The 2nd ISV pre-conference Computational Vaccinology Workshop (ICoVax 2012 2012/10/13)

Protein-ligand Binding Region Prediction based on Geometric Features and CUDA Acceleration

Ying-Tsang Lo¹, Hsin-Wei Wang¹, **Tun-Wen Pai**^{1,3*}, Wen-Shoung Tzou^{2,3}, Hui-Huang Hsu⁴, Hao-Teng Chang^{5,6}

¹Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan, R.O.C.
²Department of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan, R.O.C.
³Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, R.O.C.
⁴Department of Computer Science and Information Engineering, Tamkang University, Taipei, Taiwan, R.O.C.
⁵Graduate Institute of Molecular Systems Biomedicine, China Medical University, Taichung, Taiwan, R.O.C.
⁶China Medical University Hospital, Taichung, Taiwan, R.O.C.

NTOU CSE GENOMICS & BIOINFORMATICS LAB

PLB-SAVE Protein-Lignad Binding region prediction based on features of Solid Angle, Volume, and dEpth

Outlines:

- Introduction
- Methods and System Configuration
- Materials and Experimental Results
- System Demonstration
- Conclusions

PLB-SAVE Protein-Lignad Binding region prediction based on features of Solid Angle, Volume, and dEpth

Protein binding region and binding site prediction:

- the first *in silico* step to study protein functions regarding to structure-based drug design and vaccine development
- one of the best ways to understand the mechanisms, principles and specificities in Molecular Recognition
- providing deterministic information for
 - protein function annotation
 - construction of protein-protein interaction networks
 - high-through virtual screening for drug design and discovery
 - vaccine design and development

Related Research

- Traditional Way for protein-ligand binding analysis : pockets/cavities
- Two major categories : geometry based / energy based

Geometry based: grid based, sphere based, and α -shape based

- LIGSITE (Hendlich et al., 1997), LIGSITE^{CS} (Huang and Schroeder, 2006), PocketPicker(Weisel et al., 2007), GHECOM (Kawabata, 2010) and ConCavity(Capra et al., 2009)
- SURFNET (Laskowski, 1995), PASS(Brady and Stouten, 2000), PHECOM (Kawabata and Go, 2007) and POCASA (Yu et al., 2010).
- CAST (Binkowski et al., 2003; Dundas et al., 2006) and Fpocket (Le Guilloux et al., 2009).

Energy based:

- Q-SiteFinder (Laurie and Jackson, 2005) SiteHound (Ghersi and Sanchez, 2009; Hernandez et al., 2009)
- MetaPocket 2.0 (MPK2)
 - (LIGSITE^{CS}, SUFNET, PASS, Q-SiteFinder, Fpocket, GHECOM, ConCavity and POCASA) (Huang, 2009/2011)

MPK2 achieved >12% success rate over the best single method

NTOU GEE GENOMICE & BIOINFORMATICE LAB

Our GOAL

- To design an effective and efficient system to predict protein-ligand binding regions/sites
- Effective aspect: using simple/straight forward geometric features
- Efficient aspect: employing CUDA acceleration
- Better performance than previous existing systems

NTOU GEE GENOMICES & BIOINFORMATICES LAB

System Initialization

15		
d-based Surface Structure Construction		
Load PDB		\square
Structure Discretization	$\langle \neg \rangle$	RSCB
Surface Point Decision	4	PDB
Surface Residue Detection		

Input PDB

Grid Discretization

Protein atom

Obtained coordinates of an atom and corresponding radii A protein atom in grid mode

NTOU GEE GENOMICES & BIOINFORMATICES LAB

Surface Extraction(1/3)

Protein Surface Definition (Connolly, 1983)

→ The proposed system utilized 3-D mathematical morphology to extract protein surface.

Input PDB

Grid-based Surface Structure Construction Load PDB

Structure Discretization

Surface Point Decision

Surface Residue Detection

(1

NTOU GEE GENOMICE & BIOINFORMATICE LAB

RSCB

PDB

NTOU GEE GENOMICES & BIOINFORMATICS LAB

Surface Extraction(3/3)

After calculated all side-chain atoms of each residue in the query protein, the residue surface rate was computed by this formula:

$$SR(r) = \left\{ i \in R : \frac{1}{N} \sum_{i=1}^{N} AR(i) \right\}$$

$$\Rightarrow \text{ When } SR(r) = 0.0$$

$$\Rightarrow \text{ When } SR(r) = 0.0$$

$$\Rightarrow \text{ When } SR(r) = 0.0$$

$$\Rightarrow \text{ When } SR(r) = 75.0$$

$$\Rightarrow \text{ When } SR(r) = 75.0$$

$$\Rightarrow \text{ SAVE system, each detected voxel on the surface were applied to calculate its corresponding solid angle feature}$$

OMICS E BIOINFORMATICS LAB

What is solid angle?

Solid Angle Computation Parallel Computing SA Value Solid Angle Sorting

 The solid angle, Ω, is a measure of how large an object appears to an observer looking from a point.

 The compact matched two solid-angles is 2π in 2D space, and 4π in 3D space.

NTOU GEE GENOMICE & BIOINFORMATICE LAB

Formula for the solid angle of protein surface

For each surface point in 3D:

- SA =(inSP / nP) * 4π
 - SA: the value of solid-angle
 - *inSP*: the number of voxels within the unit sphere which were located inside the protein (red arc)
 - *nP*: the entire voxels within unit sphere

SA
$$< 2\pi \rightarrow convex \ surface$$

SA $= 2\pi \rightarrow flat \ surface$

SA > $2\pi \rightarrow$ concave surface

Solid Angle Computation Parallel Computing SA Value Solid Angle Sorting

CUDA.

it $\sqrt{2\pi}$ π Protein surface

3π

NTOU GEE GENOMICE & BIOINFORMATICE LAB

14

Solid Angle Computation

Parallel Computing SA Value Solid Angle Sorting

Solid Angle Computation

An example of calculated solid angles for all surface voxels of PDB:1GOY protein Red spheres represented the solid angles with small values => Located on convex regions **Blue spheres represented** relatively large values of solid angles

=> Located on concave regions

White spheres represented surface coxels located on flat regions

NTOU GEE GENOMICS & BIOINFORMATICS LAB

NVIDIA CUDA

Search Surface Anchor and Clustering

- Surface voxels with solid angles ranked in top 20% were selected and clustered into representative groups
- Two neighboring surface voxels would be clustered into an identical group with a threshold distance (8 Å) and solid angle value at similar level
- The largest solid angle in a group was considered as the representative anchor

NTOU GEE GENOMIES & BIOINFORMATIES LAB

Average depth of a cavity

Depth index transformation formula

$$Depth = \begin{cases} 5 & if \ SA > 0.9 * 4\pi \\ 4 & if \ 0.8 * 4\pi < SA \le 0.9 * 4\pi \\ 3 & if \ 0.7 * 4\pi < SA \le 0.8 * 4\pi \\ 2 & if \ 0.6 * 4\pi < SA \le 0.7 * 4\pi \\ 1 & if \ 0.5 * 4\pi < SA \le 0.6 * 4\pi \\ 0 & els \ e \end{cases}$$

(4)

Geometric Characteristics Cavity Volume Calculation

Cavity Depth Calculation

The average depth indicator of a cavity candidate was obtained by taking an average of transformed depths in the cluster.

NTOU GEE GENOMICES & BIOINFORMATICS LAB

Volume of a potential cavity

Geometric Characteristics Cavity Volume Calculation Cavity Depth Calculation

The Idea by:2006_LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation

Step1: Taking the anchor surface residue as a center and formulating a virtual sphere with a radius of 10 Å
Step2: Each voxel taking 7 directional vectors to extend If > 3 vectors intersecting with the query protein → this voxel is an inner voxel within the cavity
Step3: Examining all voxels in the virtual sphere, total interior voxel counts → volume of the cavity

NTOU GEE GENOMICE & BIOINFORMATICS LAB

Binding Region Prediction

Binding Region Prediction Weight Setting Candidate Selection

(5)

$$RV(p) = \frac{CD(p)_{avg}}{CD_{max}} \times w_1 + \frac{CV(p)}{CV_{max}} \times w_2$$

- RV(p) is the ranking value for anchor residue p cluster
- CD(p)_{avg} is the average depth value of p cluster
- CD_{max} is the maximum depth of the query protein
- CV(p) is the volume of p cluster
- CV_{max} is the maximum volume of the query protein
 - P.S. sum of w₁ and w₂ is equal to 1

NTOU GETE GENOMICES & BIOINFORMATICES LAB

Experimental Results

NTOU GEE GENOMICES & BIOINFORMATICES LAB

LigASite dataset

LIGASITE

"LIGand Attachment SITE"

A gold-standard dataset of biologically relevant binding sites in protein structures

- LigASite version 9.5 released July 2011
- 388 non-redundant unbound protein structures from LigASite dataset (APO)
- 388 non-redundant bound protein structures from LigASite dataset(HOLO)
- LigASite dataset provide residue numbers of binding site and PDB IDs

Website: http://www.bigre.ulb.ac.be/Users/benoit/LigASite/index.php?home

NTOU GEE GENOMICE & BIOINFORMATICS LAB

Performance measurement

data pre	т	F
Р	ТР	FP
N	FN	TN

- *TP* is the number of true positive
- FP is the number of false positive
- 7N is the number of true negative
- FN is the number of false negative

NTOU GEE GENOMIES & BIOINFORMATIES LAB

Performance measurement

- Sensitivity (SE) = $TP \div [TP + FN]$
- Specificity (SP) = TN ÷ [TN + FP]
- Positive Prediction Value (PPV) = TP ÷ [TP + FP]
- Accuracy (ACC) = $[TP + TN] \div [TP + TN + FN + FP]$
- Matthews correlation coefficient (MCC) = $_{TP \times TN FP \times FN}$

 $\sqrt{(TP+FP)\times(TP+FN)\times(TN+FP)\times(TN+FN)}$

Ten-fold Cross Validation

PLB-SAVE (10-fold cross-validatiion)	APO-388 Proteins (unbound)	HOLO-388 Proteins (bound)
Sensitivity	0.579043	0.642564
Specificity	0.972336	0.976363
Accuracy	0.942588	0.955269
PPV	0.634765	0.651935
МСС	0.566041	0.613089

Prediction system evaluated under a ten-fold cross-validation mechanism

NTOU GEE GENOMICE & BIOINFORMATICS LAB

System Comparison

System	Year	Nation	Laboratory / University	Journal / conference	Method
SITEHOUND	2009	USA	Mount Sinai School of Medicine	Nucleic Acids Research	interaction energy and cavity volume
MegaPocket2.0 (MPK2)	2011	Germany	Technical University of Dresden	Bioinformatics	Consensus method (combine with LIGSITE ^{CS} , PASS, QSiteFinder, SURFNET, Fpocket , GHECOM, ConCavity and POCASA)

Comparison with other systems on LigASite dataset

Comparison of performance of system for 388 APO (unbound protein structures)

System	Fail number	Complete Rate	System	Execution time
SAVE	0	100%	SAVE	2sec ~ 60sec
MegaPocket2.0	207	53.4%	MegaPocket2.0	20sec ~120sec
SITEHOUND	15	3.9%	SITEHOUND	60sec ~ 600sec

System	Тор1	Тор2	Тор3	Total	success rates
SAVE	146	87	79	312	80.4%
MegaPocket2.0	113	31	13	157	40.5%
SITEHOUND	109	72	43	224	57.7%

If the forecasting results with sensitivity value were less than 25% is considered as an error prediction.

NTOU GEE GENOMICES & BIOINFORMATICS LAB

Comparison with Comparative System on LigASite

Comparison of performance of system for 388 HOLO(bound protein structures).

System	Fail number	Complete Rate	System	Execution time
SAVE	0	100%	SAVE	2sec ~ 60sec
MegaPocket2.0	240	61.9%	MegaPocket2.0	20sec ~120sec
SITEHOUND	14	3.6%	SITEHOUND	60sec ~ 600sec

System	Top1	Тор2	Тор3	Total	success rates
SAVE	146	91	80	317	81.7%
MegaPocket2.0	92	27	21	140	36.1%
SITEHOUND	159	87	46	292	75.2%

If the forecasting results with sensitivity value less than 25% is considered as an error prediction.

SAVE v.s SiteHound

АРО		Citallourd	HOLO		Citollound
(unbound structures)	(373 proteins)	(373 proteins)	(bound structures)	(374 proteins)	(374 proteins)
Sensitivity	<u>0.527</u>	0.379	Sensitivity	<u>0.623</u>	0.538
Specificity	<u>0.968</u>	0.955	Specificity	<u>0.975</u>	0.975
Accuracy	<u>0.934</u>	0.912	Accuracy	<u>0.953</u>	0.952
PPV	<u>0.583</u>	0.399	PPV	<u>0.629</u>	0.625
мсс	<u>0.509</u>	0.332	мсс	<u>0.589</u>	0.585

NTOU GEE GENOMICES & BIOINFORMATICES LAB

SAVE v.s MPK2

АРО	DI R-SAVF	MPK2	HOLO	PLR-SAV/F	MPK2
(unbound structures)	(171 proteins)	(171 proteins)	(bound structures)	(148 proteins)	(148 proteins)
Sensitivity	0.567	<u>0.710</u>	Sensitivity	0.673	<u>0.861</u>
Specificity	<u>0.953</u>	0.904	Specificity	<u>0.959</u>	0.912
Accuracy	<u>0.905</u>	0.878	Accuracy	<u>0.927</u>	0.905
PPV	<u>0.609</u>	0.478	PPV	<u>0.654</u>	0.556
мсс	<u>0.524</u>	0.500	МСС	0.615	<u>0.634</u>

NTOU GET GENOMICES & BIOINFORMATICS LAB

Running Time Comparison

Syst	em Der PLB-S	nonstr SAVE	ation			
(http://s	save.cs	.ntou.e	edu.tw/)			
PLB-SAVE Protein-Lignad Binding region prediction based on features of Solid Angle, Volume, and dEpth						
Main	Result	Method	Contact			
- Welcome to our system(Use Photox to get the	best performance!)					

.

ž

ALL REAL

NTOU GEE GENOMICE & BIOINFORMATICE LAB

36

Reput/Use Interior

_	_	-		_	-	_				
1	2 3	4	56	7	8 9	10				
Depti Volur Resid	h: 1.63131 ne: 32 lues: 81: A, 9	.3 3:A, 94:A,	95:A, 96:A,	. 97:A, 146:/	A, 147:A, 149	9:A, 150:A, 151	:A, 161:A, 162:A,	327:A, 328:A,	329:A, 332:A,	, 334:A,
Charles	ence der kki	10	20				60	70		
Chain		10		20				/	au	50
AO							MLKM SAPGLDFLK	AFASPDFSTD	PGKGIPDKFQ	GLVLPKKHCL
A100	TOSITFTPCK	QTMLLVAR	IP GIACLE	AEAN VGASE	SGVPL ASVE	FPGFDO LEGTS	TDTA ANVTAFRYAS	MAAGVYPTSN	LMQFAGSIQV	YKIPLKOVLN
A200	SYSQTVATVE	PTNLAQNI	IA IDGLEA	LDAL PNNNY	SGSFI EGCY	SQSVCN EPEFEI	HPIM EGYASVPPA	VTNAQASMFT	NLTFSGARYT	GLGDMDAIAI
A 300	LVTTPTGAVN	TAVLKVWA	CV EYRPNP	NSTL YEFAR	ESPAN DEYA	LAAYRK IARDII	IAVA CKDN			

NTOU GETE GENOMICES & EIOINFORMATICES LAB

NTOU GETE GENOMICES & BIOINFORMATICES LAB

38

EDICAL

£

NTOU GEE GENOMICES & BIOINFORMATICES LAB

39

EDICAL

Conclusions

NTOU CEEE CENOMICES & BIOINFORMATICES LAB

Conclusions

- To design an effective and efficient system to predict proteinligand binding regions/sites
 → PLB - SAVE (http://save.cs.ntou.edu.tw/)
- Effective aspect: using simple/straight forward geometric features
 - → ranked solid angles / volume / depth features
- Efficient aspect: employing CUDA acceleration

 \rightarrow an average of 11-fold faster by employing GPU acceleration

Performance should be better than previously existing systems

 → Robust performance compared to SiteHound and MPK2
 systems

 \rightarrow the proposed parallel algorithms achieved an average accuracy rate of 94.9%

 Carbohydrate-based vaccine design could be applied for pathogen infection and cancer diseases

Acknowledgements

Mr. Ying-Tsang Lo (Ph.D. candidate) Mr. Hsin-Wei Wang (Ph.D. candidate) Dr. Wen-Shoung Tzou (NTOU, Taiwan) Dr. Hui-Huang Hsu (Tamkang Univ.,Taiwan) Dr. Hao-Teng Chang (CMU,Taiwan)

Project Funding supported by: Center of Excellence for Marine Bioenvironment and Biotechology, NTOU National Science Council, Taiwan (NSC 101-2321-B-019-001 and NSC 100-2627-B-019-006)

NTOU GEE GENOMICS & BIOINFORMATICS LAB

thanks for your attention

