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Abstract  

Background 

A conformational epitope (CE) is composed of several antigenic determinants 

which are spatially near to each other on structural surface of a protein. These 

segments form an antigen’s epitope which may be bound by a specific paratope either 

from a B-cell receptor or an antibody within the immune system. The prediction of 

CEs plays an important role in vaccine designs and immuno-biological experiments.  

Methods 

The grid-based and mathematical morphological algorithms were applied for 

efficient detection and extraction of surface atoms, and initial surface resides of 

predicted CE candidates were exclusively selected according to the local average 

energy distribution. The novel CE prediction system was then developed based on the 

characteristics of surface rates, occurrence frequency of geometrical neighbouring 

residue combination, and knowledge-based energy functions. The trained and 

weighted combinatorial features of surface residue contents and potentials were 

integrated for a simple and effective CE prediction system. 



 - 3 - 

Results 

In this paper, three benchmark datasets were employed for evaluating the 

prediction performance. Compared to those well-developed tools, the proposed 

method performed well in both aspects of accuracy and efficiency. For these 

benchmark datasets, the proposed system achieved an average of 38.12% for 

sensitivities, 88.05% for specificities, and 82.79% for accuracy under a 10-fold 

verification mechanism. 

Conclusions 

The proposed method combined both features of energy profile of surface 

residues and occurrence frequency of geometrical amino acid pair to identify possible 

CEs for antigen structures, which facilitates biologists to achieve better solutions of 

immune-biological studies and to develop synthetic vaccines.  

1. Introduction 

B-cell epitopes, also known as antigenic determinants, are defined as a binding 

portion of an antigen which is able to interact with an antibody to elicit either cellular 

or humoral immune response [1, 2]. It indicates that epitopes are entities contributing 

with a specific recognition activity that can be recognized by a particular B-cell 

receptor within the immune system to generate antibody responses [3]. B-cell epitope 

recognition possesses huge potential for immune applications such as disease 

prevention, vaccine design, diagnosis and treatment. Though clinical and biological 

researchers depend on biochemical and biophysical experiments to identify epitope 

binding sites, these approaches are expensive and time-consuming but not always 

successful. Therefore, a reliable prediction of B-cell epitopes is an important task for 

computational immunology and vaccine design [4]. With the aids of accurate epitope 

prediction tools, immunologists are able to extract appropriate protein segments of 
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their interests, and it reduces experimental efforts for the design of vaccines and 

immunodiagnostics.  

In general, epitopes can be categorized into linear (or continuous) and 

conformational (or discontinuous) types. A linear epitope (LE) is given to a short 

continuous fragment of amino acids. Though it doesn’t retain information of the fold 

surface conformation, it reacts weakly with antibodies. The other type of a 

conformational epitope (CE) is composed of a patch of residues that doesn’t require 

continuous in the protein sequence but preserving spatial vicinity [5]. In previous 

work, several tools focused on linear epitope predictions which required the content 

of protein sequences as the essentials, such as BEPITOPE [6], BCEPred [7], BepiPred 

[8], ABCpred [9], LEPD [10], LEPS [11] and BCPreds [12]. These tools utilized 

physical-chemical propensity of amino acids within a protein sequence, such as 

hydrophilicity, polar, charge or secondary structure, and applied quantitative matrices 

or machine learning algorithms, such as hidden Markov model (HMM), support 

vector machine (SVM) and artificial neural network (ANN) techniques, to predict the 

binding peptides. However, the number of LEs on native proteins had been estimated 

with a portion of 10% on B-cell epitopes in past analysis [13]. Most of B-cell epitopes 

were recognized and constructed to form the native conformation as CEs. Therefore, 

to identify discontinuous epitopes becomes a more practical and valuable task. 

 For CE prediction, several prediction tools based on the spatial information 

and combined with various epitope characteristics were proposed in the past decade, 

which include CEP [14], DiscoTope [15], PEPOP [16], ElliPro [17], PEPITO [18], 

and SEPPA [19]. All these prediction tools adopted various combinations of physical-

chemical characteristics and trained statistical features from known antigen-antibody 

complexes to identify CE candidates.  
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A different approach based on phage display was utilized to discover relationship 

between protein-protein interaction from interested antigens. Phage display is one of 

widespread techniques applied to obtain peptide mimotopes that are selected by 

binding with a given monoclonal antibody in a similar way to a native epitope. The 

location of mimotope on the surface of the antigen can be considered as functional 

epitope mimics. Therefore, not only LEs but also CEs could be identified based on the 

mimotope analysis. The MIMOP is a hybrid computational tool that provided an 

epitope region prediction from information of a mimotope peptide sequence [20]. 

Similarly, Mapitope and Pep-3D-Search combined mimotopes and their own 

developed algorithms to search matched patterns on an antigen surface respectively. 

The algorithms identified discontinuous epitopes according to the Ant Colony 

Optimization (ACO) technique and several statistical thresholding parameters of 

amino acid pair affinity [21, 22]. 

The complementarily bounded surface between an antigen and an antibody could 

be observed from a structural complex, and the binding specificity could be 

determined according to hydrogen bonds, van der Walls contacts, electrostatics 

hydrophobic interactions. It was also experimentally verified that only a few energetic 

residues located within the total contact area contributed sufficient binding affinity 

and could be defined as true antigenic epitopes [23]. Hence, an intuitive concept to 

extract energetic residues from structural surface was proposed in this study. Based on 

thermodynamic hypothesis, we assumed that a native unbound antigen structure is at 

the lowest free energy state, but relatively, the most active residues located on this 

antigen’s surface would possess higher potential energies for binding with an 

antibody under various physiological conditions. There are two different types of 

potential energy functions are currently estimated in recent study. One is the physical-

based potential which focuses on the fundamental analysis of forces between atoms, 
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and the other is the knowledge-based potential which extracts parameters from 

experimentally solved protein structures[24]. Due to heavy computational 

complexities required by the former approach, the second way to estimate energy by 

distance-dependent atomic knowledge-based potential was adopted in this study, and 

the formulated energy functions of all surface residues were mainly provided by the 

Protein Structure Analysis web system (ProSA) [25]. 

In addition to the energy function of surface residues, according to Chen's study 

in linear epitope prediction [26], it showed that the occurrence frequencies of some 

amino acid pairs in CE epitope datasets are significantly higher than those in non-

epitope datasets. This statistical feature might be reasonably applied to enhance the 

performance of a CE prediction system. Hence, both the advantages of featuring 

statistical distribution of verified CE epitopes and preserving high energy function of 

candidate surface residues are considered simultaneously in this study. Here, surface 

residues with higher energy function and located within a constrained radius were 

initially and exclusively assigned as initial anchors, and followed by extending 

neighbouring residues to formulate predicted CE clusters.  To our best knowledge, the 

combination of energy function of surface residues and the occurring frequency of 

neighbouring residues was not proposed yet. Hence, in this study the distributions of 

energy function and appeared combination of geometrical paired residues from true 

epitopes were discussed and analyzed, and the adoption of these information was 

applied to train the best parameters for CE prediction.  From the experimental results, 

our proposed method provided outstanding performance for extracting effective 

candidates on discontinuous epitope prediction. All the details will be presented in the 

following sections. 
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2. Material and Methods  

2.1 System Architecture 

The proposed system for predicting conformational epitope was constructed by 

four main stages including grid-based surface structure analysis, energy profile 

computation, anchor assignment and CE clustering and ranking. The system flow is 

depicted in Figure 1.  

 

Figure 1 System configuration for the proposed CE prediction system. 

 

The first module of “Grid-based Surface Structure Analysis” receives a PDB ID 

or PDB file from RCSB Protein Data Bank [27] and performs the protein data 

sampling processes for extracting surface information. Subsequently, 3D 



 - 8 - 

mathematical morphology techniques were applied to extract the solvent accessible 

surface from a protein antigen in “Surface Extraction” [28], and surface rates of atoms 

were calculated by evaluating the exposure ratio contacted with solvent molecules. 

Then the proposed system would sum up all side chain atoms of each residue as the 

residue surface rates and exported to a look-up table. The next module of “Energy 

Profile Computation“ utilized the results from ProSA web system to rank the energy 

profiles of each residue on antigen surface. The energy profiles were ranked for the 

following CE anchor selection. Surface residues with higher ranked values and 

located within mutually exclusive positions will be considered as initial 

conformational epitope anchors. The third module performed CE neighbouring 

residue extension from initial CE anchors to retrieve neighbouring residues based on 

energy indices and surface residue distance. Besides, the pairwise amino acid 

statistics were calculated for selecting suitable predicted CE clusters. At the last 

module, the values of knowledge-based energy propensity and occurrence frequencies 

of geometrical amino acid pairs were combined with weighted coefficients to provide 

final predicted CEs.  

 

2.2 Preparation of testing datasets 

In this study, the DiscoTope, Epitome database, and IEDB (Immune Epitope 

Database) were used to verify the prediction results.  DiscoTope provided a 

benchmark dataset consisted of 70 antigen-antibody complexes which were obtained 

from the SACS database [29] with only structures determined to a resolution less than 

3 Å and with protein antigens of greater than 25 amino acid residues. The estimated 

epitope residues from DiscoTope dataset were defined and verified by evaluating each 

residue in the antigen chain within a 4 Å distance with respect to the correspondingly 

tied residues in the bound antibody structure.  Epitome dataset contained 134 protein 
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chains which were inferred by the distance between protein antigens and 

Complementary Determining Regions (CDRs) of the correspondingly tied antibodies. 

They labelled residues as interaction sites if any of their particular atoms were 

measured within a distance of less than 6 Å from CDRs of the antibody. The IEDB 

dataset collected in this study was composed of 43 protein antigen chains from IEDB 

website (www.immuneepitope.org). This dataset contained only for protein antigens 

with complex structure annotation in the field of “ComplexPdbId” from 

“iedb_export” zip file. Since there were 11 protein chains with total number of 

residues less than 35, here we only selected 45 antigen-antibody complexes to 

represent the IEDB benchmark dataset. A non-redundant dataset of 163 antigen 

structures from the previous datasets was also constructed for the final verification 

processes.  

 

2.3 Surface Structure Analysis 

 Interaction between an antigen and an antibody was usually induced by the 

atoms located on surface areas. The definitions of protein surface including solvent 

accessible surface and molecular surface were first implied by [30] as shown in 

Figure 2. Then, Richards introduced molecular surface constructed by “contact 

surface” and “re-entrant surface”. The contact surface represents the part of the van 

der Waals surface which can be directly touched by solvent. The re-entrant surface 

consists of the inward-facing part of the probe sphere when it is in contact with more 

than one molecular atoms [31]. In 1983, Connolly employed the Gauss-Bonnet 

approach to calculate molecular surface, who defined a probe with small size to roll 

over a whole protein structure and obtained the molecular surface. Based on these 

definitions described above, we proposed a novel algorithm to efficiently retrieve 

surface regions. 
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Figure	
  2	
  	
  A	
  cartoon	
  illustration	
  of	
  protein	
  surface	
  definitions.	
  

 

2.3.1 Three-dimension Mathematical Morphology 

In this study, surface region identification was achieved by employing 

combinatorial morphological operators including dilation and erosion operations. 

Mathematical morphology was initially devised as a rigorous theoretic framework for 

shape and structural analysis of binary images. Based on its superior characteristics in 

describing shape and structural attributes, an efficient and effective algorithm can be 

designed for detecting precise surface rates from each residue. Here, an antigen 

structure was denoted as 𝑋 as an object in a 3-D grid: 

𝑋 = {v: 𝑓 v = 1, v = (𝑧,𝑦, 𝑥) ∈ Z!}. 

where 𝑓 was called as the characteristic function of 𝑋. On the other hand, the solvent 

elements were regarded as the background 𝑋! which could be defined as follows: 

𝑋! = {v: 𝑓 v = 0, v = (𝑧,𝑦, 𝑥) ∈ Z!}. 

A sphere with pre-defined radius of 1.5 Å was defined as a structure element B. The 

symmetric of B with respect to the origin (0, 0, 0) was denoted by 𝐵! and written as  

𝐵! = {−v: v ∈ 𝐵}. 

The translation of B by a vector d was then denoted by 𝐵! and performed as 

𝐵! = {v+ d: v ∈ 𝐵}. 
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Three elementary morphological operators were then applied for surface region 

calculation and listed below: 

Dilation: 𝑋⨁𝐵! = {v ∈ Z!:B! ∩ 𝑋 ≠ ∅} 

Erosion:   𝑋⊖ 𝐵! = {v ∈ Z!:B! ⊂ 𝑋} 

Difference:   𝑋⨁𝐵! − (  𝑋⊖ 𝐵!) 

The surface rate of each atom could be obtained by calculating the ratio of 

intersected and un-intersected regions with respect to the overlapping areas between 

the results of morphological difference operation and the original protein atoms. 

Figure 3 depicts an example step by step for extracting the surface regions and 

calculating the surface rate of an atom. 

 

Figure	
   3	
   Procedures	
   of	
   mathematical	
   morphology	
   operations	
   for	
   surface	
   rate	
  

calculation:	
   including	
  the	
  original	
  structure,	
  dilated,	
  eroded,	
  difference	
  regions,	
  and	
  

surface	
  regions	
  of	
  each	
  atom.	
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2.3.2 Surface Rate Computation 

The properties of side chains of amino acid residues were considered as an 

important factor in protein-protein interaction. There were numerous literatures 

dealing with influences of side chains on protein binding issues. Antigen-antibody 

binding might bring conformational change of protein structures, and amino acids 

with flexible side chains were considered as potentially useful in this situation. 

Moreover, hydrophobic and polar side chains were also regarded as major binding 

affinities formed protein-protein interface in experiments [32-37]. Therefore, side 

chains of residue affections were considered as main inspection in the proposed 

algorithm. Through 3-D mathematical morphology operations, the rate of each 

molecular atom, AR(r), can be precisely acquired. Here, only side-chain atoms were 

involved on surface rate computation, and the surface rate of each residue was 

denoted as SR(r). It was calculated by the following formula: 

𝑆𝑅 𝑟 =    𝑖 ∈ 𝑅 ∶   
1
𝑁 𝐴𝑅 𝑖

!

!!!

 

where i represents the ith atom on a specific amino acids, R is all atom types of 

selected residue, and N is the total number of atoms of the residue “r”. 

According to the definition, statistics of surface rate of verified epitope residues 

and all residues of benchmark datasets were analysed and illustrated in Error! 

Reference source not found.. From the statistics, it indicated that true epitopes often 

possessed higher surface rates to bind with surface residues of antibodies. After 

surface rate analysis, the proposed system set a look-up table and minimum 

thresholding of surface rate for further prediction processes. 
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Figure 4  The distribution of surface rate in true CE Residues and overall residues. 

 

2.4 Energy Profile Computation 

The knowledge-based potential was adopted for representing the energy of each 

surface residue, which was obtained from the distribution of pairwise distances to 

extract effective potentials between residues. The potential of each residue was 

usually constructed from an all-heavy-atom representation, and the heavy atoms in a 

protein were previously categorized according to the specific types of residues or 

atoms.  Basically, the potential for any pair of two heavy atoms is calculated 

according to the observed and expected number of contacts within a certain distance. 

The potential between two atoms indicated the level of attractive interaction between 

two different residues. Though the main application of the knowledge-based potential 

was used for improving the folding recognition, structure prediction and refinement, 

here we adopted the advantages of calculated energy function from each surface 

residue to distinguish various statuses of active conditions. To understand the 

differences of knowledge-based potential between the residues of true CE epitopes 
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and non-CE epitopes, we calculated the surface energy profiles of various parameter 

settings from all 247 known antigens. The results have shown that the true CE 

residues possessed higher energy functions than non-epitope residues. If the window 

size was set as 8 from ProSA system, the average energy of each  verified CE residue 

cluster of an antigen from Epitome, DiscoTope, and IEDB datasets were 69.4%, 75% 

and 51.2% higher than average energy of non-CE residues of that antigen, 

respectively. It was also observed that at least one of the CE residues ranked in the top 

20% of energy function of all surface residues, and most of the highest energy values 

of all CE residues ranked in the top 3% for all antigens. Therefore, in this study we 

selected the first 20% residues with higher energy as our initial CE anchors. Besides, 

the selected initial seeds should possess surface rates within the range of 20% to 50% 

according previous statistics.  All satisfied seed residues would be mutually examined 

with a shortest distance of 12 Å to eliminate possible CE candidate groups. Once the 

initial seeds were decided, the neighbouring residues will be included within the 

radius of 10 Å.   

	
  

2.5 Occurrence Frequency Analysis of Geometrical Amino 

Acid Pairs 

The proposed filtering mechanism is adopted from Chen’s idea as statistical 

features for CE verification. However, the amino acid pairs were formulated from 

geometrical neighbouring relationship instead of continuing sequence sense. Error! 

Reference source not found. defines the required variables in statistical analysis for 

query amino acid pair. Since there are 20 different amino acids and neglect order 

relationship within a pair of residues, a total of 210 possible combinations of surface 

residue pair were analyzed for their occurence frequencies within the true CE epitope 

and non-CE epitope datasets. Higher occurence frequencies of geometrical amino acid 
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pair within various radii (range from 2 Å to 6 Å) were analysed and their 

corresponding CE indices for each pair were also calculated.  

Table 1: Required variables in statistical analysis for geometrical amino acid pairs 

(GAAP). 

Variables Description 

𝑁!""#!  
The occurrence times of a geometrical amino acid pair in the true CE 

epitope dataset. 

𝑁!""#!
 

The occurrence times of a geometrical amino acid pair in the non-CE 

epitope dataset. 

𝑓!""#!  
The occurrence frequencies of a geometrical amino acid pair in the true CE 

epitope dataset. 

𝑓!""#!  
The occurrence frequencies of a geometrical amino acid pair in the non-CE 

epitope dataset. 

𝑇𝑜𝑡𝑎𝑙!""#!  
The total occurrence times of all geometrical amino acid pairs in the true CE 

epitope dataset. 

𝑇𝑜𝑡𝑎𝑙!""#!  
The total occurrence times of all geometrical amino acid pairs in the non-CE 

epitope dataset. 

CEI!""# CE Index of geometrical amino acid pair. 

 

The CE Index (CEIGAAP) of a geometrical amino acid pair was obtained by the 

following equations, which calculated the frequency of occurrence of a particular pair 

in the CE dataset divided by the frequency of occurrence of the same pair in the non-

CE epitope dataset, and then took logarithm of the ratio to base 10. The final CE 

Index was normalized within the range of [0,1]. In this study, the total occurrence 

times of all geometrical amino acid pairs in the true CE epitope dataset are 2834 pairs, 

and the total occurrence times of all geometrical amino acid pairs in the non-CE 

epitope dataset are 36,118 under the radius of 2 Å. For example, the highest two CEIs 

were “HQ” of 0.921 and “EH” of 0.706 calculated from 247 antigens.  

 𝑓!""#! =
𝑁!""#!

𝑇𝑜𝑡𝑎𝑙!""#!

 

 

 𝑓!""#! =
𝑁!""#!

𝑇𝑜𝑡𝑎𝑙!""#!
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 CEI!""# = log  [
𝑓!""#!

𝑓!""#! ]  

Individual CE index in a predicted CE cluster will be summed up and divided by total 

number of CE pairs within the cluster to obtain a corresponding average CE Index of 

the predicted CE patch. Finally, the CEIGAAP will multiply with a weighting 

coefficient and combined with the average energy function to obtain a final CE 

ranking index. Based on the combined index, the proposed CE prediction system will 

provide three best CE candidate groups for users. One example of protein 1ORS:C is 

shown in the Figure 5. Protein surface detection (Figure 5a), energy thresholding 

(Figure 5b), three predicted CE clusters (Figure 5c), and the true-CE residue of 

protein 1ORS:C (Figure 5d) were shown for demonstration purposes.  
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Figure 5 (a) Protein surface of 1ORS:C; (b) surface seed residues possessing energy 

function within top 20%; (c) top three CE predicted groups by removing neighbouring 

seeds located within 12 Å and extended neighbouring residues with 10 Å; (d) the true 

CE residues. 

 

3. Experimental Results 

A novel algorithm based on surface energy and occurrence frequency of 

neighbouring residue was proposed to predict CEs. To verify the performance of the 

developed system, we have employed 247 protein structures and 163 non-redundant 

structures collected from three benchmark datasets under 10-fold verification 

mechanism. All these verified CEs on protein structure were obtained either from 

experimental observation or inferred from computational analysis. For each predicted 

CE of the query protein, we have calculated the number of epitope residues correctly 

predicted as epitope residues (TP), the number of non-epitope residues incorrectly 

predicted as epitope residues (FP), the number of not predicted as epitope residues 

and indeed non-epitope residues (TN), and the number of verified epitope residues not 

correctly predicted by the system (FN). The following parameters were calculated in 

each prediction for comparison: 

 

Sensitivity  (SE)   =   TP÷ TP+ FN  

Specificity  (SP)   =   TN÷ TN+ FP  

Positive  Prediction  Value  (PPV)   =   TP÷ TP+ FP  

Accuracy  (ACC)   = TP+ TN ÷ TP+ TN+ FN+ FP  
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Error! Reference source not found. and Error! Reference source not found. 

provide the evaluation of weighting coefficient combination for both energy function 

and occurrence frequency of pairwise amino acid features. Error! Reference source 

not found. is the result for average energy function of residues located within a radius 

of 6 Å, and Error! Reference source not found. is the case for considering energy 

function of individual residue. The results have shown that average energy function 

provided a better performance than considering single residue. However, both 

approaches resulted in a quite stable performance for sensitivity, specificity, positive 

prediction value, and accuracy. The best combination of weighting coefficients for 

sensitivity is 10% for average patch energy function and 90% for occurrence 

frequency. This is mainly due to the energy function criteria had been applied in the 

previous step for CE anchor selection. Therefore, the feature of energy function would 

not affect the prediction results with obvious influences.  In this case, the initial 

parameter settings for new target antigen protein and the following 10-fold 

verification will apply with these trained combinations. 
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Table 2: Average performance of CE prediction for various weighting coefficient 
combinations between average energy (Avg. EG) within a 6 Å-radius and pairwise residue 
occurrence rate (PR). Each antigen was predicted with three CE candidates. 

Weighting 
Combinations SE SP PPV ACC 

0%EG+100%PR 0.38174909 0.88026912 0.28948427 0.82762314 

10%EG+90%PR 0.41375626 0.88491713 0.318401513 0.83550329 

20%EG+80%PR 0.40411907 0.88339643 0.310372011 0.83364651 

30%EG+70%PR 0.40071021 0.88472985 0.308931260 0.83462812 

40%EG+60%PR 0.40235963 0.88500477 0.308956909 0.83484050 

50%EG+50%PR 0.40032410 0.88526988 0.308866524 0.83494350 

60%EG+40%PR 0.39826932 0.88709592 0.310329851 0.83674728 

70%EG+30%PR 0.39788531 0.88708866 0.310057838 0.83681763 

80%EG+20%PR 0.39440495 0.88639840 0.307165993 0.83575056 

90%EG+10%PR 0.39315133 0.88647102 0.307463589 0.83588749 

100%EG+0%PR 0.39477960 0.88665173 0.307860654 0.83606191 

 

Table 3: Average performance of CE prediction for various weighting coefficient 
combinations between individual energy (Ind. EG) and pairwise residue occurrence rate 
(PR). Each antigen was predicted with three CE candidates. 

Weighting 
Combinations SE SP PPV ACC 

0%EG+100%PR 0.38904213 0.88545484 0.297620232 0.83316720 

10%EG+90%PR 0.38730979 0.88374611 0.295145236 0.83109301 

20%EG+80%PR 0.40874497 0.88785200 0.315718499 0.83729001 

30%EG+70%PR 0.39293810 0.88612791 0.305437883 0.83393131 

40%EG+60%PR 0.40530435 0.88759054 0.313223041 0.83635800 

50%EG+50%PR 0.40110938 0.88624436 0.314452191 0.83427900 

60%EG+40%PR 0.38267268 0.88614126 0.306830027 0.83289012 

70%EG+30%PR 0.36904261 0.88510455 0.297330839 0.83028217 

80%EG+20%PR 0.35784993 0.88327931 0.287382221 0.82740505 

90%EG+10%PR 0.35565826 0.88242811 0.283611851 0.82639348 

100%EG+0%PR 0.349151010 0.88206203 0.281820846 0.82577874 
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Figure 6 To observe the performance of different combinations of energy function and 

the occurrence frequency rate of pairwise amino acids. The results have shown that 

both average and individual energy indices maintained with a quite stable 

performance in sensitivities. The average energy profiles provided a better 

performance than individual residue consideration.   

 

To evaluate the CE predicted system, we adopted a 10-fold cross validation 

mechanism. The total 247 protein antigens from DiscoTope, Epitome, and IEDB 

datasets and the 163 non-redundant antigens were applied as two individual testing 

datasets. For the first set of 247 antigens, the results indicated that the proposed 

system achieved an average sensitivity of 38.12%, an average specificity of 88.06%, 

an average positive prediction value of 29.18%, and an average accuracy of 82.79%. 
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For the second set of non-redundant 163 antigens, an average sensitivity of 34.59%, 

an average specificity of 88.70%, an average positive prediction value of 29.24%, and 

an average accuracy of 82.74% were obtained. For these two testing datasets, the 

number of CE clusters was limited to 3 predicted CE sets. 

With rapidly increasing number of solved protein structures, CE prediction has 

been more and more desirable for biomedical and immunological scientists to obtain 

the ultimate capacity in immune applications. In this paper, a novel method combined 

characteristics of surface rate, knowledge-based energy function, and occurrence 

frequency of geometrical amino acid pairs was proposed for predicting CE residues 

located in discontinuous B cell antigenic determinates. Compared to those well-

developed tools, the proposed method performed well in both aspects of accuracy and 

efficiency. 

	
  

Discussion and Conclusion 
With rapidly increasing number of solved protein structures, CE prediction has 

been more and more desirable for biomedical and immunological scientists to obtain 

the ultimate capacity in immune applications. In this paper, a novel method combined 

characteristics of surface rate, energy function, and geometrical amino acid pairs was 

proposed for predicting CE residues located in discontinuous B cell antigenic 

determinates. Since some existing systems do not allow users to evaluate the AUC 

values through parameter settings, there exists another approximated evaluation for 

AUC measurement by taking the average of specificity and sensitivity from system’s 

default settings [19]. To compare the prediction performance with DiscoTope system 

with respect to the DiscoTope’s testing dataset, our proposed system provided a 

higher average specificity of 89.1% than DiscoTope’s 75%, and a higher average 
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sensitivity of 56.5% than DiscoTope’s 47.3%. Hence, the estimated AUC value of 

0.728 of our proposed method is superior to an estimated AUC value of 0.612 of 

DiscoTope. For comparing with the PEPTIO (BEPro) system, we have utilized both 

Epitome and DiscoTope datasets, and the PEPITO system produced averaged AUC 

values of 0.683 and 0.753, respectively. In comparison with our proposed system, we 

have achieved comparable AUC values of 0.694 and 0.728 for Epitome and 

DiscoTope datasets, respectively. The average number of predicted CE groups from 

our proposed system was about 6 CE candidates, and the best predicted CE cluster 

was ranked at an average of 2.9. This is also the reason for providing three CE 

candidates initially from our proposed system. Besides, due to the distance limitation 

for extending neighbouring residues, our proposed system generally predicted CEs 

with limited residues and it performed better than other system in terms of specificity. 

However, this will lower down the quality of sensitivity simultaneously. Perhaps 

future research can enhance on examining the distributions of various propensities 

between epitopes and non-epitopes, specific geometrical shape of query antigens, and 

unique corresponding relationship between antigens and antibodies. The clustered 

information should be able to facilitate appropriate selection of initial CE anchors and 

provide precise CE candidates for immunologists. 
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