VIOLIN Logo
VO Banner
Search: for Help
About
Introduction
Statistics
VIOLIN News
Your VIOLIN
Register or Login
Submission
Tutorial
Vaccine & Components
Vaxquery
Vaxgen
VBLAST
Protegen
VirmugenDB
DNAVaxDB
CanVaxKB
Vaxjo
Vaxvec
Vevax
Huvax
Cov19VaxKB
Host Responses
VaximmutorDB
VIGET
Vaxafe
Vaxar
Vaxism
Vaccine Literature
VO-SciMiner
Litesearch
Vaxmesh
Vaxlert
Vaccine Design
Vaxign2
Vaxign
Community Efforts
Vaccine Ontology
ICoVax 2012
ICoVax 2013
Advisory Committee
Vaccine Society
Vaxperts
VaxPub
VaxCom
VaxLaw
VaxMedia
VaxMeet
VaxFund
VaxCareer
Data Exchange
V-Utilities
VIOLINML
Help & Documents
Publications
Documents
FAQs
Links
Acknowledgements
Disclaimer
Contact Us
UM Logo

Vaccine Detail

INO-4800
Vaccine Information
  • Vaccine Name: INO-4800
  • Target Pathogen: SARS-CoV-2
  • Target Disease: COVID-19
  • Manufacturer: Inovio Pharmaceuticals
  • Vaccine Ontology ID: VO_0005172
  • Type: DNA vaccine
  • Status: Clinical trial
  • Host Species for Licensed Use: Human
  • Host Species as Laboratory Animal Model: mice, guinea pigs
  • Antigen: S protein (Smith et al., 2020)
  • Immunization Route: Intradermal injection (i.d.)
  • Description: A DNA vaccine that expresses S protein from the pGX9501 vector(Smith et al., 2020)
Host Response

Human Response

  • Vaccination Protocol: INO-4800 was evaluated in two groups of 20 participants, receiving either 1.0 mg or 2.0 mg of vaccine intradermally followed by CELLECTRA® EP at 0 and 4 weeks. Thirty-nine subjects completed both doses; one subject in the 2.0 mg group discontinued trial participation prior to receiving the second dose. ClinicalTrials.gov identifier: NCT04336410. (Tebas et al., 2020)
  • Immune Response: By week 6, 95% (36/38) of the participants seroconverted based on their responses by generating binding (ELISA) and/or neutralizing antibodies (PRNT IC50), with responder geometric mean binding antibody titers of 655.5 [95% CI (255.6, 1681.0)] and 994.2 [95% CI (395.3, 2500.3)] in the 1.0 mg and 2.0 mg groups, respectively. For neutralizing antibody, 78% (14/18) and 84% (16/19) generated a response with corresponding geometric mean titers of 102.3 [95% CI (37.4, 280.3)] and 63.5 [95% CI (39.6, 101.8)], in the respective groups. By week 8, 74% (14/19) and 100% (19/19) of subjects generated T cell responses by IFN-ɣ ELISpot assay with the median SFU per 106 PBMC of 46 [95% CI (21.1, 142.2)] and 71 [95% CI (32.2, 194.4)] in the 1.0 mg and 2.0 mg groups, respectively. Flow cytometry demonstrated a T cell response, dominated by CD8+ T cells co-producing IFN-ɣ and TNF-α, without increase in IL-4. (Tebas et al., 2020)
  • Side Effects: Through week 8, only 6 related Grade 1 adverse events in 5 subjects were observed. None of these increased in frequency with the second administration. No serious adverse events were reported. (Tebas et al., 2020)

Mouse Response

  • Vaccination Protocol: BALB/c mice were immunized twice with 10 micrograms of INO-4800, on days 0 and 14, and sera was collected on day 7 post-second immunization. (Smith et al., 2020)
  • Immune Response: Neutralization ID50 average titers of 92.2 were observed in INO-4800 immunized mice. No reduction in RLU (relative luciferase units) was observed for the control animals. Sera from INO-4800 immunized BALB/c mice neutralized both SARS-CoV-2/WH-09/human/2020 and SARS-CoV-2/Australia/VIC01/2020 virus strains with average ND50 titers of 97.5 and 128.1, respectively. Sera from INO-4800 immunized C57BL/6 mice neutralized wildtype SARS-CoV-2 virus with average ND50 titer of 340. Inhibition of the Spike-ACE2 interaction was compared using serum IgG from a naïve mouse and from an INO-4800 vaccinated mouse. The receptor inhibition assay was repeated with a group of five immunized mice, and demonstrating that INO-4800-induced antibodies competed with ACE2 binding to the SARS-CoV-2 Spike protein. (Smith et al., 2020) Flow cytometric analysis on splenocytes harvested from BALB/c mice on Day 14 after a single INO-4800 immunization revealed the T cell compartment to contain 0.04% CD4+ and 0.32% CD8+ IFN-γ+ T cells after stimulation with SARS-CoV-2 antigens. (Smith et al., 2020) CoV vaccine-induced immunopathology utilized the BALB/c mouse, a model known to preferentially develop Th2-type responses. The DNA vaccine platform induces Th1-type immune responses and has demonstrated efficacy without immunopathology in models of respiratory infection. (Smith et al., 2020)
References
Smith et al., 2020: Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, Gary EN, Walker SN, Schultheis K, Purwar M, Xu Z, Walters J, Bhojnagarwala P, Yang M, Chokkalingam N, Pezzoli P, Parzych E, Reuschel EL, Doan A, Tursi N, Vasquez M, Choi J, Tello-Ruiz E, Maricic I, Bah MA, Wu Y, Amante D, Park DH, Dia Y, Ali AR, Zaidi FI, Generotti A, Kim KY, Herring TA, Reeder S, Andrade VM, Buttigieg K, Zhao G, Wu JM, Li D, Bao L, Liu J, Deng W, Qin C, Brown AS, Khoshnejad M, Wang N, Chu J, Wrapp D, McLellan JS, Muthumani K, Wang B, Carroll MW, Kim JJ, Boyer J, Kulp DW, Humeau LMPF, Weiner DB, Broderick KE. Immunogenicity of a DNA vaccine candidate for COVID-19. Nature communications. 2020; 11(1); 2601. [PubMed: 32433465].
Tebas et al., 2020: Tebas P, Yang S, Boyer JD, Reuschel EL, Patel A, Christensen-Quick A, Andrade VM, Morrow MP, Kraynyak K, Agnes J, Purwar M, Sylvester A, Gillespie E, Maricic I, Zaidi FI, Kim KY, Dia Y, Frase D, Pezzoli P, Schultheis K, Smith TRF, Ramos SJ, McMullan T, Buttigieg K, Carroll MW, Ervin J, Diehl MC, Blackwood E, Mammen MP, Lee J, Dallas MJ, Brown AS, Shea JE, Kim JJ, Weiner DB, Broderick KE, Humeau LM. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of an open-label, Phase 1 clinical trial. EClinicalMedicine. 2020; ; 100689. [PubMed: 33392485].