2014: Bonaldo MC, Sequeira PC, Galler R. The yellow fever 17D virus as a platform for new live attenuated vaccines. Human vaccines & immunotherapeutics. 2014; 10(5); 1256-1265. [PubMed: 24553128].
  4. Desprès et al., 1991: Desprès P, Dietrich J, Girard M, Bouloy M. Recombinant baculoviruses expressing yellow fever virus E and NS1 proteins elicit protective immunity in mice. The Journal of general virology. 1991; 72 ( Pt 11); 2811-2816. [PubMed: 1834798].
  5. FDA: YF-Vax: FDA: YF-Vax vaccine information [http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094074.htm]
  6. Gaucher et al., 2008: Gaucher D, Therrien R, Kettaf N, Angermann BR, Boucher G, Filali-Mouhim A, Moser JM, Mehta RS, Drake DR 3rd, Castro E, Akondy R, Rinfret A, Yassine-Diab B, Said EA, Chouikh Y, Cameron MJ, Clum R, Kelvin D, Somogyi R, Greller LD, Balderas RS, Wilkinson P, Pantaleo G, Tartaglia J, Haddad EK, Sékaly RP. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. The Journal of experimental medicine. 2008; 205(13); 3119-3131. [PubMed: 19047440].
  7. Julander et al., 2018: Julander JG, Testori M, Cheminay C, Volkmann A. Immunogenicity and Protection After Vaccination With a Modified Vaccinia Virus Ankara-Vectored Yellow Fever Vaccine in the Hamster Model. Frontiers in immunology. 2018; 9; 1756. [PubMed: 30116244].
  8. Li et al., 2014: Li S, Rouphael N, Duraisingham S, Romero-Steiner S, Presnell S, Davis C, Schmidt DS, Johnson SE, Milton A, Rajam G, Kasturi S, Carlone GM, Quinn C, Chaussabel D, Palucka AK, Mulligan MJ, Ahmed R, Stephens DS, Nakaya HI, Pulendran B. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nature immunology. 2014; 15(2); 195-204. [PubMed: 24336226].
  9. Ma et al., 2022: Ma J, Yakass MB, Jansen S, Malengier-Devlies B, Van Looveren D, Sanchez-Felipe L, Vercruysse T, Weynand B, Javarappa MPA, Quaye O, Matthys P, Roskams T, Neyts J, Thibaut HJ, Dallmeier K. Live-attenuated YF17D-vectored COVID-19 vaccine protects from lethal yellow fever virus infection in mouse and hamster models. EBioMedicine. 2022; 83; 104240. [PubMed: 36041265].
  10. Miller et al., 2008: Miller JD, van der Most RG, Akondy RS, Glidewell JT, Albott S, Masopust D, Murali-Krishna K, Mahar PL, Edupuganti S, Lalor S, Germon S, Del Rio C, Mulligan MJ, Staprans SI, Altman JD, Feinberg MB, Ahmed R. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity. 2008; 28(5); 710-722. [PubMed: 18468462].
  11. Montalvo et al., 2022: Montalvo Zurbia-Flores G, Rollier CS, Reyes-Sandoval A. Re-thinking yellow fever vaccines: fighting old foes with new generation vaccines. Human vaccines & immunotherapeutics. 2022; 18(1); 1895644. [PubMed: 33974507].
  12. Pincus et al., 1992: Pincus S, Mason PW, Konishi E, Fonseca BA, Shope RE, Rice CM, Paoletti E. Recombinant vaccinia virus producing the prM and E proteins of yellow fever virus protects mice from lethal yellow fever encephalitis. Virology. 1992; 187(1); 290-297. [PubMed: 1736531].
  13. Pulendran, 2009: Pulendran B. Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nature reviews. Immunology. 2009; 9(10); 741-747. [PubMed: 19763148].
  14. Querec et al., 2009: Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, Pirani A, Gernert K, Deng J, Marzolf B, Kennedy K, Wu H, Bennouna S, Oluoch H, Miller J, Vencio RZ, Mulligan M, Aderem A, Ahmed R, Pulendran B. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nature immunology. 2009; 10(1); 116-125. [PubMed: 19029902].
  15. Scherer et al., 2007: Scherer CA, Magness CL, Steiger KV, Poitinger ND, Caputo CM, Miner DG, Winokur PL, Klinzman D, McKee J, Pilar C, Ward PA, Gillham MH, Haulman NJ, Stapleton JT, Iadonato SP. Distinct gene expression profiles in peripheral blood mononuclear cells from patients infected with vaccinia virus, yellow fever 17D virus, or upper respiratory infections. Vaccine. 2007; 25(35); 6458-6473. [PubMed: 17651872].
  16. Schlesinger et al., 1986: Schlesinger JJ, Brandriss MW, Cropp CB, Monath TP. Protection against yellow fever in monkeys by immunization with yellow fever virus nonstructural protein NS1. Journal of virology. 1986; 60(3); 1153-1155. [PubMed: 3783816].
  17. Wiki: Yellow fever: Wiki: Yellow fever [http://en.wikipedia.org/wiki/Yellow_fever]
  18. Zhang et al., 2013: Zhang W, Li X, Lin Y, Tian D. Identification of three H-2K(d) restricted CTL epitopes of NS4A and NS4B protein from Yellow fever 17D vaccine. Journal of virological methods. 2013; 187(2); 304-313. [PubMed: 23123122].

Yersinia enterocolitica

  1. Bowe et al., 1989: Bowe F, O'Gaora P, Maskell D, Cafferkey M, Dougan G. Virulence, persistence, and immunogenicity of Yersinia enterocolitica O:8 aroA mutants. Infection and immunity. 1989; 57(10); 3234-3236. [PubMed: 2777382].
  2. Dorrell et al., 1998: Dorrell N, Li SR, Everest PH, Dougan G, Wren BW. Construction and characterisation of a Yersinia enterocolitica O:8 ompR mutant. FEMS microbiology letters. 1998; 165(1); 145-151. [PubMed: 9711851].
  3. Igwe et al., 1999: Igwe EI, Rüssmann H, Roggenkamp A, Noll A, Autenrieth IB, Heesemann J. Rational live oral carrier vaccine design by mutating virulence-associated genes of Yersinia enterocolitica. Infection and immunity. 1999; 67(10); 5500-5507. [PubMed: 10496939].
  4. Li et al., 1996: Li SR, Dorrell N, Everest PH, Dougan G, Wren BW. Construction and characterization of a Yersinia enterocolitica O:8 high-temperature requirement (htrA) isogenic mutant. Infection and immunity. 1996; 64(6); 2088-2094. [PubMed: 8675311].
  5. Schmidt et al., 1999: Schmidt A, Schaffelhofer S, Müller K, Röllinghoff M, Beuscher HU. Analysis of the Yersinia enterocolitica 0:8 V antigen for cross protectivity. Microbial pathogenesis. 1999; 26(4); 221-233. [PubMed: 10089162].
  6. Wiki: Yersinia enterocolitica: Yersinia enterocolitica [http://en.wikipedia.org/wiki/Yersinia_enterocolitica]

Yersinia pestis

  1. Alvarez et al., 2006: Alvarez ML, Pinyerd HL, Crisantes JD, Rigano MM, Pinkhasov J, Walmsley AM, Mason HS, Cardineau GA. Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice. Vaccine. 2006; 24(14); 2477-2490. [PubMed: 16442673].
  2. Anderson et al., 1996: Anderson GW Jr, Leary SE, Williamson ED, Titball RW, Welkos SL, Worsham PL, Friedlander AM. Recombinant V antigen protects mice against pneumonic and bubonic plague caused by F1-capsule-positive and -negative strains of Yersinia pestis. Infection and immunity. 1996 Nov; 64(11); 4580-5. [PubMed: 8890210].
  3. Andrews et al., 1996: Andrews GP, Heath DG, Anderson GW Jr, Welkos SL, Friedlander AM. Fraction 1 capsular antigen (F1) purification from Yersinia pestis CO92 and from an Escherichia coli recombinant strain and efficacy against lethal plague challenge. Infection and immunity. 1996 Jun; 64(6); 2180-7. [PubMed: 8675324].
  4. Andrews et al., 1999: Andrews GP, Strachan ST, Benner GE, Sample AK, Anderson GW Jr, Adamovicz JJ, Welkos SL, Pullen JK, Friedlander AM. Protective efficacy of recombinant Yersinia outer proteins against bubonic plague caused by encapsulated and nonencapsulated Yersinia pestis. Infection and immunity. 1999 Mar; 67(3); 1533-7. [PubMed: 10024607 ].
  5. Bashaw et al., 2007: Bashaw J, Norris S, Weeks S, Trevino S, Adamovicz JJ, Welkos S. Development of in vitro correlate assays of immunity to infection with Yersinia pestis. Clinical and vaccine immunology : CVI. 2007 May; 14(5); 605-16. [PubMed: 17376861 ].
  6. Benner et al., 1999: Benner GE, Andrews GP, Byrne WR, Strachan SD, Sample AK, Heath DG, Friedlander AM. Immune response to Yersinia outer proteins and other Yersinia pestis antigens after experimental plague infection in mice. Infection and immunity. 1999; 67(4); 1922-1928. [PubMed: 10085037].
  7. Branger et al., 2007: Branger CG, Fetherston JD, Perry RD, Curtiss R 3rd. Oral vaccination with different antigens from Yersinia pestis KIM delivered by live attenuated Salmonella typhimurium elicits a protective immune response against plague. Advances in experimental medicine and biology. 2007; 603; 387-399. [PubMed: 17966435].
  8. Bubeck and Dube, 2007: Bubeck SS, Dube PH. Yersinia pestis CO92 delta yopH is a potent live, attenuated plague vaccine. Clinical and vaccine immunology : CVI. 2007; 14(9); 1235-1238. [PubMed: 17652523].
  9. Carr et al., 1999: Carr S, Miller J, Leary SE, Bennett AM, Ho A, Williamson ED. Expression of a recombinant form of the V antigen of Yersinia pestis, using three different expression systems. Vaccine. 1999 Aug 20; 18(1-2); 153-9. [PubMed: 10501245].
  10. CDC: Prevention of Plague: Prevention of Plague: Recommendations of the Advisory Committee on Immunization Practices (ACIP) [http://www.cdc.gov/mmwr/preview/mmwrhtml/00044836.htm]
  11. Chiuchiolo et al., 2006: Chiuchiolo MJ, Boyer JL, Krause A, Senina S, Hackett NR, Crystal RG. Protective Immunity against Respiratory Tract Challenge with Yersinia pestis in Mice Immunized with an Adenovirus-Based Vaccine Vector Expressing V Antigen. The Journal of infectious diseases. 2006 Nov 1; 194(9); 1249-57. [PubMed: 17041851].
  12. Cornelis, 2002: Cornelis GR. Yersinia type III secretion: send in the effectors. The Journal of cell biology. 2002 Aug 5; 158(3); 401-8. [PubMed: 12163464].
  13. DeBord et al., 2006: DeBord KL, Anderson DM, Marketon MM, Overheim KA, DePaolo RW, Ciletti NA, Jabri B, Schneewind O. Immunogenicity and protective immunity against bubonic plague and pneumonic plague by immunization of mice with the recombinant V10 antigen, a variant of LcrV. Infection and immunity. 2006 Aug; 74(8); 4910-4. [PubMed: 16861680].
  14. Elvin et al., 2006: Elvin SJ, Eyles JE, Howard KA, Ravichandran E, Somavarappu S, Alpar HO, Williamson ED. Protection against bubonic and pneumonic plague with a single dose microencapsulated sub-unit vaccine. Vaccine. 2006 May 15; 24(20); 4433-9. [PubMed: 16546306].
  15. Feodorova et al., 2007: Feodorova VA, Pan'kina LN, Savostina EP, Sayapina LV, Motin VL, Dentovskaya SV, Shaikhutdinova RZ, Ivanov SA, Lindner B, Kondakova AN, Bystrova OV, Kocharova NA, Senchenkova SN, Holst O, Pier GB, Knirel YA, Anisimov AP. A Yersinia pestis lpxM-mutant live vaccine induces enhanced immunity against bubonic plague in mice and guinea pigs. Vaccine. 2007; 25(44); 7620-7628. [PubMed: 17913308].
  16. Flashner et al., 2004: Flashner Y, Mamroud E, Tidhar A, Ber R, Aftalion M, Gur D, Lazar S, Zvi A, Bino T, Ariel N, Velan B, Shafferman A, Cohen S. Generation of Yersinia pestis attenuated strains by signature-tagged mutagenesis in search of novel vaccine candidates. Infection and immunity. 2004; 72(2); 908-915. [PubMed: 14742535].
  17. Galván et al., 2010: Galván EM, Nair MK, Chen H, Del Piero F, Schifferli DM. A BSL-2 model of pneumonic plague and protection studies with F1 and Psa. Infection and immunity. 2010; ; . [PubMed: 20498260].
  18. Grosfeld et al., 2003: Grosfeld H, Cohen S, Bino T, Flashner Y, Ber R, Mamroud E, Kronman C, Shafferman A, Velan B. Effective protective immunity to Yersinia pestis infection conferred by DNA vaccine coding for derivatives of the F1 capsular antigen. Infection and immunity. 2003 Jan; 71(1); 374-83. [PubMed: 12496187 ].
  19. Heesemann et al., 2006: Heesemann J, Sing A, Trulzsch K. Yersinia's stratagem: targeting innate and adaptive immune defense. Current opinion in microbiology. 2006 Feb; 9(1); 55-61. [PubMed: 16413818 ].
  20. Honko et al., 2006: Honko AN, Sriranganathan N, Lees CJ, Mizel SB. Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis. Infection and immunity. 2006; 74(2); 1113-1120. [PubMed: 16428759].
  21. Ivanov et al., 2008: Ivanov MI, Noel BL, Rampersaud R, Mena P, Benach JL, Bliska JB. Vaccination of mice with a Yop translocon complex elicits antibodies that are protective against infection with F1- Yersinia pestis. Infection and immunity. 2008; 76(11); 5181-5190. [PubMed: 18765742].
  22. Jones et al., 2000: Jones SM, Day F, Stagg AJ, Williamson ED. Protection conferred by a fully recombinant sub-unit vaccine against Yersinia pestis in male and female mice of four inbred strains. Vaccine. 2000 Sep 15; 19(2-3); 358-66. [PubMed: 10930691].
  23. Jones et al., 2003: Jones SM, Griffin KF, Hodgson I, Williamson ED. Protective efficacy of a fully recombinant plague vaccine in the guinea pig. Vaccine. 2003 Sep 8; 21(25-26); 3912-8. [PubMed: 12922126].
  24. Leary et al., 1995: Leary SE, Williamson ED, Griffin KF, Russell P, Eley SM, Titball RW. Active immunization with recombinant V antigen from Yersinia pestis protects mice against plague. Infection and immunity. 1995 Aug; 63(8); 2854-8. [PubMed: 7622205].
  25. Li et al., 2009: Li B, Zhou L, Guo J, Wang X, Ni B, Ke Y, Zhu Z, Guo Z, Yang R. High-throughput identification of new protective antigens from a Yersinia pestis live vaccine by enzyme-linked immunospot assay. Infection and immunity. 2009; 77(10); 4356-4361. [PubMed: 19651863].
  26. Lin et al., 2011: Lin JS, Szaba FM, Kummer LW, Chromy BA, Smiley ST. Yersinia pestis YopE Contains a Dominant CD8 T Cell Epitope that Confers Protection in a Mouse Model of Pneumonic Plague. Journal of immunology (Baltimore, Md. : 1950). 2011; ; . [PubMed: 21653834].
  27. Little et al., 2010: Little SF, Webster WM, Wilhelm H, Fisher D, Norris SL, Powell BS, Enama J, Adamovicz JJ. Quantitative anti-F1 and anti-V IgG ELISAs as serological correlates of protection against plague in female Swiss Webster mice. Vaccine. 2010; 28(4); 934-939. [PubMed: 19925906].
  28. Makam et al., 2014: Makam SS, Kingston JJ, Harischandra MS, Batra HV. Protective antigen and extractable antigen 1 based chimeric protein confers protection against Bacillus anthracis in mouse model. Molecular immunology. 2014; 59(1); 91-99. [PubMed: 24513572].
  29. Makoveichuk et al., 2003: Makoveichuk E, Cherepanov P, Lundberg S, Forsberg A, Olivecrona G. pH6 antigen of Yersinia pestis interacts with plasma lipoproteins and cell membranes. Journal of lipid research. 2003 Feb; 44(2); 320-30. [PubMed: 12576514 ].
  30. Matson et al., 2005: Matson JS, Durick KA, Bradley DS, Nilles ML. Immunization of mice with YscF provides protection from Yersinia pestis infections. BMC microbiology. 2005 Jun 24; 5(1); 38. [PubMed: 15978133].
  31. Meyer, 1970: Meyer KF. Effectiveness of live or killed plague vaccines in man. Bulletin of the World Health Organization. 1970; 42(5); 653-66. [PubMed: 4988692].
  32. Montminy et al., 2006: Montminy SW, Khan N, McGrath S, Walkowicz MJ, Sharp F, Conlon JE, Fukase K, Kusumoto S, Sweet C, Miyake K, Akira S, Cotter RJ, Goguen JD, Lien E. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nature immunology. 2006 Oct; 7(10); 1066-73. [PubMed: 16980981 ].
  33. Motin et al., 1994: Motin VL, Nakajima R, Smirnov GB, Brubaker RR. Passive immunity to yersiniae mediated by anti-recombinant V antigen and protein A-V antigen fusion peptide. Infection and immunity. 1994 Oct; 62(10); 4192-201. [PubMed: 7927675].
  34. Nakajima et al., 1995: Nakajima R, Motin VL, Brubaker RR. Suppression of cytokines in mice by protein A-V antigen fusion peptide and restoration of synthesis by active immunization. Infection and immunity. 1995 Aug; 63(8); 3021-9. [PubMed: 7622225].
  35. NCBI: Entrez Gene [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene]
  36. Okan et al., 2010: Okan NA, Mena P, Benach JL, Bliska JB, Karzai AW. The smpB-ssrA mutant of Yersinia pestis functions as a live attenuated vaccine to protect mice against pulmonary plague infection. Infection and immunity. 2010; 78(3); 1284-1293. [PubMed: 20065026].
  37. Osorio et al., 2003: Osorio JE, Powell TD, Frank RS, Moss K, Haanes EJ, Smith SR, Rocke TE, Stinchcomb DT. Recombinant raccoon pox vaccine protects mice against lethal plague. Vaccine. 2003; 21(11-12); 1232-1238. [PubMed: 12559803].
  38. Overheim et al., 2005: Overheim KA, Depaolo RW, Debord KL, Morrin EM, Anderson DM, Green NM, Brubaker RR, Jabri B, Schneewind O. LcrV plague vaccine with altered immunomodulatory properties. Infection and immunity. 2005; 73(8); 5152-5159. [PubMed: 16041032].
  39. Oyston et al., 2010: Oyston PC, Mellado-Sanchez G, Pasetti MF, Nataro JP, Titball RW, Atkins HS. A Yersinia pestis guaBA mutant is attenuated in virulence and provides protection against plague in a mouse model of infection. Microbial pathogenesis. 2010; 48(5); 191-195. [PubMed: 20096773].
  40. Palin et al., 2006: Palin A, Chattopadhyay A, Park S, Delmas G, Suresh R, Senina S, Perlin DS, Rose JK. An optimized vaccine vector based on recombinant vesicular stomatitis virus gives high-level, long-term protection against Yersinia pestis challenge. Vaccine. 2006 Aug 22; ; . [PubMed: 16959385].
  41. Palin et al., 2007: Palin A, Chattopadhyay A, Park S, Delmas G, Suresh R, Senina S, Perlin DS, Rose JK. An optimized vaccine vector based on recombinant vesicular stomatitis virus gives high-level, long-term protection against Yersinia pestis challenge. Vaccine. 2007 Jan 8; 25(4); 741-50. [PubMed: 16959385].
  42. Perry et al., 1997: Perry RD, Fetherston JD. Yersinia pestis--etiologic agent of plague. Clinical microbiology reviews. 1997 Jan; 10(1); 35-66. [PubMed: 8993858].
  43. Price et al., 1989: Price SB, Leung KY, Barve SS, Straley SC. Molecular analysis of lcrGVH, the V antigen operon of Yersinia pestis. Journal of bacteriology. 1989 Oct; 171(10); 5646-53. [PubMed: 2477361].
  44. Quenee et al., 2010: Quenee LE, Berube BJ, Segal J, Elli D, Ciletti NA, Anderson D, Schneewind O. Amino acid residues 196-225 of LcrV represent a plague protective epitope. Vaccine. 2010; 28(7); 1870-1876. [PubMed: 20005318].
  45. Robinson et al., 2005: Robinson VL, Oyston PC, Titball RW. A dam mutant of Yersinia pestis is attenuated and induces protection against plague. FEMS microbiology letters. 2005 Nov 15; 252(2); 251-6. [PubMed: 16188402].
  46. Rocke et al., 2010: Rocke TE, Pussini N, Smith SR, Williamson J, Powell B, Osorio JE. Consumption of baits containing raccoon pox-based plague vaccines protects black-tailed prairie dogs (Cynomys ludovicianus). Vector borne and zoonotic diseases (Larchmont, N.Y.). 2010; 10(1); 53-58. [PubMed: 20158332].
  47. Russell et al., 1995: Russell P, Eley SM, Hibbs SE, Manchee RJ, Stagg AJ, Titball RW. A comparison of Plague vaccine, USP and EV76 vaccine induced protection against Yersinia pestis in a murine model. Vaccine. 1995 Nov; 13(16); 1551-6. [PubMed: 8578841].
  48. Swietnicki et al., 2005: Swietnicki W, Powell BS, Goodin J. Yersinia pestis Yop secretion protein F: purification, characterization, and protective efficacy against bubonic plague. Protein expression and purification. 2005; 42(1); 166-172. [PubMed: 15939303].
  49. Tidhar et al., 2009: Tidhar A, Flashner Y, Cohen S, Levi Y, Zauberman A, Gur D, Aftalion M, Elhanany E, Zvi A, Shafferman A, Mamroud E. The NlpD lipoprotein is a novel Yersinia pestis virulence factor essential for the development of plague. PloS one. 2009; 4(9); e7023. [PubMed: 19759820].
  50. Titball et al., 2001: Titball RW, Williamson ED. Vaccination against bubonic and pneumonic plague. Vaccine. 2001 Jul 20; 19(30); 4175-84. [PubMed: 11457543].
  51. Titball et al., 2004: Titball RW, Williamson ED. Yersinia pestis (plague) vaccines. Expert opinion on biological therapy. 2004 Jun; 4(6); 965-73. [PubMed: 15174978].
  52. Uchida et al., 2012: Uchida M, Harada T, Enkhtuya J, Kusumoto A, Kobayashi Y, Chiba S, Shyaka A, Kawamoto K. Protective effect of Bacillus anthracis surface protein EA1 against anthrax in mice. Biochemical and biophysical research communications. 2012; 421(2); 323-328. [PubMed: 22507985].
  53. Une et al., 1984: Une T, Brubaker RR. Roles of V antigen in promoting virulence and immunity in yersiniae. Journal of immunology (Baltimore, Md. : 1950). 1984 Oct; 133(4); 2226-30. [PubMed: 6381597].
  54. Wang et al., 2004: Wang S, Heilman D, Liu F, Giehl T, Joshi S, Huang X, Chou TH, Goguen J, Lu S. A DNA vaccine producing LcrV antigen in oligomers is effective in protecting mice from lethal mucosal challenge of plague. Vaccine. 2004 Sep 3; 22(25-26); 3348-57. [PubMed: 15308359 ].
  55. Wang et al., 2008: Wang S, Joshi S, Mboudjeka I, Liu F, Ling T, Goguen JD, Lu S. Relative immunogenicity and protection potential of candidate Yersinia Pestis antigens against lethal mucosal plague challenge in Balb/C mice. Vaccine. 2008; 26(13); 1664-1674. [PubMed: 18291562].
  56. Welkos et al., 2002: Welkos S, Pitt ML, Martinez M, Friedlander A, Vogel P, Tammariello R. Determination of the virulence of the pigmentation-deficient and pigmentation-/plasminogen activator-deficient strains of Yersinia pestis in non-human primate and mouse models of pneumonic plague. Vaccine. 2002 May 22; 20(17-18); 2206-14. [PubMed: 12009274].
  57. Williams et al., 1979: Williams JE, Cavanaugh DC. Measuring the efficacy of vaccination in affording protection against plague. Bulletin of the World Health Organization. 1979; 57(2); 309-13. [PubMed: 312163].
  58. Williamson et al., 2000: Williamson ED, Eley SM, Stagg AJ, Green M, Russell P, Titball RW. A single dose sub-unit vaccine protects against pneumonic plague. Vaccine. 2000 Oct 15; 19(4-5); 566-71. [PubMed: 11027822].
  59. Williamson et al., 2002: Williamson ED, Bennett AM, Perkins SD, Beedham RJ, Miller J, Baillie LW. Co-immunisation with a plasmid DNA cocktail primes mice against anthrax and plague. Vaccine. 2002 Jul 26; 20(23-24); 2933-41. [PubMed: 12126905].
  60. Williamson et al., 2005: Williamson ED, Flick-Smith HC, Lebutt C, Rowland CA, Jones SM, Waters EL, Gwyther RJ, Miller J, Packer PJ, Irving M. Human immune response to a plague vaccine comprising recombinant F1 and V antigens. Infection and immunity. 2005 Jun; 73(6); 3598-608. [PubMed: 15908389].
  61. Yamanaka et al., 2008: Yamanaka H, Hoyt T, Yang X, Golden S, Bosio CM, Crist K, Becker T, Maddaloni M, Pascual DW. A nasal interleukin-12 DNA vaccine coexpressing Yersinia pestis F1-V fusion protein confers protection against pneumonic plague. Infection and immunity. 2008; 76(10); 4564-4573. [PubMed: 18694965].

Yersinia pseudotuberculosis

  1. Balada-Llasat et al., 2007: Balada-Llasat JM, Panilaitis B, Kaplan D, Mecsas J. Oral inoculation with Type III secretion mutants of Yersinia pseudotuberculosis provides protection from oral, intraperitoneal, or intranasal challenge with virulent Yersinia. Vaccine. 2007; 25(8); 1526-1533. [PubMed: 17194509].
  2. Branger et al., 2009: Branger CG, Torres-Escobar A, Sun W, Perry R, Fetherston J, Roland KL, Curtiss R 3rd. Oral vaccination with LcrV from Yersinia pestis KIM delivered by live attenuated Salmonella enterica serovar Typhimurium elicits a protective immune response against challenge with Yersinia pseudotuberculosis and Yersinia enterocolitica. Vaccine. 2009; 27(39); 5363-5370. [PubMed: 19596407].
  3. Daniel et al., 2009: Daniel C, Sebbane F, Poiret S, Goudercourt D, Dewulf J, Mullet C, Simonet M, Pot B. Protection against Yersinia pseudotuberculosis infection conferred by a Lactococcus lactis mucosal delivery vector secreting LcrV. Vaccine. 2009; 27(8); 1141-1144. [PubMed: 19135495].
  4. Ivanov et al., 2008: Ivanov MI, Noel BL, Rampersaud R, Mena P, Benach JL, Bliska JB. Vaccination of mice with a Yop translocon complex elicits antibodies that are protective against infection with F1- Yersinia pestis. Infection and immunity. 2008; 76(11); 5181-5190. [PubMed: 18765742].
  5. Najdenski et al., 2009: Najdenski H, Golkocheva-Markova E, Kussovski V, Vesselinova A, Garbom S, Wolf-Watz H. Attenuation and preserved immunogenic potential of Yersinia pseudotuberculosis mutant strains evidenced in oral pig model. Zoonoses and public health. 2009; 56(4); 157-168. [PubMed: 18793276].
  6. Tsybul'ski? et al., 2011: Tsybul'ski? AV, Popov AM, Sanina NM, Maze?ka AN, Portniagina OIu, Novikova OD, Timchenko NF, Kostetski? ÉIa. [Immunogenic and protective properties of nanosized constructs based on tubular immunostimulating complexes and pore forming protein of Yersinia pseudotuberculosis]. Zhurnal mikrobiologii, epidemiologii, i immunobiologii. 2011; (2); 43-47. [PubMed: 21598614].
  7. Wiki: Y. pseudotuberuclosis: Wiki: Y. pseudotuberuclosis [http://en.wikipedia.org/wiki/Yersinia_pseudotuberculosis]
  8. Zhang and Bliska, 2010: Zhang Y, Bliska JB. YopJ-promoted cytotoxicity and systemic colonization are associated with high levels of murine interleukin-18, gamma interferon, and neutrophils in a live vaccine model of Yersinia pseudotuberculosis infection. Infection and immunity. 2010; 78(5); 2329-2341. [PubMed: 20231414].
  9. Zhang et al., 2012: Zhang Y, Mena P, Romanov G, Lin JS, Smiley ST, Bliska JB. A protective epitope in type III effector YopE is a major CD8 T cell antigen during primary infection with Yersinia pseudotuberculosis. Infection and immunity. 2012; 80(1); 206-214. [PubMed: 22064714].

Yersinia ruckeri

  1. Temprano et al., 2005: Temprano A, Riaño J, Yugueros J, González P, de Castro L, Villena A, Luengo JM, Naharro G. Potential use of a Yersinia ruckeri O1 auxotrophic aroA mutant as a live attenuated vaccine. Journal of fish diseases. 2005; 28(7); 419-427. [PubMed: 16083447].
  2. Tobback et al., 2007: Tobback E, Decostere A, Hermans K, Haesebrouck F, Chiers K. Yersinia ruckeri infections in salmonid fish. Journal of fish diseases. 2007; 30(5); 257-268. [PubMed: 17501736].
  3. Yang et al., 2009: Yang H, Chen J, Yang G, Zhang XH, Liu R, Xue X. Protection of Japanese flounder (Paralichthys olivaceus) against Vibrio anguillarum with a DNA vaccine containing the mutated zinc-metalloprotease gene. Vaccine. 2009; 27(15); 2150-2155. [PubMed: 19356619].