

TONGII UNIVERSI

Dr. zhiwei cao

Tongji University, shanghai China

Outline

Introduction

Can we predict the conformational epitope?

- Current tools---CEP, DiscoTope, ElliPro, PEPOP, BEpro, SEPPA
- B-Pred---a structure based B-cell epitopes prediction server (?)
- Evaluation

How to improve -- Future?

Software Demo: SEPPA

Antigen-antibody interaction

(a)

- B-cell epitope
 - Linear epitope
 - Conformational epitope

Sperm whale myoglobin

Hen egg-white lysozyme

Outline

Can we predict the conformational epitope?

Current tools---CEP, DiscoTope, ElliPro, PEPOP, BEpro

- SEPPA Version 1.0--- Spatial Epitope Prediction of Protein Antigens
- B-Pred---a structure based B-cell epitopes prediction serve

Software Demo: SEPPA

1. CEP

CEP (http://bioinfo.ernet.in/cep.htm) a conformational epitope prediction server

Kulkarni-Kale U, et.al *Nucleic Acid Res*, 2005,33: W168-171

Featured

- Solvent accessibility of surface residues
- Spatial distance cut-off

CEP

onformational Epitop	pe Prediction	n - Micro	soft Interr	net Explo	orer						_			
e <u>E</u> dit <u>V</u> iew F <u>a</u> v	orites <u>T</u> ools	Help												_
ress http://bioinfo	.ernet.in/cep.	htm											~	Ð
	(Confo	rmatio	onal E	Epito	pe Pr	edictio	n Ser	ver					
		Develo	ped@Bioi	nformati	ics Cen	tre, Unive	rsity of Pu	ne, INDL	A					
	<u>Bioinfo@</u> I	JoP					<u>CE S</u>	erver				<u>Help</u>		
						Email:	shriram	@bioinf	o.ernet.	in				
					Enter a	PDB ID:	1FDL							
	OI	Upload	your coor	dinate fil	le in PD	B format:						Browse		
											(Submit.		
Sample inputfile (L) Sample outfiles (Ly Evaluation data of	<u>ysozyme)</u> sozyme) CEP algorithi	n using A	Ag-Ab con	nplexes fi	rom PD)	B			Sele	ect Chai ect Chai	in ❤ n	Predict		
Precomputed Datas Please note:	set.								H					
1. This server prediction	icts conforma	tional ep	itopes only	y for pro	teins	rdrogene			L V		_			
3. In case of a Ag-A 4. Files with more th	Ab complex, s han 0.5Mb si	submit th ze takes 1	e coordina onger time	ites of or (~3-5 Mi	nly the in)	antigen								
Comments : cep@b	ioinfo.emet.	'n												

🙆 Done

2. DiscoTope

DiscoTope

Prediction of residues in discontinuous B-cell epitopes using protein 3D structures.

Haste-Andersen P, et.al *Protein Sci*, 2006,15(11): 2558-2567

Featured

- Amino acid statistics-→propensity scale matrixes
- Spatial information
- Surface exposure

3. ELLiPro

ElliPro (http://tools.immuneepitope.org/tools/ElliPro) A now structure-based tool for the prediction of antibody epitopes

Ponomarenko J, et.al *BMC Bioinformatics*, 2008,9:514-522

- Featured
 - simplified the surface of protein antigens as an ellipsoid
 - Calculated the protruding index for surface residues.

ELLiPro

ElliPro: Antibody Epitope Prediction

Step 1. Input type													
Choose an input type:	Protein	n sequ	uence	e (Go to ste	ep 2a)								
Step 2a. Protein sequence	0 11010		0	Antibad	. Faltan	· Desidiation Des				-			L Inter Por
Enter a protein swiss-prot ID:		Prot	iein Se	quence(s):	y Epitop	e Prediction Res	suits			Mttp://tools.immuneepitope.org - ElliPr ElliPro: Epitope 3D Structures	o: Epitope 3	D Stru	
Or enter a protein linear sequence in PLAIN or FASTA format:		A	**	1 AVTVS 61 F57A5 121 F8743	TICHN GQLWQH MMMYK CSCIES EDGILT XTVETA	Sequence Sentra Escuria Libertici Pitlar Esticularico 1938/coe Ligue Cetteretrose Vectorio	EDIN ECHDETLARA C SEC IVEYLSEINS A CQCR ESPTPORENN V	GEFGQCIER OCSCALGRY		No. Epiloge Penalters AE238, AX39, AX340, AE41, AC42, AX43, AT46, AL47, AC648, AX49, AC67, A156, A561, AC62, A563, AX64, A1065, A106, A106, A106, A106	a:k44, a:645, :659, a:N60, A:N67,	Namber o Residue	5cme
Blast expectation value:	10	Pred	ficted	Linear Epitop	e(s):								
Maximum number of 3D structural template(s):	5 🔻 (De	1	Chan	Start Postion	End Pention	Puptile	Namber of Parishs	D.834	3D Structure		vr	the second	
Step 2b. Protein structure		Ê	~			CIEFFORM		0.004	(Marco)	E TT &		26	
Enter a 4 letter code PDB ID:		2	A	150	173	QCMEGFTFDKEKWVCL	16	0.805	Viter		10		E
Or enter a protein structure PDB file:		3	A	117	135	IGKVPNPEDEKKCTKTGET	19	0.705	View	ALCONDON 1			
Step 3. Epitope prediction parameters		4	A	38	49	EXNECKKETLOK	12	0.680	Vatw	Sar Ar W			É
Minimum score:	0.6 🔻 (D	5	A	139	149	UCONTONEVO:	11	0.645	Vew	/	10		SI
Maximum distance (Angstrom):	6 🔻 (Def	6	۸	90	97	QVXNCGES		0.551	View	¢	7 18 3	S-11-22	2002
Submit Reset		Pred	dicted I	Discontinous	Epitope(s):					" [GLU]45:A.CB #6850 Right (Dick to improve	your exp	mence 🏠
		80.					Res	idues			Number of Residues	Score	30 Structure
		1	AES	1, A.K.29, A.N.4 5, A.N.67, A.M.	0, A:E41, A:C	42, AX43, AX44, A245, 70	A.T46, A.L47, A.G	IO, AX49,	A-C57, A-150	I, A: E59, A:N60, A:P61, A:D62, A:P63, A:A64, A:Q65,	25	0.763	(Mew)
		2	A:T3, A:F16	A:V4, A:D5, A 3, A:T164, A:	. T6, A:L139, (F165, A:D166	A:K140, A:C141, A:N142, , A:K167, A:E168, A:K169	A:T143, A:D144, A), A:N170, A:V171,	N145, A.E A:C172, A:	146, A.V147, L173	A×149, A:Q158, A:C159, A:M160, A:E161, A:G162,	30	0.701	Vew.
		3	AK90 AK1	2, A:N93, A:C1 19, A:V120, A:	H, A:095, A:E P121, A:N123	96, A:597, A:098, A:10 2, A:9123, A:6124, A:012	4, A:L105, A:5106, 5, A:E126, A:K127,	A:E107, A: A:K128, A	(108, A:Q10 C129, A:T13	9, A:S110, A:A111, A:C115, A:A116, A:I117, A:G118, 10, A:K131, A:T132, A:G133, A:E134, A:T135	36	0.645	View
		4	A:KB	0, A:E81, A:D6	2, A:T83, A:Q	90, A:Y91					6	0.508	Ver
		Resi	due Se	ares:									

Click here to view residue scores

4. PEPOP

PEPOP

Computational design of immunogenic peptides

Moreau V, et.al BMC Bioinformatics, 2008,9:71-86

- Featured
 - Similar to CEP
 - Solvent accessible surface cluster
 - Conformational character

5. BEpro

Bepro

Improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure

Sweredoski M J, *Bioinformatics*, 2008,24(12): 1459-1460

- Featured
- improved DiscoTope
 - Spatial attribute of half sphere exposure
 - Solvent accessibility of surface residues

6. SEPPA

SEPPA

A computational server for Spatial Epitope Prediction of Protein Antigens

- Key question
 - An effective method for B-cell epitope prediction
- Featured
 - Propensity index of Unit patch of residue-triangle
 - Topological parameter---clustering coefficient

7.B-pred

- B-pred (http://immuno.bio.uniroma2.it/bpred)
- a structure based B-cell epitopes prediction server

Luciano Giaco, et.al *Advances and Applications in Bioinformatics and Chemistry* 2012:5 11–21

- Featured
 - Sliding window
 - Average solvent exposure

B-pred

Job summary

Job password: WMnsFg pdb file: 1P9M.pdb

Structure name: CRYSTAL STRUCTURE OF THE HEXAMERIC HUMAN IL-6/IL-6 ALPHA RECEPTOR/GP130 COMPLEX

Change parameters and reload

Chain: A + Naccess threshold: 40.9	0.98 Verify3D threshold:	0.2	Peptides length:	20	Sliding offset: 3	Analyse 1P9M.pdb

Output options

- Full sequence overview
 Full peptide results summary
 Local peaks/hotspots report
 Quick view in Jmol

- Solvent accessibility plot (naccess)
- Model quality plot (verify3D)

Full sequence overview

+/-

Aminoacids marked in red belong to an hotspot (naccess and V3D values above the setted thresholds)

Aminoacids marked with an underline belong to an interface

Aminoacids in LIGHT GREY are not present in the structure file and do not have an associated naccess or V3D value

Mouseover on any aminoacid for more information

1 ELLDPCGYIS PESPVVQLHS NFTAVCVLKE KCMDYFHVNA NYIVWKTNHF TIPKEQYTII NRTASSVTFT DIASLNIQLT CNILTFQQLE QNVYGITIIS

101 GLPPEKPKNL SCIVNE<u>GKK</u>M RCEWDGGRET HLETNFTLKS EWATHKFADC KAKRDTPTSC TVDYSTVYFV NIEVWVEAEN ALGKVTSDHI NFDPVYKVKP

201 NPPHNLSVIN <u>SEELSSILK</u>I TWINPSIKSV IILKYNIQYR TKDASTWSQI PPEDTASIRS <u>SFI</u>VQDLKPF TEYVFRIRCM <u>KE</u>DGKGYWSD WSEEASGIT

Peptide scan results summary for chain A of 1P9M.pdb

+/-

Aminoacids marked in red belong to an hotspot (naccess and V3D values above the setted thresholds)

Aminoacids marked with an underline belong to an interface

Show	10 entries								
3	Sequence start	A	Sequence End	Peptide sequence	Solvent exposure		Structure quality		Positive
1		2	0	BLLDPCGYISPESPVVQLHS	51.226	0	.504		1
4		2	3	DPCGYISPESPVVQLHSNFT	44.860	0	.510		1
7		2	6	GYISPESPVVQLHSNFTAVC	38.355	C	.511		
10		2	9	SPESPVVQLHSNFTAVCVLK	39.270	0	.498		
13		3	2	SPVVQLHSNFTAVCVLKEKC	39.405	0	.509		
16		3	5	VQLHSNFTAVCVLKEKCMDY	42.800	0	.524		1
19		3	8	HSNFTAVCVLKEKCMDYFHV	41.520	0	.528		1
22		4	1	FTAVCVLKEKCMDYFHVNAN	39.985	o	.529		
25		4	4	VCVLKEKCMDYFHVNANYIV	39.860	0	.535		
28		4	7	LKEKCMDYFHVNANYIVWKT	38.865	o	.550		
					F	First	Previous 1 2 3 4	5	Next

Outline

Can we predict the conformational epitope? Current tools---CEP, DiscoTope, ElliPro, PEPOP, BEpro Evaluation

Software Demo: SEPPA

Evaluation of spatial epitope computational tools

- Dataset
- IEDB & CED:
- 110 antigen-antibody complexes crystal structure (antigen sequences > 50 amino acids)
- Parameters
- Sensitivity, positive predictive value, successful pick-up rate and Area under receiver operating characteristic curve(AUC)

Results of evaluation

Methods	Sensitivity	Positive	The successful
		predictive value	pick-up rate (%)
SEPPA	0.4914	0.2650	55.50
DiscoTope	0.3565	0.2116	40.00
BEpro	0.1789	0.2205	28.20
CEP	0.1774	0.1720	8.18
PEPOP	0.1973	0.1946	2.73
ElliPro	0.0676	0.1580	3.64

Outline

Can we predict the conformational epitope?

- Current tools---CEP, DiscoTope, ElliPro, PEPOP, BEpro , SEPPA
- B-Pred---a structure based B-cell epitopes prediction server (?)
- Evaluation

How to improve -- Future?

Software Demo: SEPPA

Future improvement

Research status

- Hydrophilic, accessibility, antigenicity, flexibility, charge distribution, secondary structure and etc.
- The prediction accuracies of previous methods are underperformance
- "...available prediction methods based on unidirectional analysis do not cope satisfactorily with the three dimensional reality of antigenic sites."

Key question

• Does difference exist between B-cell epitope and non-epitope residues?

Reitmaier R, **Review of immunoinformatic approaches to in-silico B-cell epitope prediction**. *Nature Precedings*, 2007

Key question

• Does difference exist between B-cell epitope and non-epitope residues?

Research procedure

 Antigen-antibody immunoglobulin complex structure dataset

• B-cell epitope dataset

Dataset

Methods

- Physical-chemical features
- Sequence feature
- Regional 3-D structural features

PDB: 1A14:N

Dataset

• PDB (dated April 28th, 2011)

Keyword search:

antibody | antigen | Fab | Fv | Fc | IgG | immu* etc.

Frequency

Results

Epitope size

The relative constancy of epitope size is partially determined by the size of CDR

Distribution of epitope residue number

Result
 Range: 15 ~ 30 AA
 Average(μ): 22.18±7.53 AA

Outlier data 1BGX:T 80 AA

Average(μ): 21.83±6.04 AA

Comparison of residue numbers

Number of epitope residues

Continuity

 ...
 323
 324
 325
 326
 327
 328 329 330 ...
 339
 340
 341 ...

 ...
 THR ASP
 ASN
 PRO
 ASN
 ASP
 ...
 ASP
 PRO
 TYR
 ...

• Result

PDB ID: 1A14:N

- There are about 80% segments with a length less than 3 residues
- There are at least one segment with a length more than 3 residues in most epitopes (165/166)
- The longest segment in most epitopes (143/166) is more than 5 residues
- Conclusion
 - B-cell epitopes are defined spatially, but still comprised linear segments

Accessibility

- Hypothesis
 - Interaction residues tend to have higher accessible surface area (ASA)
- Relative ASA

 $relASA = \frac{ASA}{index_i}$ (*index_i*: the ASA of amino acid X in tri-peptide ALA-X-ALA)

- Result
 - Epitope residues are with higher *relASA* than non-epitope surface residues
 - Significant differences have been observed in 82/166 (49.40%) data

Chothia C, The nature of the accessible and buried surfaces in proteins. *J Mol Biol*, 1976. **105**(1): p. 1-12.

Epitope preference of residue

Preference of amino acid classes

- Result
 - Residues with charged, polar, larger and aromatic R-groups tend to appear on epitope regions

Sequence conservation

• Result

- Epitope residues are relatively less conservative comparing to nonepitope surface residues
- Significant differences have been observed in 57/166 (34.34%) data
- Conclusion
 - Immune escape

ConSurf

Server for the Identification of Functional Regions in Proteins

Ashkenazy H, Erez E, Martz E, Pupko T, and Ben-Tal N, **ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids**. *Nucleic Acids Res*, 2010. **38**(Web Server issue): p. W529-33.

• Result

- Epitope residues are surrounded with less neighboring residues
- The neighboring residues of epitope residues are more compact

Prediction performance and comparison

		AUC		
PDB_chain	organism	Organism- independent	Organism- based	0.8
3QWO_C	Mus musculus	0.65	0.74	alle
3AY4_C	Homo sapiens	0.88	0.94	
3SE9_G	Homo sapiens	0.76	0.75	
3SE8_G	Homo sapiens	0.82	0.81	
3SDY_B	Homo sapiens	0.58	0.71	
3NPS_A	Homo sapiens	0.78	0.86	abaset colope BEPTO
3RKD_A	Mus musculus	0.39	0.47	eanist. Dist
3SKJ_E	Homo sapiens	0.52	0.51	N ^e Methods
3R1G_B	Homo sapiens	0.78	0.93	
3SGJ_C	Homo sapiens	0.89	0.89	
3SGK_C	Homo sapiens	0.92	0.90	t-test: p<0.01
Ave	erage	0.72	0.77	

B-cell epitope size(the number of residues, ASA and regional distances)				
B-cell epitope sequence continuity				
Accessibility				
Epitope preference (residue, residue-pair and residue-triangle)				
AAindex amino acid indices (544 indices)				
Sequence conservation				
Topological parameters(degree and clustering coefficient)				
Gaussian curvature				
Protruding index				
Planarity index				
Epitope-paratope residues interaction preference				

reference

- 1. **Sun J**, Xu TL, Wang SN, Li GQ, Wu D, and Cao ZW, Does difference exist between epitope and nonepitope residues? Analysis of the physicochemical and structural properties on conformational epitopes from B-cell protein antigens. *Immunome Res, 2011.* 7(3): p. 11.
- 2. Xu XL, **Sun J**, Liu Q, Wang XJ, Xu TL, Zhu RX, Wu D, and Cao ZW, Evaluation of spatial epitope computational tools based on experimentally-confirmed dataset for protein antigens. *Chinese Science Bulletin*, 2010. 55(20): p. 2169-2174.
- 3. Wu D, **Sun J**, Xu TL, Wang SN, Li GQ, Li YX, and Cao ZW, Stacking and energetic contribution of aromatic islands at the binding interface of antibody proteins. *Immunome Res, 2010. 6 Suppl 1: p. S1.*
- 4. Wu D, Xu TL, **Sun J**, Dai JX, Ding GH, He Y, Zhou ZF, Xiong H, Dong H, and Jin WR, Structure modeling and spatial epitope analysis for HA protein of the novel H1N1 influenza virus. *Chinese Science Bulletin*, 2009. 54(13): p. 2171-2173.
- 5. **Sun J**, Wu D, Xu TL, Wang XJ, Xu XL, Tao L, Li YX, and Cao ZW, SEPPA: a computational server for spatial epitope prediction of protein antigens. *Nucleic Acids Res, 2009. 37(Web Server issue): p. W612-6.*

Outline

What area does antibody recognize?

Can we predict the conformational epitope? Current tools---CEP, DiscoTope, ElliPro, PEPOP, BEpro SEPPA Version 1.0--- Spatial Epitope Prediction of Protein Antigens

B-Pred---a structure based B-cell epitopes prediction serve

Software Demo: SEPPA

Outline

What area does antibody recognize?

Can we predict the conformational epitope?

- Current tools---CEP, DiscoTope, ElliPro, PEPOP, BEpro
- SEPPA Version 1.0--- Spatial Epitope Prediction of Protein Antigens
- B-Pred---a structure based B-cell epitopes prediction serve

Software Demo: SEPPA

Method

- The definition of unit patch of residue-triangle
 - Three surface residues, the least distances between any two among the three
 - Cutoff: 4Å
 - Epitope/non-epitope surface residue-triangle
- Why the definition?
 - Different epitope preference of different types of residue-triangle
 - All epitope residues function as a whole

• The generation of residue-triangle preference (training part)

• The scoring of residue-triangle preference (prediction part)

For any surface residue r_1 :

Collection of neighboring residue-triangles

The sum of residue-triangle preference score

Averaged by the number of residue-triangles

Results

PA	Testing dataset	AUC
f SEP]	(a) SEPPA training dataset	0.77
ction nce of	(b) IEDB dataset	0.76
predi	(c) DiscoTope training dataset	0.80
The J perfo	(d) Epitome dataset	0.75

Evaluation methods

- ROC and AUC value
- Successful pick-up rate

<u>Comparison o</u>

	Methods	Average AUC	Successful pick-up rate
tion Iance	SEPPA (1.80)	0.64	96.64%
edic ¹ form	СЕР	0.52	NA
per	DiscoTope (-7.70)	0.60	89.08%
	BEpro (1.30)	0.56	90.76%

SEPPA --- Spatial Epitope Prediction of Protein Antigens

http://lifecenter.sgst.cn/seppa

SEPPA server Batch query Example	Help Contact information
Please choose one submission method: 😍	
1. Enter an existing PDB ID and chain(s):	
PDB ID: Chain(s):	Datah muanyiti atau tauna at miating DDD (Dat 🕐)
2. Or upload a local file in <u>PDB format</u> : PDB File:	Enter PDB IDs and chains:
Chain(s):	
Please specify a threshold: 🖉	
Threshold: 1.80	
Submit Reset	
	Please specify a threshold: 🌄
	Threshold: 1.80
	Submit Reset

Paper published--- Sun J, Wu D, Xu TL, Wang XJ, Xu XL, Tao L, Li YX, and Cao ZW, **SEPPA: a computational server for spatial epitope prediction of protein antigens**. *Nucleic Acids Res*, 2009. **37**(Web Server issue): p. W612-6.

Outline

Can we predict the conformational epitope?

- Current tools---CEP, DiscoTope, ElliPro, PEPOP, BEpro , SEPPA
- B-Pred---a structure based B-cell epitopes prediction server (?)
- Evaluation

How to improve -- Future?

Software Demo: SEPPA

SEPPA

For conformational B-cell epitope prediction

Higher score corresponds to higher probability the residue to be involved in an epitope

SEPPA Homepage

http://lifecenter.sgst.cn/seppa/index.php

SEPPA server Batch query Example Help Contact information
Please choose one submission method: 🕐
1. Enter an existing PDB ID and chain(s):
PDB ID: Chain(s):
2. Or upload a local file in <u>PDB format</u> :
* A local file without chain ID column could also be uploaded for prediction.
PDB File: 选择文件 未选择文件
Chain(s):
Please specify a threshold: 😨
Threshold: 1.80
Submit Reset

http://bio.shmtu.org

Demo Data-----1NCA

Refined crystal structure of the influenza virus N9 neuraminidase-NC41 Fab complex

Molecular Description (from PDB)

Molecular Description								
Classification Structure W	bn: Hydrolase(o Glycosyl) /eight: 92741.77 ()							
Molecule: Polymer: Chains: EC#: Organism UniProtKB:	INFLUENZA A SUBTYPE N9 NEURAMINIDASE 1 Type: protein N 3.2.1.18 © Influenza A virus (A/tern/Australia/G70C/1975(H1 P03472 ©	Length: 1N9)) \wp	389					
Molecule: Polymer: Chains: Organism	IGG2A-KAPPA NC41 FAB (LIGHT CHAIN) 2 Type: protein L Mus musculus <i>P</i>	Length:	214					
Molecule: Polymer: Chains: Organism UniProtKB:	IGG2A-KAPPA NC41 FAB (HEAVY CHAIN) 3 Type: protein H Mus musculus P01865	Length:	221					

More information

http://www.rcsb.org/pdb/explore/explore.do?structureId=1NCA

Data input

Parameter Threshold

The default value of THRESHOLD is set at 1.80.

lower threshold — > more residues will be included as predicted epitope residues

Output Page

Antigenic Prediction for 1NCA.pdb:

Summary for the prediction result

Chain: N Threshold: 1.80 Number of total residues: 389 Number of predicted epitope residues: 39

View 3D structure in Jmol

1-50	IRDFNNLTKG LCTINSWHIY GKDNAvRIGE DSDVLvTREp YvsCDPDECR
51-100	fyaLSQGTTI RG <mark>KH</mark> S <mark>NG</mark> TIH DRS <mark>Q</mark> YRAlIs WPLSSPPTVY NSRVECIGWS
101-150	stsCHDgKTR MSiciS <mark>GP</mark> N <mark>N</mark> <mark>N</mark> aSaViWYNR <mark>RPV</mark> T <mark>E</mark> INTW <mark>A</mark> RNI1RTQEsE
151-200	CVCHNgVCPv VfTdGSA <mark>T</mark> GP AETRiYyfKE gKILKWEPLA GTAKHIEECS
201-250	CYgERAEITe teRdNWQGsN RpViRIDPVA MTHTSQyICS pVLTdN <mark>P</mark> R <mark>PN</mark>
251-300	DP <mark>TV</mark> GKCNDP YP <mark>GNNN</mark> NgVK GFSyLDGVNT wlGRT <mark>ISIAS</mark> R <mark>S</mark> gYEmLKvP
301-350	NaLTDDKSKP TQGQTivL <mark>N</mark> T DWsGYSgSfm DYWAEGECYR aCfYvelIRG
351-400	RPKE <mark>DKVW</mark> WT SNSIVSMCSS TEFLGQWDWP DGAKI <mark>E</mark> YF <mark>L</mark>

Predicted result format: EPITOPE RESIDUE | NON-EPITOPE RESIDUE | core residue

Download the score file

Explain the result 🕐

View 3D structure in Jmol

Tints from blue to red represent a rising antigenicity

View 3D structure in Jmol

1NCA.pdb_N

Selecting the "Highlighted epitope residues predicted" checkbox

Selecting the "Label epitope residues predicted" checkbox

View 3D structure in Jmol

1.9659

1.8878

1.8097

1.7317 1.6536

1.5755

1.4974

1.4194

Þ

413

632

▶ o SEPPA

Þ.

1NCA_N

A glance of the prediction result

1-50	IRDFNNLTKG LCTINSWHIY GKDNAvRIGE <mark>D</mark> SDVLvTREp YvsCDPDECR
51-100	fyaLSQGTTI RG <mark>KH</mark> S <mark>NG</mark> TIH DRS <mark>Q</mark> YRALIs WPLSSPPTVY NSRVECIGWS
101-150	stsCHDgKTR MSiciS <mark>GP</mark> N <mark>N N</mark> aSaViWYNR <mark>RPV</mark> T <mark>E</mark> INTW <mark>A R</mark> NIlRTQEsE
151-200	CVCHNgVCPv VfTdGSA <mark>T</mark> GP AETRiYyfKE gKILKWEPLA GTAKHIEECS
201-250	CYgERAEITc tcRdNWQGsN RpViRIDPVA MTHTSQyICS pVLTdN <mark>P</mark> RPN
251-300	DP <mark>TV</mark> GKCNDP YP <mark>GNNN</mark> NGVK GFSyLDGVNT wlGRT <mark>ISIAS</mark> R <mark>S</mark> GYEmLKvP
301-350	NaLTDDKSKP TQGQTivL <mark>N</mark> T DWsGYSgSfm DYWAEGECYR aCfYvelIRG
351-400	RPKE <mark>DKVW</mark> WT SNsIvsMCSS TEFLGQWDWP DGAKI <mark>E</mark> YF <mark>L</mark>

Notes: Residues are listed sequentially. The predicted epitope residues are highlighted in yellow. The core residues are shown in lowercase

The complete score file

SEPPA(Spatial Epitope Prediction of Protein Antigens) [Designed for B-cell Conformational Epitope Prediction]

Thu Oct 11 01:53:13 2012

----SEPPA Prediction Result-----

	Antigenic Prediction for 1NCA.pdb:				
Summary Information	Cha Thr Num Num	Chain: N Threshold: 1.80 Number of total residues: 389 Number of predicted epitope residues: 39			
	cha	inID) resSeq r	esName score	
	N	81	ILE 1.69		
	N	82	ARG 1.79		
	N	83	ASP 1.66		
	N	84	PHE 1.65		
Prodicted score for	N	85	ASN 1.50		
	N	86	ASN 1.53		
each residue	N	87	LEU 1.43		
	N	88	THR 1.54		
	N	89	LYS 1.50		
	N	90	GLY 1.47		
	N	91	LEU 1.39		

Multiple PDB ID entries

include PDB ID and chain ID(s), which are separated with space(s) in one line

