VIOLIN Logo
VO Banner
Search: for Help
About
Introduction
Statistics
VIOLIN News
Your VIOLIN
Register or Login
Submission
Tutorial
Vaccine & Components
Vaxquery
Vaxgen
VBLAST
Protegen
VirmugenDB
DNAVaxDB
CanVaxKB
Vaxjo
Vaxvec
Vevax
Huvax
Cov19VaxKB
Host Responses
VaximmutorDB
VIGET
Vaxafe
Vaxar
Vaxism
Vaccine Literature
VO-SciMiner
Litesearch
Vaxmesh
Vaxlert
Vaccine Design
Vaxign2
Vaxign
Community Efforts
Vaccine Ontology
ICoVax 2012
ICoVax 2013
Advisory Committee
Vaccine Society
Vaxperts
VaxPub
VaxCom
VaxLaw
VaxMedia
VaxMeet
VaxFund
VaxCareer
Data Exchange
V-Utilities
VIOLINML
Help & Documents
Publications
Documents
FAQs
Links
Acknowledgements
Disclaimer
Contact Us
UM Logo

Vaccine Detail

Moderna COVID-19 vaccine
Vaccine Information
  • Vaccine Name: Moderna COVID-19 vaccine
  • Target Pathogen: SARS-CoV-2
  • Target Disease: COVID-19
  • Product Name: mRNA-1273
  • Manufacturer: Moderna
  • Vaccine Ontology ID: VO_0005157
  • CDC CVX code: 207
  • CDC CVX description: SARS-COV-2 (COVID-19) vaccine, mRNA, spike protein, LNP, preservative free, 100 mcg/0.5mL dose
  • Type: mRNA vaccine
  • Status: Licensed
  • Host Species for Licensed Use: Human
  • Antigen: S-2P antigen, made of the SARS-CoV-2 glycoprotein with a transmembrane anchor and intact S1-S2 cleavage site (Wang et al., 2020).
  • Immunization Route: Intramuscular injection (i.m.)
  • Description: A SARS-CoV2 RNA vaccine made of lipid nanoparticle with mRNA which encodes the S-2P antigen, made of the SARS-CoV-2 glycoprotein with a transmembrane anchor and intact S1-S2 cleavage site (Wang et al., 2020).
Host Response

Macaque Response

  • Vaccination Protocol: Animals were vaccinated intramuscularly at week 0 and at week 4 with either 10 or 100 μg of mRNA-1273 in 1 ml of 1× phosphate-buffered saline (PBS) into the right hind leg. (Corbett et al., 2020)
  • Immune Response: The mRNA-1273 vaccine candidate induced antibody levels exceeding those in human convalescent-phase serum, with live-virus reciprocal 50% inhibitory dilution (ID50) geometric mean titers of 501 in the 10-μg dose group and 3481 in the 100-μg dose group. Vaccination induced type 1 helper T-cell (Th1)–biased CD4 T-cell responses and low or undetectable Th2 or CD8 T-cell responses. (Corbett et al., 2020)
  • Challenge Protocol: At week 8 (4 weeks after the second vaccination), all animals were challenged with a total dose of 7.6×105 plaque-forming units (PFU). The stock of 1.9×105 PFU per milliliter SARS-CoV-2 (USA-WA1/2020 strain) was administered in a volume of 3 ml by the intratracheal route and in a volume of 1 ml by the intranasal route (0.5 ml per nostril). (Corbett et al., 2020)
  • Efficacy: Viral replication was not detectable in BAL fluid by day 2 after challenge in seven of eight animals in both vaccinated groups. No viral replication was detectable in the nose of any of the eight animals in the 100-μg dose group by day 2 after challenge, and limited inflammation or detectable viral genome or antigen was noted in lungs of animals in either vaccine group. (Corbett et al., 2020)

Human Response

  • Vaccination Protocol: All the participants were assigned sequentially to receive two doses of either 25 μg or 100 μg of vaccine administered 28 days apart. (Anderson et al., 2020) The mRNA-1273 vaccine was administered as a 0.5-ml intramuscular injection into the deltoid on days 1 and 29 of the study.
  • Immune Response: By day 57, among the participants who received the 25-μg dose, the anti–S-2P geometric mean titer (GMT) was 323,945 among those between the ages of 56 and 70 years and 1,128,391 among those who were 71 years of age or older; among the participants who received the 100-μg dose, the GMT in the two age subgroups was 1,183,066 and 3,638,522, respectively. After the second immunization, serum neutralizing activity was detected in all the participants by multiple methods. Binding- and neutralizing-antibody responses appeared to be similar to those previously reported among vaccine recipients between the ages of 18 and 55 years and were above the median of a panel of controls who had donated convalescent serum. The vaccine elicited a strong CD4 cytokine response involving type 1 helper T cells. (Anderson et al., 2020)
  • Side Effects: Solicited adverse events were predominantly mild or moderate in severity and most frequently included fatigue, chills, headache, myalgia, and pain at the injection site. Such adverse events were dose-dependent and were more common after the second immunization. (Anderson et al., 2020)
References
Anderson et al., 2020: Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, McDermott AB, Flach B, Lin BC, Doria-Rose NA, O'Dell S, Schmidt SD, Corbett KS, Swanson PA 2nd, Padilla M, Neuzil KM, Bennett H, Leav B, Makowski M, Albert J, Cross K, Edara VV, Floyd K, Suthar MS, Martinez DR, Baric R, Buchanan W, Luke CJ, Phadke VK, Rostad CA, Ledgerwood JE, Graham BS, Beigel JH. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. The New England journal of medicine. 2020; 383(25); 2427-2438. [PubMed: 32991794].
Corbett et al., 2020: Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, Flach B, O'Connell S, Bock KW, Minai M, Nagata BM, Andersen H, Martinez DR, Noe AT, Douek N, Donaldson MM, Nji NN, Alvarado GS, Edwards DK, Flebbe DR, Lamb E, Doria-Rose NA, Lin BC, Louder MK, O'Dell S, Schmidt SD, Phung E, Chang LA, Yap C, Todd JM, Pessaint L, Van Ry A, Browne S, Greenhouse J, Putman-Taylor T, Strasbaugh A, Campbell TA, Cook A, Dodson A, Steingrebe K, Shi W, Zhang Y, Abiona OM, Wang L, Pegu A, Yang ES, Leung K, Zhou T, Teng IT, Widge A, Gordon I, Novik L, Gillespie RA, Loomis RJ, Moliva JI, Stewart-Jones G, Himansu S, Kong WP, Nason MC, Morabito KM, Ruckwardt TJ, Ledgerwood JE, Gaudinski MR, Kwong PD, Mascola JR, Carfi A, Lewis MG, Baric RS, McDermott A, Moore IN, Sullivan NJ, Roederer M, Seder RA, Graham BS. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. The New England journal of medicine. 2020; 383(16); 1544-1555. [PubMed: 32722908].
Wang et al., 2020: Wang F, Kream RM, Stefano GB. An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development. Medical science monitor : international medical journal of experimental and clinical research. 2020; 26; e924700. [PubMed: 32366816].