|
Vaccine Detail
ARCoV |
Vaccine Information |
- Vaccine Name: ARCoV
- Target Pathogen: SARS-CoV-2
- Target Disease: COVID-19
- Manufacturer: Academy of Military Science (AMS), Walvax Biotechnology, Suzhou Abogen Biosciences
- Vaccine Ontology ID: VO_0005161
- Type: mRNA vaccine
- Status: Clinical trial
- Host Species for Licensed Use: Human
- Host Species as Laboratory Animal Model: mouse, cynomolgus monkeys
- Antigen: RBD domain of S protein (Zha, et al., 2020)
- Immunization Route: Intramuscular injection (i.m.)
- Storage: After treament can store
- Description: A SARS-CoV-2 mRNA vaccine made of lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor binding domain (RBD) of SARS-CoV-2
(Zha, et al., 2020)
|
Host Response |
Macaque Response
- Vaccination Protocol: Two groups of macaques (n = 10/group) were immunized with 100 or 1,000 μg of ARCoV mRNA-LNP via i.m. administration and boosted with the same dose 14 days after initial immunization. The same number of monkeys (n = 10) was vaccinated with PBS as a placebo. (Zhang et al., 2020)
- Immune Response: specific IgG antibodies were readily induced on day 14 after initial immunization, and the booster immunization resulted in a notable increase in IgG titers to ∼1/5,210 and ∼1/22,085 on day 28 after initial immunization. Fifty percent of animals that received high-dose ARCoV immunization developed low-level neutralizing antibodies on day 14 after initial immunization, whereas the booster immunization resulted in a notable increase in NT50 to ∼1/699 and ∼1/6,482 in monkeys vaccinated with low- or high-dose ARCoV, respectively. SARS-CoV-2 RBD-specific T cell responses were stimulated in peripheral blood monocytes (PBMCs) from monkeys vaccinated with a low or high dose of ARCoV on day 5 after booster immunization but not from animals receiving a placebo. There was no significant difference in IL-4+/CD4+ cell response to the SARS-CoV-2 RBD between ARCoV- and placebo-treated animals, suggesting induction of a Th1-biased cellular immune response by ARCoV immunization. (Zhang et al., 2020)
Mouse Response
- Vaccination Protocol: Female BALB/c mice were immunized i.m. with 2 μg (n = 8) or 10 μg (n = 8) of ARCoV or a placebo (n = 5) and boosted with an equivalent dose 14 days later. Serum was collected 7, 14, 21, and 28 days after initial vaccination. (Zhang et al., 2020)
- Immune Response: Remarkably, a second immunization with 2 or 10 μg of ARCoV mRNA-LNP resulted in rapid elevation of immunoglobulin G (IgG) and neutralizing antibodies in mice, whereas no SARS-CoV-2-specific IgG and neutralizing antibodies were detected in sera from mice vaccinated with empty LNPs. 28 days after initial immunization, the NT50 titers in mice immunized with 2 or 10 μg of ARCoV mRNA-LNP approached ∼1/2,540 and ∼1/7,079, respectively, and the PRNT50 reached ∼1/2,194 and ∼1/5,704, respectively. (Zhang et al., 2020)
There was a significant increase in virus-specific CD4+ and CD8+ effector memory T (Tem) cells in splenocytes from ARCoV-vaccinated mice in comparison with placebo LNPs (Figure 4 A) upon stimulation with peptide pools covering the SARS-CoV-2 RBD. Secretion of interferon γ (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-2 (IL-2) in splenocytes from mRNA-LNP-immunized mice was significantly higher than in those that received the placebo vaccination. There was no significant difference in IL-4 and IL-6 secretion between ARCoV-immunized animals and placebo-immunized ones, demonstrating that the mRNA-LNP vaccine successfully induces a Th1-biased, SARS-CoV-specific cellular immune response. (Zhang et al., 2020)
- Challenge Protocol: Mice that received two doses of immunization of ARCoV mRNA-LNP at 2 or 10 μg were challenged i.n. with 6,000 plaque-forming units (PFUs) of SARS-CoV-2 MASCp6 40 days after initial vaccination. (Zhang et al., 2020)
- Efficacy: All mice immunized with 2 or 10 μg of ARCoV mRNA-LNP showed full protection against SARS-CoV-2 infection, and no measurable viral RNA was detected in the lungs and trachea , whereas high levels of viral RNA were detected in the lungs and trachea (∼109 and 107 RNA copy equivalents per gram, respectively) of mice in the placebo group. (Zhang et al., 2020)
|
References |
Zha, et al., 2020: Lisha Zha, Hongxin Zhao, Mona O. Mohsen, Liang Hong, Yuhang Zhou, Chuankai Yao, Lijie Guo, Zehua Li, Hongquan Chen, Xuelan Liu, Xinyue Chang, Jie Zhang, Dong Li, Ke Wu, Monique Vogel, Martin F Bachmann, Junfeng Wang. Development of a COVID-19 vaccine based on the receptor binding domain displayed on virus-like particles. . ; ; .
Zhang et al., 2020: Zhang NN, Li XF, Deng YQ, Zhao H, Huang YJ, Yang G, Huang WJ, Gao P, Zhou C, Zhang RR, Guo Y, Sun SH, Fan H, Zu SL, Chen Q, He Q, Cao TS, Huang XY, Qiu HY, Nie JH, Jiang Y, Yan HY, Ye Q, Zhong X, Xue XL, Zha ZY, Zhou D, Yang X, Wang YC, Ying B, Qin CF. A Thermostable mRNA Vaccine against COVID-19. Cell. 2020; 182(5); 1271-1283.e16. [PubMed: 32795413].
|
|