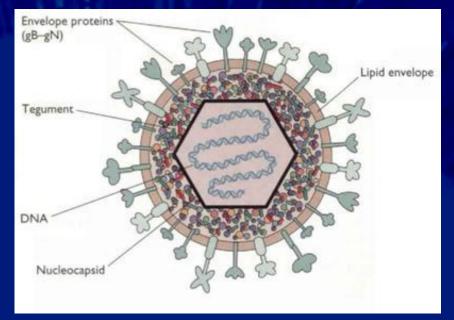
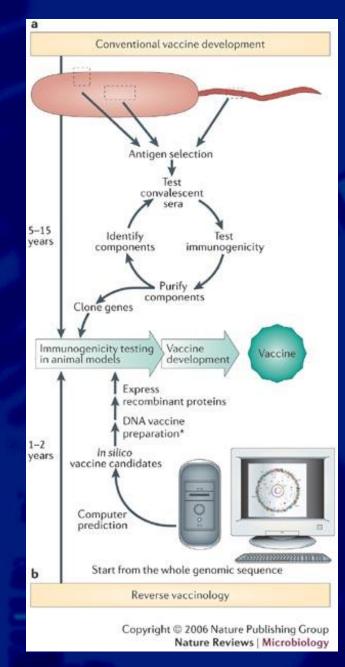
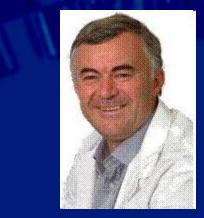
Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology

Zuoshuang "Allen" Xiang, Yongqun "Oliver" He


Unit for Laboratory Animal Medicine Department of Microbiology and Immunology Center for Computational Medicine and Bioinformatics Comprehensive Cancer Center University of Michigan Medical School Ann Arbor, MI 48109

Human Herpes Simplex (HSV) Viruses

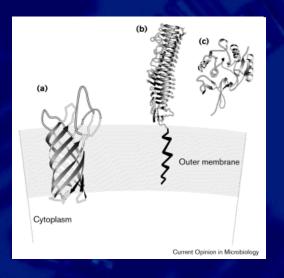

- Herpesviruses are a family of DNA viruses that cause diseases in humans and various animals.
- All herpesviruses are speciesspecific.
- Human herpesviruses (HHVs) have eight members, including: HSV-1 and HSV-2, the most common infectious agents of humans.
- Infectious virions are spherical.


Virion structure: a linear, doublestranded DNA molecule densely packaged into a protein cage called capsid. The capsid is surrounded by an amorphous protein layer, called the tegument, consisting of viral proteins and viral mRNAs and a lipid bilayer membrane (envelope).

Human Herpes Simplex (HSV) Viruses

- HSV-1 and -2 are the most common infectious agents of humans.
- USA: Seroprevalence of HSV-1 and HSV-2 in adults is 68% and 21%, respectively
- USA: ~700-2000 cases of neonatal HSV infections per year occur in the US.
- No safe and effective HSV vaccines are available.
- Herpesvirus genomes available:
 - 52 herpesvirus genomes
 - 3 HHV-1 genomes: HHV-1 genome has 77 proteins
 - 12 HHV genomes
- Question: Can we predict vaccine candidates using these genome data?

Reverse Vaccinology (RV)


Dr. Rino Rappuoli Pioneer of Reverse Vaccinology

Definition: RV is a vaccine development strategy that starts with bioinformatics analysis to find potential vaccine candidates from pathogenic genomes. These candidate genes can then be tested in normal wet lab for protective immune responses.

Johri *et al. Nat Rev Microbiol.* 2006 Dec; 4(12):932–42.
Rappuoli R. *Curr Opin Microbiol.* 2000 Oct;3(5):445-50.

The First RV Success: MenB

MenB: Serogroup B meningococcus

First success: MenB

- 1) Genome sequence of *Neisseria meningitidis* serogroup B strain MC58 was obtained and used.
- 2) 570 genes predicted to code for surface-exposed or exported proteins.
- 3) 350 were successfully cloned to *E. coli*, expressed, and purified.
- 4) Mice were immunized.
- 5) 25 proteins induced bactericidal antibodies, which correlate with vaccine efficacy in humans.

Reference: Pizza M, et al. Science. 2000 Mar 10;287(5459):1816-20.

Reverse Vaccinology Criteria

Original Criteria:

- 1. Subcellular localization
 - ✓ Outer membrane proteins
 - ✓ Secreted proteins

New Criteria:

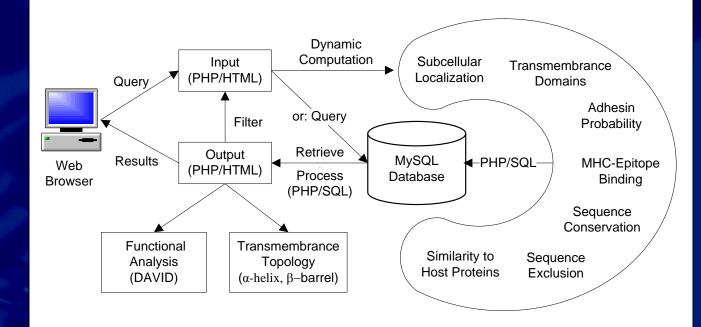
- 1. Transmembrane domains
 - ✓ >2 α -helix domains → difficult to isolate
- 2. Adhesin probability
 - ✓ Adhesin is important for pathogen invasion
- 3. MHC-Epitope binding
 - ✓ MHC class I epitope \rightarrow cell-mediated immunity
 - / MHC class II epitope \rightarrow antibody response
- 4. Sequence conservation and exclusion
 - Shared genes in pathogens but not in avirulent strains
- 5. Similarity to host proteins
 - Avoid autoimmunity or immune tolerance

It is challenging to apply reverse vaccinology without a comprehensive pipeline → To address this challenge, we developed Vaxign: http://www.violinet.org/vaxign

• Vaxign vaccine design for *Brucella*:

Citations: -- Xiang Z, He Y. 2009. Vaxign: a web-based vaccine target design program for reverse vaccinology. *Procedia in Vaccinology*. Volume 1, Issue 1, Pages 23-29.

-- He Y, Xiang Z. Bioinformatics analysis of *Brucella* vaccines and vaccine targets using VIOLIN. *Immunome Res.* 2010 Sep 27;6 Suppl 1:S5.


• Vaxign vaccine design for uropathogenic *E. coli*: Citation: He Y, Xiang Z, Mobley HLT. Vaxign: the first web-based vaccine design program for reverse vaccinology and an application for vaccine development. *Journal of*

Biomedicine and Biotechnology. Volume 2010 (2010), Article ID 297505, 15 pages.

Many have cited Vaxign, esp. this year!

Vaxign: Vaccine Design System

Aim: Vaccine target prediction for reverse vaccinology

- The 1st web-based reverse vaccinology system
- Freely available: <u>http://www.violinet.org/vaxign</u>

Reference: He Y, Xiang Z, Mobley HLT. Vaxign: the first web-based vaccine design program for reverse vaccinology and an application for vaccine development. *Journal of Biomedicine and Biotechnology*. Volume 2010 (2010), Article ID 297505, 15 pages. [PMID: <u>20671958</u>]

🔽 Vaxign

Two Forms of Vaxign Usage

Pre-computed data query

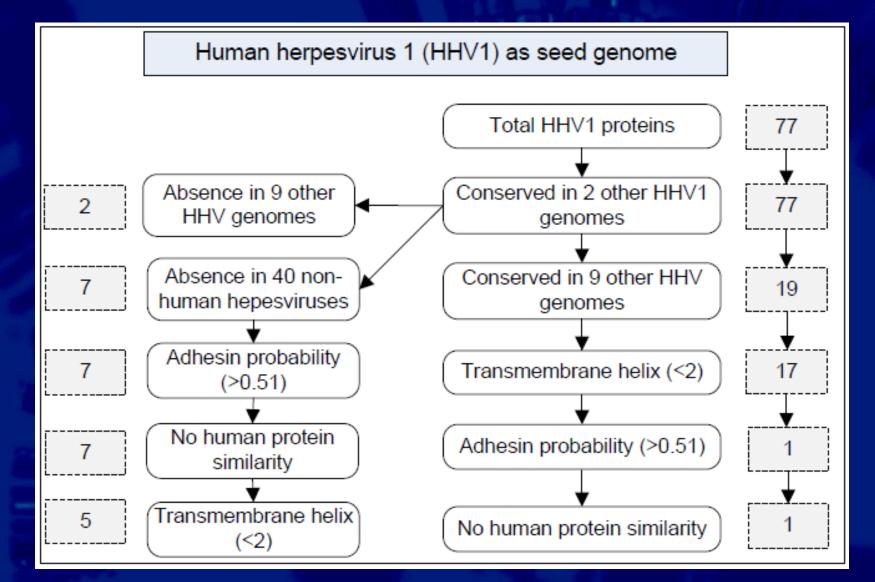
Dynamic analysis

Select a Gen	ome(s), Query a Protein (Optional), and Set up Parameters (Optional)	Input Protein Sequence(s), Set up Parameters, and Submit a Job			
Select a Genome Group (Required)	Please select a genome group -	Protein Sequence(s):			
Select a Genome (Required)	Please select a genome -	(Examples: Gram- <i>B. abortus</i> SodC, Gram+ <i>Bacillus anthracis</i> PA, 62317454, or YP_016495.2) (Note: Select FASTA or other format, up to 500 sequences)			
! Sequen⁄ce ID(s)	NCBI Protein Accession - (One ID per ine, or use comma, tab-delimited format)	Sequence Format Protein Sequence (Fasta Format)			
Keywords	Gene Symbol				
Sort by	NCBI Protein RefSeq 💌 Ascending 💌				
Filter Options:					
1. Select Subcellular Localization	Any Localization Catival Cytoplasmic Cytoplasmic Membrane	File Upload Browse Bacterium Gram -/+ (NOT for Virus) Gram negative bacterium 💌			
2. Number of Transmembrane Helices	<= 1 (Note: check to include this filtering option)	Include Analyses [Select all] [Unselect all]			
3. Adhesin Probability (0-1.0)	>= • 0.51				
4. Have Orthologs in	of the above selected genomes	Element Element			
5.Exclude Proteins having Orthologs in Any of Selected Genome(s)		 MHC Class I Binding MHC Class II Binding Similarity to Host Proteins I Human I Mouse I Pig 			
6. Similarity to Human Proteins	C Yes C No C Do not use this option	MHC class I and II epitope prediction (Note: This function is availabel after the above analyses)			
7. Similarity to Mouse Proteins	C Yes C No C Do not use this option				
8. Similarity to Pig Proteins	C Yes C No C Do not use this option	Your Note:			
	Submit help	Submit			

- Pre-computed results
- > 200 genomes in database
- Easy to query

- Runtime execution
- Can analyze up to 500
 proteins at one time

Human Herpesvirus Vaccine Design


Downloaded from NCBI RefSeq database:
 ○ Three HHV-1 genomes:
 ✓ 77 proteins in human herpsevirus 1
 ○ 12 HHV genomes
 ○ 52 herpesvirus genomes

 Vaxign pre-computation and results saved in Vaxign database

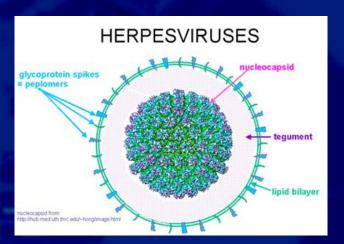
User-friendly web interface for result query

Workflow and Result Summary

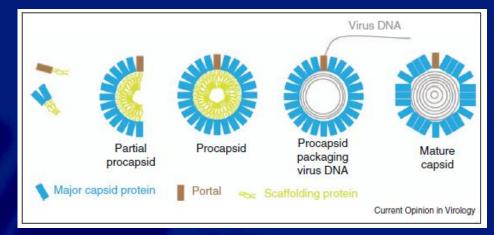
Seven HSV-1 proteins having No orthologs in all 40 non-human herpesviruses

#	Protein Accession	Protein Note	Adhesin Probability	Trans-membrane helices
1	NP_044675.1	TAP transporter inhibitor ICP47	0.079	0
2	NP_044674.1	tegument protein US11	0.245	0
3	NP_044667.1	envelope glycoprotein gJ	0.176	2
4	NP_044666.1	envelope glycoprotein gG	0.419	2
5	NP_044659.1	membrane protein UL56	0.238	1
6	NP_044661.1	neurovirulence protein ICP34.5	0.228	0
7	NP_044600.1	neurovirulence protein ICP34.5	0.228	0

So these proteins are human-specific. Not good for animal test.



19 HSV-1 proteins conserved in human herpesviruses


#	Referencession	Protein GI	Protein Note	Adhesin Probability	Trans- membrane helices
1	NP_044603.1	9629382	uracil-DNA glycosylase	0.262	0
2	NP_044606.1	9629385	helicase-primase helicase subunit	0.115	0
3	NP_044655.1	9629434	helicase-primase primase subunit	0.163	0
4	NP_044607.1	9629386	capsid portal protein	0.241	0
5	NP_044620.1	9629399	major capsid protein	0.113	0
6	NP_044627.1	9629406	capsid maturation protease (UL26)	0.386	0
7	NP_044628.1	9629407	capsid scaffold protein UL26.5	0.675	0
8	NP_044611.1	9629390	envelope glycoprotein gM	0.244	8
9	NP_044629.1	9629408	envelope glycoprotein gB	0.229	3
10	NP_044613.1	9629392	deoxyribonuclease	0.203	0
11	NP_044616.1	9629397	DNA packaging terminase subunit 1	0.165	0
12	NP_044630.1	9629409	DNA packaging terminase subunit 2	0.188	0
13	NP_044626.1	9629405	DNA packaging tegument protein UL25	0.210	0
14	NP_044634.1	9629413	DNA packaging protein UL32	0.185	0
15	NP_044635.1	9629414	DNA packaging protein UL33	0.264	0
16	NP_044625.1	9629404	nuclear protein UL24	0.195	0
17	NP_044631.1	9629410	single-stranded DNA-binding protein	0.168	0
18	NP_044632.1	9629411	DNA polymerase catalytic subunit	0.101	0
19	NP_044641.1	9629420	ribonucleotide reductase subunit 1	0.193	0

UL26.5 for HHV-1 Vaccine Development?

- U26.5 capsid scaffold protein is important for virus capsid formation
- Has not been reported for vaccine development
- U26.5 capsid scaffold protein has adhesin-like characteristics? Why?

http://microbiologybook.org/mhunt/dna1.htm

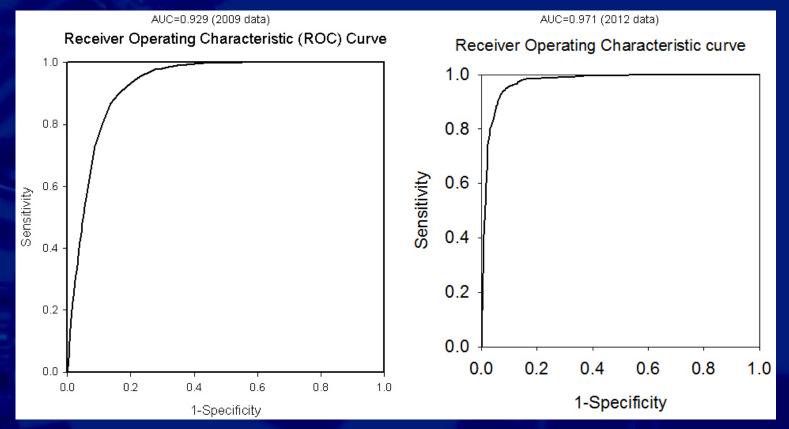
http://www.ncbi.nlm.nih.gov/pubmed/21927635

Scaffold protein lost in mature virus

MHC Class I Epitope Prediction Example

MHC Class I & II Epitope Prediction by Vaxitope:

P Value Cutoff	0.05 help
MHC Host Species	human 💌
MHC Allele	any allele Supertype of MHC Class I alleles Supertype of MHC Class II alleles HLA-A*D1:D1 HLA-A*D2:D1 HLA-A*D2:D2
Epitope Length	10 💌
Epitope Location (Alpha Helix)	Any
Run Epitope	Prediction


	MHC I Binding Prediction Order by allele name									
Ru	Run MHC I epitope prediction using IEDB consensus method and compare with Vaxitope									
Index	Epitope	Epitope Length	MHC Allele	P value	Matching from	Matching to	Location			
1	GLSQHYPPHY	10	HLA-A*02:01	0.0212	63	72	outside			
2	HOYPGVLFSG	10	HLA-A*02:01	0.0267	74	83	outside			
3	DLEVSQMMGA	18	HLA-A*02:01	0.0495	319	328	outside			
1 uniqu	ie MHC I allejes.									

MHC I Binding Show all predicted epitope bindings on one page

MNPVPTSGTPAPAPPGDGSYLWIPASHYNQLVAGHAAPQPQPHSAFGFPAAAGSVAYGPHGAglsqhypp hvAhqypgvlfsgPSPLEAQIAALVGAIAADRQAGGQPAAGDPGVRGSGKRRRYEAGPSESYCDQDEPDA DYPYYPGEARGAPRGVDSRRAARHSPGTNETITALMGAVTSLQQELAHMRARTSAPYGMYTPVAHYRPQV GEPEPTTTHPALCPPEAVYRPPPHSAFYGPPQGPASHAPTPPYAPAACPPGPPPPCPSTQTRAPLPTEP AFPPAATGSQPEASNAEAGALVNASSAAHVDVDTARAAdlfvsgmmgaR

Vaxign-Vaxitop MHC Class I and II Epitope Predictions

- Internally developed project
- Based on position specific scoring matrices (PSSM)
- Unique: Calculate statistical P-value for each prediction

Vaxign and IEDB preidiction comparison on MHC Class I Epitope Prediction

Epitope predicted by IEDB consensus method

Index	Epitope	Epitope length	MHC allele	Matching from	Matching to	IC50 (IEDB consensus)	Vaxitope P-value
1	GLSQHYPPHV	10	HLA-A*02:01	63	72	1.05	0.0212
2	DLFYSQMMGA	10	HLA-A*02:01	319	328 🤇	4.45 consistent	0.0495
3	HQYPGVLFSG	10	HLA-A*02:01	74	83	5.4	0.0267
4	ALMGAVTSLQ	10	HLA-A*02:01	174	183	5.4	>0.1
5	FGFPAAAGSV	10	HLA-A*02:01	46	55	6.95	>0.1
6	TALMGAVTSL	10	HLA-A*02:01	173	182 <	7.05	0.087
7	YLWIPASHYN	10	HLA-A*02:01	20	29	7.2	>0.1
8	SAPYGMYTPV	10	HLA-A*02:01	194	203 <	7.4	0.0641
9	VLFSGPSPLE	10	HLA-A*02:01	79	88	8.95	>0.1
1D	GMYTPVAHYR	10	HLA-A*02:01	198	207	9.45	>0.1
11	DTARAADLEV	10	HLA-A*02:01	313	322	9.45	>0.1
12	GVLFSGPSPL	10	HLA-A*02:01	78	87	9.9	>0.1

Epitope predicted by Vaxitop method

Index	Epitope	Epitope Length	MHC Allele	Matching from	Matching to	P-value	IC50 (IEDB consensus)
1	GLSQHYPPHV	10	HLA-A*02:01	63	72	0.0212	1.05
2	HQYPGYLFSG	10	HLA-A*02:01	74	83	0.0267	5.4
3	DLFYSQMMGA	10	HLA-A*02:01	319	328	0.0495	4.45
4	SAPYGMYTPV	10	HLA-A*02:01	194	203	0.0641	74 inconsistent
5	GOPAAGDPGV	10	HLA-A*02:01	106	115 🤇	0.0762	>50
6	TALMGAYTSL	10	HLA-A*02:01	173	182	0.087	7.05

Results overlap

 \bullet

Vaxitop is more conservative in predicting positive results.

Conclusion

• Vaxign is a specific and sensitive predictor of vaccine targets.

It is web-based, user-friendly, and free.

 More information in next demo and hands-on training

http://www.violinet.org/vaxign/

Discussion

<u>Challenges:</u>

How to better rank predicted vaccine targets? What's unique about protective antigens?

Directions: integrated with microarray, proteomics, literature mining, 3D structure, and VIOLIN components.

Acknowledgements

He Laboratory / U of Michigan (UM)

Zuoshuang "Allen" Xiang

Funding: NIH-NIAID Grant 1R01AI081062